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Abstract: Hyperspectral imaging systems are becoming widely used due to their increasing accessi-
bility and their ability to provide detailed spectral responses based on hundreds of spectral bands.
However, the resulting hyperspectral images (HSIs) come at the cost of increased storage require-
ments, increased computational time to process, and highly redundant data. Thus, dimensionality
reduction techniques are necessary to decrease the number of spectral bands while retaining the
most useful information. Our contribution is two-fold: First, we propose a filter-based method
called interband redundancy analysis (IBRA) based on a collinearity analysis between a band and its
neighbors. This analysis helps to remove redundant bands and dramatically reduces the search space.
Second, we apply a wrapper-based approach called greedy spectral selection (GSS) to the results of
IBRA to select bands based on their information entropy values and train a compact convolutional
neural network to evaluate the performance of the current selection. We also propose a feature
extraction framework that consists of two main steps: first, it reduces the total number of bands using
IBRA; then, it can use any feature extraction method to obtain the desired number of feature channels.
We present classification results obtained from our methods and compare them to other dimension-
ality reduction methods on three hyperspectral image datasets. Additionally, we used the original
hyperspectral data cube to simulate the process of using actual filters in a multispectral imager.

Keywords: hyperspectral feature extraction; band selection; hyperspectral classification; multispec-
tral classification

1. Introduction

Optical remote sensing systems are predicated on analyzing the spatial and spectral
information contained within the imagery they collect. Due to this ability, the applications
of remote sensing are widespread, ranging from measurements for precision agriculture [1]
to applications in forensic sciences [2]. In many of these applications, the spatial information
carried in the image must be considered when classifying objects in a scene; however, the
spectral information plays a crucial role in the process. The ability to maintain spatial detail
while also generating several spectral channels has given rise to several different forms of
passive remote sensing imaging systems, ranging from multispectral imaging (MSI) [3,4]
to hyperspectral imaging systems (HSIs) [5,6]. As opposed to MSI systems, which capture
several discrete spectral bands, HSI systems capture hundreds of contiguous spectral
bands. The utility of each type of imaging system varies based on the goal of the work. For
example, if spectral bands are known a priori, MSI systems are often advantageous as the
specific spectral bands can be measured directly with a relatively simple system and data
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products. However, if the spectral bands for a certain application are unknown, HSI can
become a powerful tool.

Hyperspectral imaging systems have the ability to capture good spatial resolution
while also capturing rich spectral content. However, the spectrally dense data cubes
captured by HSI systems often have large file sizes, high data density, and introduce
additional computational complexity. Taken together, these factors present computational
limitations when postprocessing imagery and storing data products. For example, the
Hyperspectral Infrared Imager (HyspIRI) launched by the Jet Propulsion Laboratory (JPL)
of the National Aeronautics and Space Administration (NASA) has an average continuous
data rate of 65 Mb/s, which produces a daily data volume of 5.2 Tb [7]; therefore, the
inherent computational cost makes fast onboard processing difficult.

In applications with smoothly varying spectral features, the additional complexity
and cost introduced by HSI systems may be unnecessary. For example, plant stress is
often estimated with the Normalized Difference Vegetation Index (NDVI) using a single
red band and a single near-infrared band instead of an HSI system, as is the case for
the Advanced Very High-Resolution Radiometer (AVHRR) instrument of the National
Oceanic and Atmospheric Administration (NOAA) [8] or the drone-based MicaSense
RedEdge-MX sensor [9]. Yet, for many applications, there is a need to resolve sharp spectral
features or the salient wavelengths are not known a priori, meaning MSI systems would
provide little value. Though HSI systems capture rich spectral data, the determination
of the most relevant wavelengths in a data cube is a challenging task. The successful
determination of salient wavelengths within a hyperspectral data cube would provide
several distinct benefits. If using a band selection method, the processing and storage
requirements can be relaxed as only relevant spectral bands are stored and processed [10].
When using feature extraction methods, all spectral bands are stored, but classification
accuracy can be increased [11]. Regardless of which method is used, the identification of
relevant spectral bands provides a means of developing multispectral imagers in place
of hyperspectral imagers for a given classification task, with applications ranging from
precision agriculture [12] to dermatology [13].

In this paper, we present a dimensionality reduction technique called interband
redundancy analysis (IBRA), which removes redundant spectral bands, thus simplifying
spectrally dense image data captured by a hyperspectral imager. IBRA is based on a
recursive collinearity analysis between each spectral band and its neighbors, which allows
for an approximation of the minimum number of bands we need to move away from a
band to find spectral bands with sufficiently distinct information. Having calculated this
distance metric for each spectral band, its distribution across the spectrum is used to cluster
the spectrum into sets of similar and contiguous spectral bands. This allows us to identify
a reduced set of independent bands that act as the centroid of their corresponding clusters
in the spectrum.

Along with simplifying the hyperspectral data cubes, our IBRA method can be used as
part of a novel two-step hybrid feature selection process. The first step applies IBRA to find
a reduced set of independent representative bands; then, it applies our proposed wrapper-
based method called greedy spectral selection (GSS) to select a user-defined number of
spectral channels, as depicted in Figure 1. GSS ranks the candidate bands according to their
information entropy to obtain an initial selection of bands, which is used to train a classifier
that evaluates the effectiveness of the given selection of bands based on the achieved
classification performance. Then, we remove from the selection the band that shows the
most severe indication of multicollinearity and repeat the process by considering the next
band with the highest information entropy, verifying if the classification performance
improves. As such, GSS aims to maximize the discrimination between classes and preserve
their spectral uniqueness. This band selection process is implemented as a part of achieving
our goal of designing low-cost, high-accuracy MSI systems for various applications. That
is, given a classification problem, our method allows us to select a user-defined number of
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salient wavelengths from an HSI dataset that can then be used for MSI while maintaining
or improving the accuracy of the original HSI-based system.

Figure 1. Flowchart of the overall band selection procedure using IBRA-GSS.

Furthermore, we explore the applicability of IBRA in combination with other dimen-
sionality reduction methods besides the various feature selection methods. Specifically, we
propose a feature extraction framework whose first step aims to remove the spectral redun-
dancy by using IBRA. The second step consists of applying any desired dimensionality
reduction method on the IBRA-selected set of spectral bands to obtain a new representation
with the desired number of dimensions or feature channels. Thus, the structure of the
proposed framework is similar to that shown in Figure 1, but including a dimensionality
reduction method (e.g., principal component analysis) instead of the GSS block. In this
work, we show experimental results for this framework considering both a supervised and
an unsupervised feature extraction method for the second step. Our results show that our
feature extraction framework yields better or competitive results in comparison to several
alternative feature selection methods in the context of hyperspectral image classification.

This paper is an extension of work originally presented at the International Joint
Conference on Neural Networks (virtual event, July 2021) [14]. Extensions include an extensive
set of experiments that allow for a broader analysis of the behavior of the proposed band
selection method. In particular, we include an additional hyperspectral image dataset for
our experiments and comparisons to two recently published band selection methods. We
also present the results of new experiments focused on testing performance using different
dataset sizes (i.e., 100%, 75%, 50%, 25%) to evaluate the impact of data quantity on the
effectiveness of our method. In our previous paper, we showed experiments selecting six
and ten bands from a hyperspectral dataset used for herbicide resistance classification;
here, we include results using eight bands as well in order to evaluate the tradeoff between
the number of bands and classification performance more effectively and to explain the
advantages of our proposed methods under different scenarios. Finally, we extend the
use of our IBRA method to include feature extraction and show how a feature extraction
method behaves in comparison to feature selection in hyperspectral image classification.

Our specific contributions are summarized as follows:

1. We propose a filter-based method called interband redundancy analysis (IBRA) that
works as a preselection method to remove redundant bands and reduce the search
space dramatically;

2. We present a two-step band selection method that first applies IBRA to obtain a
reduced set of candidate bands and then selects the desired number of bands using a
wrapper-based method called greedy spectral selection (GSS);

3. We show that IBRA can be used as part of a more general two-step feature extraction
framework where any dimensionality reduction method can be applied following
IBRA to obtain the desired number of feature channels;

4. Since one of the objectives of this work is to aid in the design of multispectral imaging
systems based on the wavelengths recommended by a band selection method, we
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also present an extensive set of experiments that use the original hyperspectral data
cube to enable simulating the process of using actual filters in a multispectral imager.

The remainder of this paper is structured as follows: In Section 2, we provide a brief
review of previous related work performed with feature extraction and feature selection
methods in the context of hyperspectral image classification. Section 3 provides further
details about the hyperspectral image datasets used in this work, as well as how we
preprocessed the data for our experiments. In this section, we also describe our IBRA and
GSS algorithms and explain how they are used for dimensionality reduction. Section 5
discusses the experimental results that are presented in Section 4. Finally, Section 6 offers
concluding remarks.

2. Related Work

Working with hyperspectral images often benefits from applying dimensionality
reduction techniques as a preprocessing step in order to avoid unnecessarily high com-
putational complexity and to reduce redundancy of the data. Dimensionality reduction
techniques not only reduce the inherent computational cost and relax the need for advanced
hardware requirements for processing the data, but they also combat the “curse of dimen-
sionality” [15,16]; i.e., the fewer the training samples, the worse the performance of an
HSI classifier when the dimensionality of HSI data (the number of features) increases [17].
Dimensionality reduction techniques rely on feature extraction or feature selection ap-
proaches; the former apply linear or nonlinear transformations to extract specific features
from the original data, while the latter select the most useful subset of the features of the
data without transforming them.

Feature extraction methods can be subdivided into two classes: unsupervised and
supervised. Among unsupervised methods, principal component analysis (PCA) and
its variants (e.g., folded-PCA and kernel PCA) are some of the most commonly used
methods to remove spectral redundancy and reduce the dimensionality of the raw data [18].
Nevertheless, theoretical arguments and experimental evidence of the ineffectiveness of
PCA for hyperspectral feature extraction have been presented [19]. According to this, PCA
should not be used as a preprocessing step to solve small-sample-size problems as there is
evidence that class separation deteriorates after PCA transformation.

Other unsupervised methods are based on independent component analysis (ICA)
and its variants (e.g., kernel ICA and Random Fourier Feature-ICA) [20]. Alternatively,
supervised methods such as Fisher’s linear discriminant analysis (LDA) [21,22] or partial
least squares discriminant analysis (PLS-DA) [23] are used widely for hyperspectral feature
extraction. More recent feature extraction methods apply local manifold learning to find
nonlinear embeddings that are used to project the data into lower-dimensional spaces. For
instance, Hong et al. [24] proposed a robust local manifold representation that incorporates
a hierarchical neighbor selection that aims to mitigate multicollinearity in the local manifold
space. Moreover, the computed weights are designed to jointly embed spectral and spatial
information. Feature extraction methods can also be applied with the objective of improving
data quality. In that sense, Zhuang et al. [25] proposed a robust hyperspectral denoising
technique that implements low-rank representations in order to project the data into lower-
dimensional spaces while reducing the impact of noise.

On the other hand, feature selection methods select a subset of spectral bands without
modifying the data or projecting it into a new basis. In other words, the aim of a hyperspec-
tral band selection method is to identify which spectral wavelengths are most responsive
or relevant for a particular classification task without modifying the data. Additionally,
identifying a reduced subset of relevant spectral bands allows for a better understanding
of the optical properties of the materials and provides information that is useful when
designing cheaper task-specific multispectral imagers.

There exists four types of feature selection methods: filter-based, wrapper-based,
hybrid, and embedded. Filter-based methods select bands based on various statistical
tests that assess the correlation between each band and the outcome variable or among
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other bands [26,27]. Wrapper-based methods, on the other hand, rely on a learning model
to evaluate the suitability of a given set of bands. Hence, the problem becomes a search
problem, which is computationally more expensive than filter-based methods [28,29]. In
order to avoid an exhaustive search, hybrid methods have been developed. They use a filter-
based method as a first step to select some relevant bands; then, a wrapper-based method
is used to make the final selection [16,30]. Finally, embedded methods use learning models
that internally select the most relevant features during the training phase [31,32]. Below,
we provide a brief review of previous related works corresponding to the aforementioned
types of feature selection methods.

Given the potential benefits of feature selection, several methods have been proposed
for hyperspectral image classification. In this context, some feature extraction methods
can be adapted for filter-based feature selection. For example, Chang et al. [33] presented
a joint band-prioritization method based on PCA where the spectral bands are ranked
according to their variances. PLS-DA can also be adapted into a feature selection scheme
using the resulting regression coefficients from full spectra to identify the most influential
wavelengths [34,35].

Some filter-based methods analyze the statistics of the data and heuristically estimate
a scoring index for each feature. For instance, [36] employed a filter feature-selection algo-
rithm based on minimizing a tight bound on the Vapnik-Chervonenkis (VC) dimension [37].
Ranking-based methods are one of the most common filter-based feature selection methods;
these methods estimate the importance of each spectral band using such metrics as the
variance inflation factor (VIF) [38] in order to select the top-ranked bands. We will use the
idea of calculating the VIF value to measure collinearity, but the spectral bands will not be
ranked based on this simple measure alone. Another example of a ranking-based method is
the fast density-peak-based clustering (FDPC) method proposed by Rodriguez et al. [39]; it
ranks each band according to its ability to become a cluster center, which is measured using
two factors: local density and distance from points of higher density. These factors are
calculated using a similarity matrix based on Euclidean distance. Similarly, Xu et al. [40]
constructed a similarity matrix based on structural similarity (SSIM) that is used to calculate
two measures called average similarity and significant dissimilarity to evaluate the ability
of each band to become a cluster center. Then, it ranks the bands according to the product
of these two measures so that the top-ranked bands are selected.

Other methods estimate the relevance of each band as part of an optimization ap-
proach. For instance, Medjahed and Ouali [41] formulated the feature selection problem as
a combinatorial optimization problem where feature relevance is measured by mutual in-
formation. Furthermore, Wang et al. [27] proposed an optimal clustering framework (OCF)
that searches for an optimal band partition. Here, the clustering strategy is to evaluate
the contribution of each cluster and then sum the contributions as a measure of the whole
clustering result. After obtaining an optimal partition, the method ranks each band within
a cluster according to a selected measure (e.g., information entropy) and selects those with
higher rank values. In subsequent work, Wang et al. [26] proposed a fast neighborhood
grouping method for hyperspectral band selection (FNGBS) that uses a neighborhood band
grouping approach to partition the data into several groups based on Euclidean distance.
After partitioning the data, the method ranks the bands within each group according to the
product of local density and information entropy in order to obtain the most relevant and
informative band for each cluster.

Recently, wrapper-based feature selection approaches based on genetic algorithms
have gained more attention [28,42,43]. For instance, a recent method for bandwidth
selection is known as histogram assisted genetic algorithm for reduction in dimensionality
(HAGRID) [29]. This method maintains a population of index vectors identifying a specific
number of wavelengths and fits a Gaussian mixture model to the converged population to
identify the main wavelengths with their associated filter bandwidths.

Alternatively, some embedded-based approaches have been proposed in the context of
deep learning. Taherkhani et al. [31] proposed regularizing the convolutional filters of the
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first layer of a convolutional neural network (CNN) using a group least absolute shrinkage
and selection operator (LASSO) algorithm in order to sparsify the redundant spectral
bands. Similar attempts, although they are not explicit feature selection methods, have
been carried out in works such as [44,45], where a spectral-wise attention mechanism in the
form of a fully connected layer is applied to the inner convolutional layers of the network
with the objective of emphasizing informative spectral features and suppressing less useful
spectral features. Furthermore, the use of saliency maps have gained popularity due to
their ability to estimate which features (i.e., pixels) are more relevant for a model [46,47].
For example, Nagasubramanian et al. [48] adapted the concept of spatial saliency maps to
an HSI classification scheme in order to estimate the relative importance of each wavelength
given a specific class.

3. Materials and Methods
3.1. Dataset Descriptions

In our experiments, we used an in-greenhouse controlled HSI dataset of kochia leaves
in order to classify three different herbicide resistance levels. We also used two well-known
remote sensing HSI datasets: Indian Pines (IP) [49] and Salinas (SA) [50].

The Kochia dataset consists of images of the weed kochia (Bassia scoparia), which
is considered one of the most problematic weeds in small grains and broadleaf crops
such as soybeans and sugar beets [51–53]. This dataset was collected and analyzed by
Scherrer et al. [1] with the aim of learning to differentiate between three different classes
of herbicide resistance of this weed: (1) herbicide-susceptible, (2) glyphosate-resistant,
and (3) dicamba-resistant, where glyphosate and dicamba are two components commonly
found in commercial herbicides [53]. It is important to note that the difference between
these three classes is imperceptible using standard color digital cameras that collect data for
three bands in the visible spectrum of light (red, green, and blue), which justifies the need
of using hyperspectral or multispectral imaging systems. The images were captured using
a Resonon Pika L hyperspectral imager with 300 spectral channels across a spectral range
of 387.12 nm to 1023.50 nm, resulting in a spectral resolution of approximately 2.12 nm.
The kochia samples were illuminated using diffuse sunlight in a greenhouse setting. A
total of 76 hyperspectral images of kochia with varying ages and spatial resolutions were
captured at the Montana State University Southern Agricultural Research Center (SARC).
Each image contains three kochia leaves of the same herbicide resistance class with a height
of 900 pixels and width ranging from 700–1200 pixels.

The Indian Pines dataset [49] is an aerial 145× 145-pixel image of the Indian Pines
site in Northwestern Indiana. It was acquired in 1992 using the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor [54], and it originally had 224 spectral bands in the
wavelength range 400–2500 nm, resulting in a spectral resolution of approximately 9.5 nm.
The number of bands was first reduced to 220 after removing four damaged bands without
information (i.e., all of their pixels were zero value) [49], and then to 200 after removing
24 noisy bands and bands covering the region of water absorption corresponding to the
wavelengths (1333–1373 nm), (1789–1893 nm), and (2499 nm) that correspond to the band
indices (104–108), (150–163) and 220, as recommended by Tadjudin and Landgrebe [55].
The data are divided into 16 classes containing agriculture, forest, and other natural
perennial vegetation.

Similarly, the Salinas dataset [50] is a 512× 217-pixel aerial image of Salinas Valley,
California, that was gathered in 199 using the same AVIRIS sensor as Indian Pines. Bands
in the same wavelength ranges as Indian Pines were removed; however, in this case,
they correspond to the following band indices: (108–112), (154–167) and 224. Thus, only
204 spectral bands are used. It is divided into 16 classes containing vegetables, vineyard
fields, and bare soil.
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3.2. Data Preprocessing

Each of the 76 collected images in the Kochia dataset contains a reflectance standard
and three kochia leaves that correspond to the same herbicide resistance class. The white
panel shown on the left side of each image in Figure 2 corresponds to the reflectance
standard, a 99% reflectance Spectralon panel, which is commonly used as a Lambertian
calibration reference. These images were captured by the Pika L hyperspectral imager in
raw digital numbers, meaning the image data required preprocessing prior to analysis. For
our experiments on the Kochia dataset, we converted the raw digital numbers to reflectance
values using the Spectralon panel as the reflectance reference.

The first step of the reflectance correction was to select the pixels in the image that
contain the Spectralon reflectance target. Next, we averaged the values of all pixels within
the selected region at each spectral band, leaving us with a single, averaged digital number
for each spectral band n ∈ [1, N] (where N represents the total number of spectral bands)
denoted as DN(n)

target. Consequently, we obtained a digital number representing 99% of the
reflected light for each spectral band. Finally, we calculated the spectral reflectance at the
i-th pixel of the n-th spectral band, ρ

(n)
i , as follows:

ρ
(n)
i =

DN(n)
scenei − DN(n)

dark

DN(n)
target − DN(n)

dark

ρtarget,

where DN(n)
scenei represents the digital number value captured at the i-th pixel of the n-th

spectral band, DN(n)
dark represents the dark current or background signal generated through

sporadic electron generation in the imager’s sensor, and ρtarget represents the reflectivity of
the reflectance target.

Figure 2. Kochia leaves at (a) 8 weeks and (b) 2 weeks. (c) An example of the extraction of 25× 25-
pixel patches.

From the calibrated images, we extracted 6316 25 × 25-pixel overlapping patches
(Figure 2c). Once extracted, we reduced the number of spectral bands within each patch
from 300 to 150 by averaging adjacent pairs of bands, which can be interpreted as 2× spectral
binning, where the resulting spectral resolution of each band was modified from ap-
proximately 2.12 nm to 4.24 nm. Thus, the final shape of this preprocessed dataset is
6316× 25 ×25× 150 pixels.

Given that one of the goals of this work is to aid in the design of multispectral
imaging systems, we note that decreasing the overall spectral resolution is unlikely to
affect our results, as it is unlikely that optical filters with a bandwidth less than 20 nm
will be considered. Hence, this process gives us an upfront reduction in dimensionality
that greatly reduces the potential overfitting impact in our following analysis without
overly constraining the design parameters of a multispectral imager. In addition, averaging
consecutive bands has a smoothing effect that helps to combat possible noise in some
spectral bands.
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However, we used a different process for the IP and SA datasets. As described in
Section 3.1, these datasets consist of single large images, meaning that we had to divide
them into small patches so that each patch represents one class. In this case, we extracted
5× 5-pixel patches around each pixel with an assigned label. From the IP and SA datasets,
we extracted 10,249 and 54,129 patches, respectively. Hence, the size of the preprocessed
IP dataset is 10,249 ×5 × 5 × 200 pixels while that of the preprocessed SA dataset is
54,129 ×5× 5× 204 pixels.

3.3. Interband Redundancy Analysis

Our first contribution consists of having developed a method called interband re-
dundancy analysis (IBRA) that selects a subset of representative spectral bands from the
original data cube aiming to reduce the interband redundancy. IBRA is a filter-based
selection method that iteratively calculates the variance inflation factor (VIF) [56] between
pairs of bands in order to determine how correlated they are; that is, to verify the presence
of collinearity between them.

To calculate the VIF value between two bands, x1 and x2, we built an ordinary least
squares (OLS) regression model that takes one of the bands as the independent variable (x1)
and the other as the dependent variable (x2). Then, we used the R-squared (coefficient of
determination) value from the resulting model, R2

x1,x2
, to calculate the VIF value as follows:

VIF(x1, x2) = 1/(1− R2
x1,x2

).

VIF values range from 1 upwards. The higher the VIF value, the more there is the risk
of collinearity. If two bands are collinear, they explain the same variance within the
dataset and can be considered to be redundant. We will consider VIF values greater than
a threshold θ as representing the presence of collinearity between two spectral bands.
In the literature, the recommended values of θ are between 5 and 10 [57,58], so we test
different values of θ ∈ [5, 12] to observe how the classification performance is affected by
this threshold and to choose the best θ for a given classification task.

Some methods, such as that proposed by Castaldi et al. [38], use the VIF metric
to perform a stepwise selection process where the bands that show a VIF value greater
than a threshold θ (i.e., bands that show a high risk of multicollinearity) are removed
from the selection. Our approach is novel and distinct in that we use the VIF metric as
part of a preselection step, assessing the collinearity degree between each band and its
local neighbors iteratively in order to find independent salient bands that are suitable
cluster centers.

Our IBRA preselection method first analyzes each spectral band xn with spectral index
n ∈ [1, N] to calculate the minimum number of bands we need to move away to the left
side from it in order to find bands sufficiently different from band xn, denoted as dle f t(xn).
Similarly, we calculated the minimum number of bands we need to move away to the right
side from band xn in order to find bands sufficiently different from band xn, denoted as
dright(xn) (see Algorithm 1). From this, we assumed that all the bands within the interval
[xn − dle f t(xn) + 1, xn + dle f t(xn)− 1] are similar to xn and form a possible cluster.

We considered that a suitable cluster center should represent the bands that are on the
left side of the cluster in a similar way that it represents those on the right side; therefore,
we calculated the difference d(xn) = |dle f t(xn)− dright(xn)| to quantify the suitability of
band xn to become a cluster center, where low values of d(xn) indicate better suitability.
Take Figure 3 as an example. Here, x4 (d(x4) = 0) is more suitable than x5 (d(x5) = 2) to
be considered a bandwidth center because it is similar to both the left and right sides, so
it better represents the bands within the interval [x2, x6]. Recall that there exists a strong
correlation between bands with close wavelengths [27], which means that the more distant
two bands are, the more different their spectral information is.

Next, we analyzed how the differences d(xn) were distributed across the spectrum.
This distribution was used to find clusters with similar bands and their corresponding
cluster centers. Figure 4 shows the distribution of the variable d(xn) for the Kochia dataset
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given different thresholds θ. From this, we observed that each distribution consisted of
a series of “V” patterns. In this context, a local minimum—the center of a “V” pattern—
represents a salient band that explains the variance within the dataset in a way similar to
its neighbors. Even though all the bands within a “V” pattern are similar, the band at the
leftmost position is more similar to those bands on the left side of the cluster. Similarly, the
band at the rightmost position of the “V” is more similar to those bands on the right side of
the cluster, while the band corresponding to the local minimum is similar to both sides,
acting as a centroid. In general, we kept the bands corresponding to a local minimum in the
n vs. d(xn) plot and remove the rest since they are assumed to be redundant. We considered
only local minima where d(xn) < 5; otherwise, they will not be suitable bandwidth centers.

The entire IBRA process is described in Algorithm 1 and Figure 5. Here, getVIF(a, b)
calculates the VIF value between bands xa and xb. Note that getVIF(a, b) = getVIF(b, a);
therefore, in order to avoid re-calculations and make the algorithm more efficient, we
construct a symmetric matrix table that stores the pre-computed VIF values between pairs
of bands. Furthermore, getLocalMinima(d) is a function that retrieves the position of the
local minima of the vector d. Hence, the algorithm returns a vector called preselection,
which is a set of numbers Sc ∈ ZN′ (where N′ � N) representing the indices of the
preselected spectral bands. It is worth mentioning that the number of preselected bands N′

is not known a priori and depends on each dataset and the selected VIF threshold θ.

Figure 3. Example of the calculation of distances dle f t and dright for bands x4 and x5 used in the IBRA
process. Note that the value of VIF(x4, x5) is calculated when analyzing the variable x4 so that this
value is simply reused in the next iteration.
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Figure 4. Wavelength (nm) vs. spectral response and n vs. d(xn) plots for the Kochia dataset using different VIF thresholds.
(a) θ = 8, (b) θ = 10, (c) θ = 12. Local minima in the three graphs are indicated with an ‘×’.

Figure 5. Flowchart of the IBRA process.
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Algorithm 1 Calculating the interband redundancy.
1: function INTERBANDREDUNDANCY(θ)
2: dle f t ← [ ]
3: dright ← [ ]
4: table← zeros(N, N) // creates an N × N matrix of zeros
5: for all band ∈ (1, N) do
6: // Check left side
7: t← 1
8: vi f ← ∞
9: while (vi f > θ) ∧ ((band− t) > 0) do

10: if table[band, band− t] = 0 then
11: table[band, band− t] = getVIF(band, band− t)
12: table[band− t, band] = table[band, band− t]
13: vi f = table[band, band− t]
14: t← t + 1
15: dle f t ← [dle f t − 1]
16: // Check right side
17: t← 1
18: vi f ← ∞
19: while (vi f > θ) ∧ ((band− t) < N) do
20: if table[band, band + t] = 0 then
21: table[band, band + t] = getVIF(band, band + t)
22: table[band + t, band] = table[band, band + t]
23: vi f = table[band, band + t]
24: t← t + 1
25: dright ← [dright − 1]

26: d← |dle f t − dright|
27: preselection← getLocalMinima(d)
28: return preselection

3.4. Band Selection Using Pre-Selected Bands

Our second contribution was the development of a two-step hybrid band selection
method: First, it uses IBRA to obtain a set of independent candidate bands from the original
spectrum, as we showed in Section 3.3. Then, it employs a wrapper-based method to select
the best combination of bands given the desired number of bands k (whose indices are
denoted by S f ∈ Zk) from the set of N′ available candidate bands preselected by IBRA
(whose indices are denoted by Sc ∈ ZN′ ) instead of the entire set of spectral bands, which
greatly reduces the search complexity. We call this process greedy spectral selection (GSS).

The GSS process starts by ranking each candidate band xc, where c ∈ Sc, according to
some criterion. In this work, we used information entropy to calculate an initial relevance
score for each spectral band. The three datasets used in this work were acquired using a bit
depth of 14 bits, allowing us to interpret a spectral band as a discrete random variable. The
entropy of band xc, H(xc), conveys the average level of information inherent in xc and is
defined as follows:

H(xc) = − ∑
z∈Ωxc

P(z) log P(z),

where P(z) is the probability mass function of random variable z, and Ωxc is the space that
encompasses all the possible values that can occur in the spectral band xc.

Here, it is important to highlight the difference of our method with respect to other
band selection methods that use information entropy as a ranking measure, such as those
proposed by Wang et al. [26,27]. In particular, those methods use an optimization approach
to group the data into k clusters of similar bands. Then, they use information entropy to
find the most representative band from each cluster (i.e., the band with the largest amount
of information) to obtain a final selection of k bands. Our approach is distinct in two
aspects: First, when using IBRA, we already picked the most representative band from each
cluster (defined as a local minimum in the n vs. d(xn) plot, as shown in Figure 4). Then, we
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ranked the N′ preselected bands based on information entropy in order to select a subset
S f of k bands. Thus, initially, S f consists of the indices of the top-k candidate bands of Sc
with the greatest entropy. The second aspect is that, while other methods use information
entropy to obtain a final selection of bands directly, we used it to obtain an initial selection
that will be refined further using a greedy algorithm based on a multicollinearity analysis.

We note that collinearity does not exist between pairs of candidate bands obtained
by the IBRA preselection process because the calculated VIF value between two cluster
centers must be lower than a given threshold θ. However, it is possible that three or more
bands are highly correlated—a phenomenon known as multicollinearity [57]. In that case,
we checked for the presence of multicollinearity within the k selected spectral bands the
same way as described in Section 3.3 with collinearity; that is, taking one band at a time,
considering it as the dependent variable while considering the rest of the k− 1 bands as
the independent variables, and calculating its corresponding VIF value.

With this, after obtaining an initial set of k selected bands based on information entropy,
GSS employs the following greedy algorithm (see Algorithm 2). First, we calculated the
average classification performance (F1 score) when using the current k selected bands. To
do this, we performed a 5× 2-fold cross-validation using a convolutional neural network
(CNN) classifier (see Section 3.5) and calculated the average F1 score obtained on the
10 validation folds. Then, after calculating the VIF value for each of the currently selected
bands, we removed the one with the greatest VIF value and consider the next available
band with the greatest entropy. With this new subset of k bands, we performed a new
5× 2-fold cross-validation process to determine if the average classification performance
had improved. If so, we considered the current selection of k bands as the current best
selection and updated the indices of S f . We repeated this process until there were no
more available bands. Finally, we selected the combination of bands that showed the best
classification performance.

Algorithm 2 Greedy spectral selection.

1: function SELECTBANDS(Sc, k)
2: H ← getEntropy(Sc)
3: Sc.sort(key = H)
4: S f ← Sc[1 : k]
5: Sc ← Sc[k + 1 : end]
6: bestF1← trainSelection(S f )
7: bestS f ← S f
8: while length(c) > 0 do
9: listVIF ← getVIFMulti(S f )

10: index = getMax(listVIF)
11: S f [index : end]← S f [index + 1 : end]
12: S f .append(Sc[1])
13: Sc ← Sc[2 : end]
14: newF1← trainSelection(S f )
15: if newF1 > bestF1 then
16: bestS f ← S f
17: bestF1← newF1
18: return bestS f

Figure 6 depicts the process of selecting k = 6 bands for the Kochia dataset from the
set of 17 band candidates obtained using IBRA with a VIF threshold of 10 (see Figure 4b).
Then, in the first iteration of GSS, the first six bands selected are those with the highest
information entropy values; for example, those with indices [1, 18, 31, 54, 64, 68]. With this
selection of bands, we performed 5× 2-fold cross-validation training a CNN and obtained
an average F1 score of 92.49%. Then, we determined that the band with index 64 had the
highest VIF value (i.e., 86.8), which means that its variance could be explained well using
the other five bands. For this reason, this band was removed from the selection and the
next available band (i.e., the band with index 43) was considered in the second iteration.
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We show the results obtained after six iterations only given that the following iterations
could not achieve better classification performance scores. Therefore, the best selected
bands were found at the fifth iteration and their indices were [1, 18, 43, 68, 81, 143].

Figure 6. Demonstration of the greedy spectral selection (GSS) process for the Kochia dataset using θ = 10 and k = 6.
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The GSS algorithm is presented in Algorithm 2 and Figure 7. Note that it selects the in-
dices of the best k bands from a list of candidate band indices Sc. Function getEntropy(Sc)
returns the entropy value of each of the candidate bands with indices Sc. Then,
Sc.sort(key = H) sorts the elements of Sc with respect to their corresponding entropy
values in nonincreasing order. Function getVIFMulti(S f ) returns a list with the VIF value
for each band in S f . Next getMax(l) returns the position where the maximum value in a
list l was found. Finally, the performance of the currently selected bands was evaluated
using trainSelection(S f ), which returns the average F1 score obtained using the bands
with indices S f and 5× 2-fold cross-validation.

Figure 7. Flowchart of the GSS process.

3.5. Convolutional Neural Network Architecture

The type of classifier we used for the GSS process to evaluate the appropriateness
of a given selection of spectral bands (line 6 in Algorithm 2) is a CNN. Preliminarily,
we experimented with other types of classifiers to use in the GSS process; specifically,
support vector machines, random forests, and feedforward neural networks. However,
these approaches showed slow convergence rates and poor classification performance
in comparison to our CNN, despite being a more complex model. For this reason, we
continued to use CNNs over the other types of classifiers.

All the classifiers used in this work are CNNs that use a modified version of the
Hyper3DNet architecture [59], which is a 3D-2D CNN architecture specifically designed for
HSI classification problems using a reduced number of trainable parameters. The original
Hyper3DNet architecture consists of two main modules: a 3D feature extractor and a
2D spatial encoder. The 3D feature extractor uses a sequence of 3D convolutional layers
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with filters that analyze not only spatial neighborhoods but also spectral neighborhoods
while maintaining spatial resolution. Then, the 2D spatial encoder progressively reduces
the spatial resolution using 2D separable convolutional layers, which are used due to
their ability to reduce the number of trainable parameters and computational burden
while improving the classification performance [60,61]. Experimental results demonstrated
relative superiority of this architecture over state-of-the-art architectures.

The modified CNN architecture that we used in this paper, referred to as Hyper3DNet-
Lite, is a simplification of the original Hyper3DNet architecture. The difference with the
original architecture is that its 3D feature extractor consists of two 3D convolutional layers
instead of a densely connected block with four layers; additionally, its 2D spatial encoder
has three layers instead of four. The Hyper3DNet-Lite architecture used for the Kochia
dataset is detailed in Table 1, where N denotes the number of spectral bands in the input,
“SepConv2D” denotes a 2D separable convolutional layer, and “ReLU” denotes a rectified
linear unit activation layer (where ReLU(x) = max(0, x)). The only difference with the
network used to process the IP and SA datasets is that, since the input image is smaller
(5× 5 pixels), the stride used in the last two “SepConv2D” layers is (1, 1) instead of (2, 2)
to avoid dimensionality inconsistencies.

Another difference of our Hyper3DNet-Lite with respect to the original Hyper3DNet
is that, after the last “SepConv2D” layer, we used a “GlobalAveragePooling” operation
instead of a “Flatten” operation. For example, for the case of the network shown in Table 1,
we transformed our 3D tensor with dimensions 7× 7× 256 pixels into a 1D vector with
256 elements by averaging the 49 values from each channel. Conversely, if we were to use
a flattening operation, we would obtain a 1D vector with 12,544 elements. This relaxes the
need of using an intermediate fully connected layer to reduce the dimensionality of the
tensor before the final classification layer; thus, we avoided using an excessive number of
trainable parameters.

The simplified architecture of the Hyper3DNet-Lite network becomes especially suit-
able for datasets that use just a few spectral bands, given that these datasets often do not
require models with a high level of complexity to process them, unlike those datasets that
use all the available spectral bands. In this way, we avoided overparameterization, which
results in our models being less prone to overfitting.

Table 1. Hyper3DNet-Lite architecture for the Kochia dataset.

Layer Name Kernel Size Stride Size Output Size

Input — — (25, 25, N, 1)

Conv3D + ReLU (3, 3, 3) (1, 1, 1) (25, 25, N, 16)

Conv3D + ReLU (3, 3, 3) (1, 1, 1) (25, 25, N, 16)

Reshape — — (25, 25, 16N)

SepConv2D + ReLU (3, 3) (1, 1) (25, 25, 320)

SepConv2D + ReLU (3, 3) (2, 2) (13, 13, 256)

SepConv2D + ReLU (3, 3) (2, 2) (7, 7, 256)

GlobalAveragePooling — — 256

Dense + Softmax — — # classes

3.6. Multispectral Imager Design

A spectral band is determined by its wavelength center and its spectral resolution;
that is, an imager captures the reflected light in a given band around its center wavelength
within a range determined by its spectral resolution. The method described in Section 3.4
was used to select the most relevant spectral bands from the original hyperspectral data
cube and, as a consequence, their wavelengths. Knowing which wavelengths are more
useful for a given application allows us to discard the information captured at different



Remote Sens. 2021, 13, 3649 16 of 31

wavelengths, thus reducing storage requirements. However, this knowledge also allows
for the design of a compact multispectral imager that would be used instead of a full
hyperspectral imager. Hence, to test our hypothesis that we can use our method to provide
the specifications needed to design a multispectral imager, we assessed classification
performance with a simulated multispectral imager by using the original hyperspectral
data cube and simulate applying optical filters to capture data from an imager that would
use our selected wavelengths.

The bandwidth of the simulated multispectral filters is set to be equivalent to the
bandwidth encompassed by five bands, which is equivalent to 21 nm for the case of the
Kochia dataset, and 50 nm for the case of the IP and SA datasets. These are commonly
available optical filter bandwidths. To obtain the reflectance measured by the simulated
multispectral sensor, we generated k Gaussian distributions, one for each of the selected
bands, taking the spectral wavelengths selected by a band selection method as the centroids.
The spread of the generated Gaussian curves is proportional to the filter bandwidth. In
particular, the full-width at half-maximum (FWHM) of the curve was set to be equal to
the bandwidth [29]. The FWHM is defined based on the standard deviation of the curve σ
as FWHM = 2σ

√
2 ln 2. Then, the simulated multispectral reflectance measurement was

obtained by multiplying the original hyperspectral data cube by the corresponding Gaus-
sian distribution generated for each band, then integrating under the resulting response
curve to obtain a single reflectance value. This process was repeated for each of the k
Gaussian distributions.

3.7. Feature Extraction Framework

Feature extraction approaches project the N original spectral bands into a new rep-
resentation basis of N′′ features (where N′′ < N). As such, transformed features can no
longer be interpreted as spectral bands. In other words, we lose data interpretability. How-
ever, in some cases, feature extraction methods may present some performance advantages
over feature selection methods. For example, projecting the data into a new basis with
reduced dimensionality based on PCA helps to remove redundancy while trying to explain
the original variance of the dataset. Conversely, feature selection methods simply discard
the information of the bands that were not selected. Therefore, a classifier trained on N′′

transformed features that explain most of the original variance of the dataset might perform
better than a classifier trained on N′′ selected bands, considering that the discarded bands
did not contain trivial information.

We propose generalizing our method described above into a two-stage feature extrac-
tion framework. First, we applied IBRA to remove redundant bands; then, we can use any
feature extraction method to obtain the desired number of feature channels k. In this work,
we demonstrate the pipeline using two types of feature extraction methods: unsupervised
and supervised. We chose PCA as the unsupervised method and denote the resulting
instance as IBRA-PCA. In addition, we used PLS-DA as the supervised method; here, we
used the class labels of the dataset to maximize the class separation within the reduced
space. This instance is denoted as IBRA-PLS-DA.

4. Experimental Results

In this section, we present the experimental results for each step of our proposed
methods and analyze their performance in comparison to other dimensionality reduction
methods. For the sake of consistency and fairness, we used the same configuration for all
the networks trained in our experiments, including those used during the GSS process.
That is, we used the same network architecture (i.e., Hyper3DNet-Lite), optimizer, and
batch-size. While this strategy does not guarantee the best possible results, it allowed us to
compare the behavior of different band selection methods under the same conditions. All
CNNs were trained using the Adadelta optimizer [62], which is a gradient descent method
based on an adaptive learning rate, so that there is no need to select a global learning rate
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manually. The mini-batch size was set to 128. The last layer of the CNNs used a softmax
activation function, and we employed a categorical cross-entropy loss function.

We applied 5× 2-fold stratified cross-validation to train and evaluate all networks.
That is, we randomly divide our datasets into two equally sized folds so that one fold works
as the training set and the other as the validation set, train again with the roles of these
folds reversed, and then repeat this process four more times. Furthermore, stratification
indicates that each fold has the same proportion of samples of a given class. Note that
z-score normalization (mean equal to zero and standard deviation equal to one) was
applied onto each spectral band of each training set while the exact same scaling was
applied to their corresponding validation set. In order to analyze the behavior of our
models, we calculated four metrics by aggregating the results on all ten of the validation
sets: overall classification accuracy, macro-average precision, macro-average recall, and
macro-average F1 score. The source code and datasets are available online (Codebase:
https://github.com/GiorgioMorales/HSI-BandSelection.git, accessed on 5 July 2021).

4.1. Training with Preselected Bands Alone

Previously (Figure 4), we showed some examples of applying the preselection method
using IBRA on the Kochia dataset using three different VIF thresholds (12, 10, and 8), which
reduced our search space from 150 bands to 19, 17, and 16 bands, respectively. Table 2
gives the number of preselected bands for the Kochia, IP, and SA datasets when using
IBRA with a VIF threshold of 10 (θ = 10); it also gives the average performance for the four
metrics and corresponding standard deviations using the Hyper3DNet-Lite network when
training on the full hyperspectral spectrum and only the preselected bands. The number of
parameters required to train each network is reported in the last column.

Table 2. Classification performance with and without IBRA preselection (θ = 10).

Dataset # of Bands Accuracy Precision Recall F1 # of Parameters

Kochia
150 98.46 ± 0.29 98.66 ± 0.26 98.55 ± 0.31 98.60 ± 0.28 561,475

17 97.05 ± 0.47 97.25 ± 0.45 97.17 ± 0.46 97.21 ± 0.44 258,035

Indian Pines
200 99.42 ± 0.18 99.32 ± 0.29 99.47 ± 0.28 99.39 ± 0.27 1,274,464

31 99.49 ± 0.14 99.38 ± 0.34 99.56 ± 0.19 99.47 ± 0.23 338,880

Salinas
204 99.92 ± 0.04 99.93 ± 0.05 99.94 ± 0.03 99.94 ± 0.04 1,296,608

14 99.43 ± 0.13 99.75 ± 0.08 99.72 ± 0.08 99.73 ± 0.08 244,768

4.2. Greedy Spectral Selection

From Figure 4, we notice that different VIF thresholds can lead to slightly different
selections of candidate bands. In general, the lower the VIF threshold, the more distinct
two bands have to be to be considered noncollinear. Exactly how large this threshold needs
to be is not clear. If it is too large, we may end up including too many candidate bands
that do not represent suitable bandwidth centers. On the other hand, if it is too small, we
may discard bands that could have been useful for the classification task. For that reason,
we applied IBRA using different VIF thresholds θ ∈ [5, 12] so that we obtained a set of
preselected bands for each of them. Then, we applied GSS on each set of candidates to
select the desired number of bands k. Finally, we selected the classifier that achieved the
best classification performance based on the mean F1-score obtained after a 5× 2-fold
cross-validation.

For the Kochia dataset, we considered six, eight, and ten bands in order to evaluate
the tradeoff between the number of bands and classification performance. For the IP and
SA datasets, we selected only five bands. This is because we found that the ease of training
these datasets when using k > 5 yielded to high-performance metrics (>99% accuracy)
no matter which feature selection method was chosen. That is, the lack of sufficiently
distinct results prevented us from being able to evaluate the existence of any performance

https://github.com/GiorgioMorales/HSI-BandSelection.git
https://github.com/GiorgioMorales/HSI-BandSelection.git
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difference among the various methods, which is why selecting more than five bands from
these datasets was not considered appropriate for this work. In addition, for each dataset,
we experimented with different dataset sizes (i.e., 100%, 75%, 50%, and 25%) to evaluate
how consistent the band selection results as the data availability changes.

For the Kochia dataset, when selecting six bands (k = 6), the best results were obtained
using a VIF threshold of ten (θ = 10), and the wavelengths of the selected bands (in nm)
were [391.2, 463.3, 569.3, 675.3, 730.4, 993.3] for each of the four dataset size variations.
Equivalently, the indices of the selected bands were [1, 18, 43, 68, 81, 143]. When selecting
eight bands (k = 8), the best results were obtained using a VIF threshold of θ = 8 when
using 100%, 50%, and 25% of the dataset and θ = 6 when using 75% of the dataset. In
the four cases, the difference between the classification performance obtained using θ = 8,
θ = 7, and θ = 6 is not statistically significant, so we considered the three options equally
as good. Therefore, in this work, we simply chose the bands selected using θ = 8 since it
achieved slightly higher performance metrics in three out of the four dataset variations.
Hence, the wavelengths of the selected bands were [387.0, 404.0, 463.3, 518.4, 577.8, 654.1,
675.32, 700.8] (nm) with indices [0, 4, 18, 31, 45, 63, 68, 74].

When selecting ten bands (k = 10), the best results were obtained using a VIF threshold
of θ = 7 when using 100% and 50% of the dataset, and θ = 8 when using 75% and 25% of
the dataset. The wavelengths of the bands selected for θ = 7 were [387.0, 404.0, 463.3, 518.4,
569.3, 654.1, 675.3, 700.8, 722.0, 1006.0] (nm)—with indices [0, 4, 18, 31, 43, 63, 68, 74, 79, 146]—
and the only difference with respect to the bands selected for θ = 8 was the selection of
the wavelength 577.8 nm—which corresponds to the band index 45—instead of 569.3 nm—
which corresponds to the band index 43. Table 3 shows the performance using IBRA and
GSS on the full Kochia dataset for different VIF thresholds (θ ∈ [5, 12]) when selecting six,
eight, and ten bands. The bold entries in these tables represent the best VIF threshold and
average F1 score.

For the IP dataset, the best results were obtained using a VIF threshold of ten (θ = 10)
and the wavelength of the selected bands were [498.3, 626.9, 706.2, 821.8, 1023.7] (i.e., with
band indices [11, 25, 34, 39, 67]) for all four dataset size variations except when we used 50%
of the dataset, where the best VIF threshold was nine (θ = 9) and the wavelength 557.5 nm
(band index 46) was selected instead of the wavelength 498.3 nm (band index 39). Table 4
shows the performance using IBRA and GSS on the full IP dataset.

For the SA dataset, the best classification performance was obtained using a VIF
threshold of θ = 8 when using 100% and 75% of the dataset. The wavelength of the selected
bands were [731.83, 950.54, 1159.73, 1254.82, 2044.73] (nm), which correspond to the indices
[37, 60, 82, 92, 175] of the corrected SA dataset after discarding the 20 water absorption
bands (see Section 3.1). When we reduced the dataset size, different VIF thresholds were
selected. Specifically, when we used 50% of the dataset, the best VIF threshold was six
(θ = 6), and we selected the wavelengths 570.18 nm (index 20) instead of 731.83 nm (index
37), 1245.31 nm (index 91) instead of 1254.82 nm (index 92), and 2215.22 nm (index 174)
instead of 2224.73 nm (index 175). Furthermore, when we used 25% of the dataset, the
best VIF threshold was seven (θ = 7), and we selected the wavelength 2215.22 nm (index
174) instead of 2224.73 nm (index 175). Similar to what happened with the Kochia dataset
when selecting eight bands, the classification performance obtained using θ = 8, θ = 7,
and θ = 6 was not statistically significant, so we considered the three options equally as
good; however, in this work, we chose to use the bands selected using θ = 8, as it yielded
slightly better performance metrics in two out the four dataset variations. Table 5 shows
the performance using IBRA and GSS on the full SA dataset.
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Table 3. Greedy spectral selection on the Kochia dataset. Bold entries represent the best VIF threshold and average F1 score.

k VIF Selected Bands (nm) Accuracy Precision Recall F1

6

12 [395.5, 463.3, 565.1, 700.8, 722.0, 993.3] 92.44 ± 0.71 92.76 ± 0.80 92.79 ± 0.67 92.76 ± 0.72

11 [395.5, 408.2, 463.3, 586.3, 662.6, 700.8] 90.74 ± 1.05 91.56 ± 0.97 91.54 ± 1.06 91.54 ± 1.01

10 [391.2, 463.3, 569.3, 675.3, 730.4, 993.3] 92.69 ± 0.53 93.24 ± 0.52 93.08 ± 0.49 93.15 ± 0.49

9 [391.2, 463.3, 569.3, 700.8, 730.4, 993.3] 92.40 ± 0.63 92.67 ± 0.63 92.77 ± 0.59 92.71 ± 0.59

8 [387.0, 404.0, 463.3, 577.8, 700.8, 722.0] 92.58 ± 0.63 93.05 ± 0.65 93.08 ± 0.57 93.06 ± 0.59

7 [387.0, 404.0, 463.3, 569.3, 700.8, 722.0] 92.07 ± 0.89 92.52 ± 0.89 92.55 ± 0.79 92.53 ± 0.83

6 [387.0, 404.0, 463.3, 586.3, 700.8, 717.7] 92.00 ± 0.61 92.57 ± 0.54 92.52 ± 0.64 92.53 ± 0.57

5 [387.0, 463.3, 586.3, 645.6, 700.8, 722.0] 91.03 ± 1.04 91.79 ± 1.14 91.75 ± 0.91 91.76 ± 1.01

8

12 [395.5, 408.2, 463.3, 565.1, 675.3, 700.8,
722.0, 993.3] 93.96 ± 0.68 94.47 ± 0.65 94.34 ± 0.68 94.39 ± 0.66

11 [395.5, 408.2, 463.3, 565.1, 675.3, 700.8,
726.2, 993.3] 94.18 ± 0.70 94.74 ± 0.65 94.47 ± 0.67 94.59 ± 0.66

10 [391.2, 463.3, 569.3, 675.3, 730.4, 963.6,
993.3, 1006.0] 93.95 ± 0.62 94.48 ± 0.56 94.13 ± 0.68 94.29 ± 0.61

9 [391.2, 463.3, 569.3, 671.1, 700.8, 730.4,
963.6, 993.3] 94.33 ± 0.41 94.81 ± 0.48 94.60 ± 0.47 94.69 ± 0.47

8 [387.0, 404.0, 463.3, 518.4, 577.8, 654.1,
675.32, 700.8] 94.79 ± 0.65 95.28 ± 0.55 95.20 ± 0.67 95.23 ± 0.61

7 [387.0, 404.0, 463.3, 569.3, 675.3, 700.8,
722.0, 1006.0] 94.48 ± 0.77 95.05 ± 0.72 94.85 ± 0.73 94.93 ± 0.73

6 [387.0, 404.0, 463.3, 586.3, 679.6, 700.8,
730.4, 1001.8] 94.65 ± 0.45 95.21 ± 0.38 94.89 ± 0.48 95.04 ± 0.42

5 [387.0, 463.3, 586.3, 645.6, 700.8, 722.0,
980.6, 1001.8] 93.68 ± 0.75 94.25 ± 0.65 93.95 ± 0.68 94.08 ± 0.66

10

12 [395.5, 408.2, 463.3, 518.4, 565.1, 616.0,
675.3, 700.8, 722.0, 993.3] 96.31 ± 0.69 96.57 ± 0.55 96.49 ± 0.73 96.53 ± 0.64

11 [395.5, 408.2, 463.3, 565.1, 662.6, 675.3,
700.8, 713.5, 726.2, 993.3] 96.18 ± 0.41 96.48 ± 0.29 96.31 ± 0.46 96.39 ± 0.36

10 [391.2, 463.3, 518.4, 569.3, 658.4, 675.3,
717.7, 730.4, 993.3, 1006.] 95.83 ± 0.36 96.10 ± 0.38 96.06 ± 0.32 96.08 ± 0.34

9 [391.2, 463.3, 518.4, 569.3, 616.0, 671.1,
700.8, 717.7, 730.4, 993.3] 96.16 ± 0.56 96.48 ± 0.50 96.37 ± 0.54 96.42 ± 0.52

8 [387.0, 404.0, 463.3, 518.4, 577.8, 654.1,
675.3, 700.8, 722.0, 1006.0] 96.47 ± 0.38 96.79 ± 0.36 96.66 ± 0.37 96.72 ± 0.35

7 [387.0, 404.0, 463.3, 518.4, 569.3, 654.1,
675.3, 700.8, 722.0, 1006.0] 96.69 ± 0.35 96.92 ± 0.38 96.95 ± 0.34 96.93 ± 0.35

6 [387.0, 404.0, 463.3, 586.3, 649.9, 679.6,
700.8, 717.7, 730.4, 1001.8] 95.91 ± 0.50 96.34 ± 0.44 96.12 ± 0.47 96.22 ± 0.45

5 [387.0, 463.3, 586.3, 645.6, 700.8, 722.0,
832.2, 946.7, 980.6, 1001.8] 95.06 ± 0.54 95.44 ± 0.52 95.33 ± 0.56 95.38 ± 0.53
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Table 4. Greedy spectral selection on the IP dataset. Bold entries represent the best VIF threshold and average F1 score.

VIF Selected Bands (nm) Accuracy Precision Recall F1

12 [498.3, 646.7, 706.2, 754.4, 1023.7] 97.96 ± 0.33 98.21 ± 0.43 98.32 ± 0.33 98.25 ± 0.35

11 [557.5, 587.2, 706.2, 754.4, 1023.7] 97.55 ± 0.29 98.05 ± 0.29 97.95 ± 0.29 97.98 ± 0.22

10 [498.3, 626.9, 706.2, 754.4, 1023.7] 98.08 ± 0.43 98.26 ± 0.42 98.39 ± 0.43 98.32 ± 0.39

9 [557.5, 626.9, 706.2, 821.8, 1023.7] 98.28 ± 0.35 98.24 ± 0.47 98.06 ± 0.59 98.11 ± 0.43

8 [607.0, 646.7, 706.2, 821.8, 1023.7] 98.04 ± 0.30 98.19 ± 0.46 98.06 ± 0.46 98.10 ± 0.35

7 [567.4, 587.2, 706.2, 821.8, 1023.7] 98.01 ± 0.24 98.29 ± 0.18 98.36 ± 0.42 98.31 ± 0.26

6 [577.3, 706.2, 821.8, 918.0, 1023.7] 97.06 ± 0.49 97.49 ± 0.58 97.63 ± 0.48 97.53 ± 0.48

5 [577.3, 715.8, 812.2, 918.0, 1023.7] 96.73 ± 0.55 97.46 ± 0.53 97.00 ± 0.61 97.19 ± 0.49

Table 5. Greedy spectral selection on the SA dataset. Bold entries represent the best VIF threshold and average F1 score.

VIF Selected Bands (nm) Accuracy Precision Recall F1

12 [532.1, 731.8, 950.5, 1368.9, 2224.7] 98.70 ± 0.11 99.40 ± 0.05 99.48 ± 0.04 99.44 ± 0.04

11 [541.7, 731.8, 950.5, 1368.9, 2224.7] 98.68 ± 0.11 99.36 ± 0.10 99.45 ± 0.05 99.40 ± 0.07

10 [541.7, 731.8, 950.5, 1359.4, 2224.7] 98.62 ± 0.14 99.38 ± 0.07 99.45 ± 0.04 99.41 ± 0.05

9 [541.7, 731.8, 950.5, 1359.4, 2224.7] 98.62 ± 0.14 99.38 ± 0.07 99.45 ± 0.04 99.41 ± 0.05

8 [731.8, 950.5, 1159.7, 1254.8, 2224.7] 99.05 ± 0.05 99.56 ± 0.04 99.55 ± 0.03 99.56 ± 0.03

7 [731.8, 950.5, 1159.7, 1254.8, 2215.2] 99.02 ± 0.10 99.54 ± 0.07 99.53 ± 0.06 99.54 ± 0.06

6 [570.2, 950.5, 1245.3, 1368.9, 2215.2] 99.02 ± 0.05 99.54 ± 0.04 99.56 ± 0.02 99.55 ± 0.03

5 [560.7, 950.5, 1245.3, 1368.9, 2215.2] 98.99 ± 0.06 99.52 ± 0.09 99.56 ± 0.05 99.54 ± 0.07

4.3. Comparative Results

We compared our IBRA-GSS method to four other band selection methods: OCF [27],
HAGRID [29], SR-SSIM [40], FNGBS [26], and PLS-DA [63]. For OCF, we used the normal-
ized cut criterion as the objective function along with information entropy as the ranking
method, given that this setting showed the best performance. For HAGRID, we used a grid
search to choose the following hyperparameters: a crossover rate of 0.25, a mutation rate
of 0.05, a tournament size of 5, a population size of 1000, and 300 iterations. For SR-SSIM,
we used a window size of 3 for the SSIM index algorithm to construct a hyperspectral
similarity matrix, as it achieved the best performance. For FNGBS, to calculate the number
of shared neighbor elements between two bands, we considered a nearest neighbor of
two elements. Finally, we adapted PLS-DA for feature selection by sorting the coefficients
obtained by PLS-DA in order to select the top-k bands. We also compared our IBRA-GSS
method to our IBRA-PCA and IBRA-PLS-DA methods to analyze the behavior of feature
extraction methods in front of a feature selection method.

To assess the effectiveness of the dimensionality reduction methods, we compared
the performance of eight Hyper3DNet-Lite CNNs, each trained on the features selected or
extracted by the eight methods. This comparison was carried out using the same network
architecture, hyperparameters, and other configurations for all of the methods. Finally, to
determine if the difference in performance scores was statistically significant, we performed
a paired t-test and a paired permutation test using the F1 scores at the α = 0.05 level.

The method comparison is shown in Table 6 for the Kochia dataset, Table 7 for the IP
dataset, and Table 8 for the SA dataset, with the best performing metrics highlighted in bold.
Here, the first row of each method represents the results obtained after training a model
using the original selected bands (identified as “original band selection”), while the second
row represents the results obtained after using simulated filters that take the position of the
selected bands as their central wavelengths (identified as “multispectral filter simulation”), as
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explained in Section 3.6. Additionally, we chose the average F1 score to compare the results
of all the methods graphically in Figure 8. The simulated filters used for the Kochia dataset
were 20 nm, while for the IP and SA datasets, they were 50 nm. Note that the feature channels
extracted by IBRA-PCA and IBRA-PLS-DA cannot be interpreted as spectral bands; thus, we
could not apply the “multispectral filter simulation” approach directly on them. Instead, we
applied a Gaussian transformation on the IBRA-selected bands to simulate filters that take the
position of the preselected bands as their central wavelengths; then, we used PCA or PLS-DA
on the transformed bands to obtain the desired number of feature channels.

Table 6. Dimensionality reduction method comparison—Kochia dataset. Bold entries represent the
best classification scores for each k.

k Method Accuracy Precision Recall F1

6

FNGBS
84.32 ± 1.78 84.85 ± 1.77 84.37 ± 1.72 84.59 ± 1.73

86.98 ± 0.84 87.35 ± 0.80 86.91 ± 0.91 87.10 ± 0.83

PLS-DA
84.77 ± 1.83 85.15 ± 1.89 84.69 ± 1.82 84.89 ± 1.82

88.41 ± 0.79 88.85 ± 0.62 88.37 ± 0.96 88.59 ± 0.78

SR-SSIM
86.42 ± 1.07 87.66 ± 1.02 87.31 ± 1.06 87.47 ± 1.03

88.73 ± 0.90 89.55 ± 0.81 89.30 ± 0.99 89.41 ± 0.89

OCF
90.48 ± 0.57 90.92 ± 0.62 90.81 ± 0.44 90.86 ± 0.49

92.42 ± 0.67 92.75 ± 0.66 92.66 ± 0.66 92.70 ± 0.65

HAGRID
91.71 ± 0.83 92.25 ± 0.78 92.17 ± 0.84 92.20 ± 0.80

92.48 ± 0.62 92.91 ± 0.53 92.89 ± 0.58 92.89 ± 0.54

IBRA-PCA
83.04 ± 2.23 83.44 ± 2.16 82.96 ± 2.40 83.17 ± 2.29

91.31 ± 0.74 91.81 ± 0.67 91.18 ± 0.71 91.46 ± 0.68

IBRA-PLS-DA
90.81 ± 0.96 91.68 ± 1.04 91.33 ± 0.86 91.48 ± 0.94

92.29 ± 0.63 92.98 ± 0.58 92.57 ± 0.72 92.76 ± 0.65

IBRA-GSS
92.69 ± 0.53 93.24 ± 0.52 93.08 ± 0.50 93.15 ± 0.49

93.32 ± 0.68 93.80 ± 0.64 93.74 ± 0.66 93.76 ± 0.64

8

FNGBS
92.88 ± 0.55 93.63 ± 0.55 93.10 ± 0.46 93.34 ± 0.50

93.12 ± 0.32 93.69 ± 0.28 93.13 ± 0.46 93.39 ± 0.34

PLS-DA
90.53 ± 1.65 91.70 ± 1.37 91.01 ± 1.72 91.32 ± 1.57

91.92 ± 0.81 92.69 ± 0.71 92.21 ± 0.87 92.43 ± 0.79

SR-SSIM
91.01 ± 1.37 91.97 ± 1.28 91.54 ± 1.35 91.75 ± 1.31

92.31 ± 0.83 93.00 ± 0.81 92.73 ± 0.89 92.86 ± 0.83

OCF
93.05 ± 0.90 93.86 ± 0.80 93.43 ± 0.84 93.62 ± 0.83

92.89 ± 0.71 93.45 ± 0.64 93.21 ± 0.67 93.32 ± 0.65

HAGRID
91.59 ± 1.25 92.52 ± 1.05 91.88 ± 1.24 92.17 ± 1.16

92.82 ± 0.79 93.41 ± 0.69 92.92 ± 0.91 93.15 ± 0.80

IBRA-PCA
83.75 ± 2.40 84.33 ± 2.48 83.77 ± 2.43 84.02 ± 2.45

95.04 ± 0.70 95.35 ± 0.60 95.21 ± 0.81 95.27 ± 0.70

IBRA-PLS-DA
95.46 ± 0.53 95.91 ± 0.46 95.63 ± 0.49 95.76 ± 0.47

95.42 ± 0.60 95.85 ± 0.52 95.62 ± 0.57 95.72 ± 0.53

IBRA-GSS
94.79 ± 0.65 95.28 ± 0.55 95.20 ± 0.67 95.23 ± 0.61

94.08 ± 0.60 94.67 ± 0.57 94.54 ± 0.54 94.60 ± 0.54
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Table 6. Cont.

k Method Accuracy Precision Recall F1

10

FNGBS
93.78 ± 0.77 94.17 ± 0.84 93.99 ± 0.73 94.08 ± 0.78

94.19 ± 0.47 94.54 ± 0.47 94.27 ± 0.51 94.39 ± 0.48

PLS-DA
94.36 ± 0.51 94.86 ± 0.55 94.67 ± 0.47 94.76 ± 0.49

95.10 ± 0.68 95.44 ± 0.59 95.18 ± 0.67 95.30 ± 0.63

OCF
94.87 ± 0.51 95.23 ± 0.52 95.11 ± 0.46 95.16 ± 0.47

94.62 ± 0.73 95.00 ± 0.65 94.80 ± 0.64 94.89 ± 0.64

SR-SSIM
93.84 ± 0.62 94.50 ± 0.57 94.27 ± 0.64 94.37 ± 0.59

94.36 ± 0.51 94.86 ± 0.55 94.67 ± 0.47 94.76 ± 0.50

HAGRID
94.50 ± 0.81 94.81 ± 0.78 94.69 ± 0.72 94.74 ± 0.74

95.14 ± 0.51 95.49 ± 0.48 95.18 ± 0.51 95.33 ± 0.47

IBRA-PCA
95.69 ± 0.44 96.13 ± 0.44 95.92 ± 0.38 96.02 ± 0.39

96.74 ± 0.30 96.96 ± 0.29 96.85 ± 0.28 96.91 ± 0.27

IBRA-PLS-DA
96.51 ± 0.46 96.78 ± 0.43 96.67 ± 0.44 96.72 ± 0.42

96.82 ± 0.50 97.08 ± 0.44 96.86 ± 0.54 96.97 ± 0.48

IBRA-GSS
96.69 ± 0.35 96.92 ± 0.38 96.95 ± 0.34 96.93 ± 0.35

96.21 ± 0.49 96.51 ± 0.45 96.40 ± 0.44 96.45 ± 0.44

Table 7. Dimensionality reduction method comparison—Indian Pines dataset, k = 5. Bold entries
represent the best classification scores.

Method Accuracy Precision Recall F1

PLS-DA
96.68 ± 0.86 96.83 ± 0.99 95.62 ± 0.94 96.11 ± 0.74

97.17 ± 0.60 97.30 ± 0.79 96.66 ± 1.03 96.90 ± 0.84

OCF
96.68 ± 0.56 97.34 ± 0.76 96.34 ± 0.98 96.77 ± 0.82

97.02 ± 0.58 97.73 ± 0.51 97.14 ± 0.63 97.39 ± 0.48

HAGRID
96.74 ± 0.54 97.06 ± 0.75 96.34 ± 1.03 96.65 ± 0.88

97.03 ± 0.75 97.24 ± 0.86 96.72 ± 1.45 96.91 ± 1.21

SR-SSIM
97.28 ± 0.37 97.74 ± 0.44 97.34 ± 0.80 97.49 ± 0.57

96.83 ± 0.77 97.14 ± 1.02 96.82 ± 1.95 96.86 ± 1.47

FNGBS
97.49 ± 0.34 97.86 ± 0.36 97.64 ± 0.71 97.72 ± 0.5

97.34 ± 0.65 97.94 ± 0.52 97.75 ± 0.46 97.82 ± 0.44

IBRA-PCA
94.70 ± 0.65 96.12 ± 0.71 94.45 ± 1.52 95.10 ± 1.02

96.99 ± 0.97 97.84 ± 0.77 97.60 ± 0.39 97.70 ± 0.55

IBRA-PLS-DA
96.11 ± 1.37 97.10 ± 1.04 96.60 ± 0.98 96.70 ± 1.01

97.19 ± 0.67 97.77 ± 0.67 97.67 ± 1.03 97.64 ± 0.95

IBRA-GSS
98.08 ± 0.43 98.26 ± 0.42 98.39 ± 0.43 98.32 ± 0.39

98.24 ± 0.39 98.56 ± 0.38 98.43 ± 0.42 98.48 ± 0.36
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Table 8. Dimensionality reduction method comparison—Salinas dataset, k = 5. Bold entries represent
the best classification scores.

Method Accuracy Precision Recall F1

PLS-DA
97.89 ± 0.18 98.99 ± 0.09 99.10 ± 0.10 99.04 ± 0.09

98.46 ± 0.10 99.24 ± 0.04 99.33 ± 0.03 99.28 ± 0.03

OCF
98.37 ± 0.14 99.20 ± 0.07 99.29 ± 0.07 99.24 ± 0.07

98.51 ± 0.12 99.27 ± 0.08 99.34 ± 0.06 99.30 ± 0.07

HAGRID
98.47 ± 0.11 99.26 ± 0.09 99.36 ± 0.05 99.31 ± 0.06

98.51 ± 0.12 99.29 ± 0.08 99.37 ± 0.05 99.33 ± 0.06

SR-SSIM
97.89 ± 0.22 99.11 ± 0.11 99.07 ± 0.09 99.09 ± 0.09

98.14 ± 0.21 99.18 ± 0.12 99.18 ± 0.09 99.18 ± 0.10

FNGBS
98.44 ± 0.14 99.34 ± 0.08 99.37 ± 0.06 99.35 ± 0.07

98.51 ± 0.10 99.37 ± 0.05 99.39 ± 0.04 99.38 ± 0.04

IBRA-PCA
96.10 ± 0.78 98.23 ± 0.34 98.14 ± 0.49 98.16 ± 0.45

98.49 ± 0.16 99.39 ± 0.07 99.39 ± 0.07 99.39 ± 0.06

IBRA-PLS-DA
96.26 ± 0.21 98.33 ± 0.14 98.36 ± 0.11 98.34 ± 0.10

98.14 ± 0.20 99.25 ± 0.08 99.23 ± 0.09 99.24 ± 0.08

IBRA-GSS
99.05 ± 0.05 99.56 ± 0.04 99.55 ± 0.03 99.56 ± 0.03

99.07 ± 0.09 99.53 ± 0.06 99.55 ± 0.03 99.54 ± 0.04

Figure 8. Comparison of the average F1 scores obtained by each dimensionality reduction method using k = 5. (a) Compar-
ison on the IP dataset. (b) Comparison on the SA dataset.

Additionally, Table 9 shows the resulting p-values of the paired t-tests and paired
permutation tests performed between IBRA-GSS and the other compared methods when
selecting six, eight, and ten bands from the Kochia dataset. Similarly, Table 10 shows
the results of the statistical significance tests between IBRA-GSS and the other methods
when selecting five bands from the IP and SA datasets. In both cases, the upward-pointing
arrow (↑) indicates that IBRA-GSS performed significantly better (i.e., p-value < 0.05), the
downward-pointing arrow (↓) indicates that the compared method performed significantly
better than IBRA-GSS, and the equal symbol (=) indicates that the difference between
IBRA-GSS and the compared method is not statistically significant (i.e., p-value ≥ 0.05).
According to both the t-test and the permutation test, our IBRA-GSS method performed
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significantly better than the other five band selection methods in each of the cases; however,
it did not perform better than IBRA-PLS-DA nor IBRA-PCA (except for the “original band
selection” case) when selecting eight or ten bands from the Kochia dataset.

We also evaluated how the distribution of the F1 scores resulting from using different
dimensionality reduction techniques changes as k changes. To do this, we considered a
population that consisted of all the F1 scores obtained by all the methods (i.e., a sample
size of 80) on the full Kochia dataset. From this, we show in Table 11 that the overall mean
F1 score increases as k increases, while the standard deviation decreases; that is, the F1
scores are more spread out when k is small. We also performed a one-way analysis of
variance (ANOVA). In this case, each group consisted of the ten F1 scores obtained by
each method. From Table 9, we already know that such statistically significant differences
exist, so, as expected, the F statistics obtained for the three values of k are high and their
corresponding p-values are quite small (p-value� 0.05), as shown in Table 11. However,
notice that the F statistic decreases and the p-value increases as k increases. In other words,
as k increases, it becomes less likely that choosing a specific dimensionality reduction
technique will cause a significant difference in the resulting average F1 score. This is not
surprising, since, by increasing k, we are effectively reinserting what was considered to be
overlapping information.

We also tested the four dataset size variations, as explained previously. For example,
Figure 9 depicts the performance metrics comparison of the eight methods for the Kochia
dataset using four dataset size variations and selecting six, eight, and ten bands. For the
three tested datasets, we found that the improvement in performance of our IBRA-GSS
method over the other feature selection methods was still statistically significant even
when the dataset size was reduced, except when selecting eight bands (k = 8) from the
Kochia dataset and using 25% of the dataset (Figure 9d).

Table 9. Statistical significance tests—Kochia dataset. p-values obtained comparing the classification performance of
IBRA-GSS to that of the other six dimensionality reduction methods.

Compared
Method

Kochia, k = 6 Kochia, k = 8 Kochia, k = 10

t-Test Perm. t-Test Perm. t-Test Perm.

FNGBS
7.4 × 10−8 (↑) 2 × 10−3 (↑) 4.2 × 10−7 (↑) 1.7 × 10−3 (↑) 1 × 10−6 (↑) 2 × 10−3 (↑)

1.8 × 10−9 (↑) 2 × 10−3 (↑) 5.9 × 10−5 (↑) 1.7 × 10−3 (↑) 3.7 × 10−8 (↑) 2 × 10−3 (↑)

PLS-DA
6.5 × 10−8 (↑) 2.6 × 10−3 (↑) 2.1 × 10−5 (↑) 2.6 × 10−3 (↑) 1.4 × 10−7 (↑) 2.6 × 10−3 (↑)

1.2 × 10−9 (↑) 2.6 × 10−3 (↑) 3.9 × 10−3 (↑) 2.6 × 10−3 (↑) 3.6 × 10−5 (↑) 2.6 × 10−3 (↑)

SR-SSIM
1 × 10−7 (↑) 2 × 10−3 (↑) 2.6 × 10−6 (↑) 2 × 10−3 (↑) 9.9 × 10−6 (↑) 2 × 10−3 (↑)

1 × 10−7 (↑) 2 × 10−3 (↑) 4.2 × 10−6 (↑) 2 × 10−3 (↑) 9.9 × 10−6 (↑) 2 × 10−3 (↑)

OCF
3 × 10−7 (↑) 1.9 × 10−3 (↑) 6.3 × 10−4 (↑) 3.5 × 10−3 (↑) 8 × 10−7 (↑) 1.9 × 10−3 (↑)

2 × 10−3 (↑) 5.4 × 10−3 (↑) 1.2 × 10−5 (↑) 1.9 × 10−3 (↑) 1.2 × 10−5 (↑) 1.9 × 10−3 (↑)

HAGRID
9.1 × 10−4 (↑) 1.6 × 10−3 (↑) 5.3 × 10−5 (↑) 1.6 × 10−3 (↑) 2.1 × 10−6 (↑) 1.6 × 10−3 (↑)

2.8 × 10−4 (↑) 3.3 × 10−3 (↑) 5.5 × 10−4 (↑) 1.6 × 10−3 (↑) 1.6 × 10−4 (↑) 1.6 × 10−3 (↑)

IBRA-PCA
3.8 × 10−7 (↑) 1.8 × 10−3 (↑) 1.9 × 10−7 (↑) 1.8 × 10−3 (↑) 9 × 10−5 (↑) 1.8 × 10−3 (↑)

2.9 × 10−5 (↑) 1.8 × 10−3 (↑) 1.6 × 10−2 (↓) 2.3 × 10−2 (↓) 5.6 × 10−2 (=) 5.9 × 10−2 (=)

IBRA-PLS-DA
1.8 × 10−4 (↑) 1.7 × 10−3 (↑) 2.1 × 10−2 (↓) 1.2 × 10−2 (↓) 0.18 (=) 0.18 (=)

7 × 10−3 (↑) 0.012 (↑) 5.1 × 10−6 (↓) 1.7 × 10−3 (↓) 1.3 × 10−2 (↓) 1.9 × 10−2 (↓)



Remote Sens. 2021, 13, 3649 25 of 31

Figure 9. Average F1 scores obtained by each dimensionality reduction method for the Kochia dataset across different dataset
sizes. (a) Original band selection using k = 6. (b) Multispectral filter simulation using k = 6. (c) Original band selection
using k = 8. (d) Multispectral filter simulation using k = 8. (e) Original band selection using k = 10. (f) Multispectral filter
simulation using k = 10.
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Table 10. Statistical significance tests—Indian Pines and Salinas datasets. p-values obtained
comparing the classification performance of IBRA-GSS to that of the other six dimensionality
reduction methods.

Compared
Method

IP, k = 5 SA, k = 5

t-Test Perm. t-Test Perm.

FNGBS
1 × 10−2 (↑) 5.7 × 10−3 (↑) 4.1 × 10−6 (↑) 2 × 10−3 (↑)

1.2 × 10−2 (↑) 0.014 (↑) 2.8 × 10−8 (↑) 1.7 × 10−3 (↑)

PLS-DA
1 × 10−5 (↑) 2.6 × 10−3 (↑) 3.4 × 10−8 (↑) 2.6 × 10−3 (↑)

5.2 × 10−5 (↑) 2.6 × 10−3 (↑) 1.4 × 10−7 (↑) 1.8 × 10−3 (↑)

SR-SSIM
2.5 × 10−3 (↑) 3.6 × 10−3 (↑) 1.9 × 10−7 (↑) 2 × 10−3 (↑)

2.5 × 10−3 (↑) 3.6 × 10−3 (↑) 1.9 × 10−7 (↑) 2 × 10−3 (↑)

OCF
3 × 10−7 (↑) 1.9 × 10−3 (↑) 3.3 × 10−7 (↑) 1.9 × 10−3 (↑)

4.7 × 10−4 (↑) 1.9 × 10−3 (↑) 4.2 × 10−5 (↑) 1.6 × 10−3 (↑)

HAGRID 3 × 10−5 (↑) 1.6 × 10−3 (↑) 2.8 × 10−6 (↑) 1.6 × 10−3 (↑)

2.5 × 10−3 (↑) 3.4 × 10−3 (↑) 3.6 × 10−6 (↑) 1.9 × 10−3 (↑)

IBRA-PCA
7.9 × 10−7 (↑) 1.8 × 10−3 (↑) 5.4 × 10−6 (↑) 1.8 × 10−3 (↑)

1 × 10−2 (↑) 1.8 × 10−3 (↑) 5.3 × 10−5 (↑) 2.6 × 10−3 (↑)

IBRA-PLS-DA
2.7 × 10−4 (↑) 1.7 × 10−3 (↑) 2.9 × 10−11 (↑) 1.7 × 10−3 (↑)

2.5 × 10−2 (↑) 1.3 × 10−2 (↑) 1.4 × 10−5 (↑) 1.7 × 10−3 (↑)

Table 11. Dispersion analysis of the F1 scores obtained using all the compared dimensionality
reduction methods on the full Kochia dataset.

Metric
# Bands k = 6 k = 8 k = 10

Mean
88.48 92.15 95.18

91.08 93.84 95.58

Std
3.93 3.68 1.43

2.38 1.31 1.13

F statistic
75.99 69.29 34.05

102.65 29.1 38.98

p-value
1.1 × 10−30 1.9 × 10−29 2 × 10−20

7.2 × 10−35 1.3 × 10−18 4.8 × 10−22

5. Discussion

Our IBRA method is used to cluster the entire spectrum into sets of similar (or collinear)
spectral bands and to identify their cluster centers directly. Furthermore, we can interpret
these bands as representing a set of influencing spectral bands with wavelengths that
are suitable for the design of multispectral filters. These preselected bands explain the
variance of their neighbors (i.e., spectral bands that belong to the same cluster) in the
original spectrum with a VIF value greater than a threshold θ ∈ [5, 12]; therefore, keeping
them and removing the other bands of each cluster allow us to avoid spectral bands that do
not contain useful information for performing classification. That is, our method effectively
identifies those spectral bands that carry information for performing classification while
discarding redundant spectral bands. Results shown in Table 2 demonstrate that it is
possible for a model trained on the subset of spectral bands determined by IBRA to
achieve high accuracy values (∼97–99%) while discarding most of the bands, similar to
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those obtained when using the full spectrum. For example, for the case of the Salinas
dataset when using a VIF threshold of 10, we reduced the number of bands from 204 to
14, discarding more than 93% of the bands while decreasing the average F1 score less than
0.2 percentage points, which was also shown not to be significantly different. Thus, we
were able to train a CNN classifier that required 80% fewer trainable parameters than a
model trained on the full spectrum yet without detriment to its performance.

Our GSS method uses information entropy as a ranking criterion to identify which
bands incorporate more information among the bands preselected by IBRA. However,
if we need to select at most k bands, the subset of bands with the greatest information
entropy values may not be the best selection. For instance, for the Kochia dataset, for k = 6,
the wavelengths of the bands with the highest entropy values were [391.2, 463.3, 518.4,
616.0, 658.4, 675.3] (nm); however, line 9 in Algorithm 2 detected strong multicollinearity
between bands with wavelengths 616.0, 658.4, and 675.3 nm in the first iteration (see
Figure 6). Rather than using redundant bands, our method selects a more diverse subset of
bands if this helps to improve the classification performance.

It is worth noting that, according to the results described in Section 3.4, there does not
necessarily have to be a single optimal VIF threshold θ to find the best set of spectral bands
for a given classification task. Instead, more than one value of θ can lead to the same or
similar selection of bands. For example, from Table 5, the only difference that we obtained
using θ = 8 with respect to using θ = 7 is that we selected the wavelength 2224.7 nm (band
index 175) instead of 2215.2 nm (band index 174). Considering that these two bands are
contiguous, they explain practically the same variance, so both options are equally as good,
which can be verified by observing that their resulting classification performance were
very similar. There were other cases where, given two VIF thresholds, the GSS method
selected bands that are located in different parts of the spectrum, and yet both options are
considered equally as good as there was no statistical difference between their classification
performance, as observed in Table 3 when using θ = 6 and θ = 8.

From Tables 6–8, we see that our IBRA-GSS method performed better than the other
five band selection methods on the three datasets. The results remained consistent even
when considering different dataset sizes except in one case when using the “multispectral
filter simulation” approach on the Kochia dataset. In fact, Figure 9 shows that the gap
in performance between our method and the others became more noticeable when the
dataset size was reduced. In addition, Table 11 shows that the average F1 scores obtained
by each method in both approaches are more spread out when selecting six bands than
when selecting eight or ten bands (which can be visually verified in Figure 9). This confirms
that the fewer spectral bands we select, the harder the band selection task will be; however,
multispectral imagers generally become more practical computationally as the number of
spectral channels becomes smaller. Thus, the fact that IBRA-GSS consistently outperformed
the others when selecting a reduced set of spectral bands makes it the most suitable band
selection method for multispectral imager design, at least for the data sets analyzed and
the algorithms studied.

With our IBRA-GSS method, the classification performance resulting from the “original
band selection” approach was very similar to the performance with the “multispectral
filter simulation” approach, unlike some of the compared methods. This can be explained
by the way we selected the first band candidates using IBRA. That is, a spectral band
corresponding to a local minimum in the plot of spectral index vs. distance d(x) (Figure 4)
acts as a centroid due to its similarity to the spectral bands located on either side. Therefore,
if we take this local minimum as the central wavelength of a multispectral filter, generate
a Gaussian distribution around it by considering a standard bandwidth, and integrate
under the response curve, then we obtain reflectance values similar to those of the central
band. Given that the simulated multispectral filter and the original spectral band present
similar information, their classification performance was similar. This is convenient for a
multispectral sensor design, as we would like the central wavelength of a filter to be the
most representative.
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Regarding our tested feature extraction methods, we observe from Table 9 that IBRA-
PCA and IBRA-PLS-DA were able to obtain better or competitive results than those ob-
tained by our IBRA-GSS band selection method when using eight (k = 8) or ten (k = 10)
feature channels from the Kochia dataset. Nevertheless, they could not obtain better per-
formance than IBRA-GSS or other band selection methods when extracting fewer channels.
This is due to the fact that PCA tries to explain the total variance of the original features
(i.e., the IBRA-selected bands) and PLS-DA tries to explain the maximum variance of the
response variable (i.e., maximizes inter-class separability) so that the fewer the number
of dimensions we choose in both cases, the worse this explanation is. Conversely, when
k is small, our GSS method does not apply a poor transformation on the spectral bands.
Instead, it seeks to find a set of original spectral bands that maximize class separability.
For the specific case of PCA, we noticed that the performance obtained using the “original
band selection” was significantly lower than that obtained using the “multispectral filter
simulation” approach. This is because reflectance measures captured by narrow hyper-
spectral bands tend to introduce a considerable number of outliers and PCA is an outlier
sensitive feature extraction technique. On the other hand, the Gaussian transformation
applied to simulate multispectral filters has a smoothing effect that reduces outlier noise;
thus, improving the classification performance dramatically.

6. Conclusions

Hyperspectral imaging systems capture highly complex data that allow us to extract
information that could have not been achieved using only visual spectral bands or spec-
trometers. However, processing hyperspectral images entails a high computational cost
that can be avoided using dimensionality reduction techniques. In that sense, feature
extraction techniques are used to transform the data and reduce its dimensionality, which
improves the computational efficiency when processing HSIs while avoiding performance
degradation derived from the phenomenon known as the curse of dimensionality. Feature
selection techniques, on the other hand, help to determine the most relevant wavelengths
for a given application, which allows for the design of compact multispectral imagers that
could be used in place of hyperspectral imagers. This approach leads to even more signifi-
cant economic savings, as fewer specialized storage and processing devices are required.

Given these potential benefits, in this paper, we focused on the proposal of a filter-
based (IBRA) and a hybrid (IBRA-GSS) band selection method in the context of hyper-
spectral image classification. Experimental results showed that our IBRA method alone
is able to discard up to 93% of the spectral bands and achieve similar classification per-
formance to that obtained using the full spectrum. Therefore, IBRA successfully removes
redundant spectral bands while maintaining the most relevant spectral information for a
given classification task.

Furthermore, our IBRA-GSS method was proposed as a hybrid selection method that
allows for the selection of a specific number of spectral bands k. IBRA-GSS was shown
to generally outperform the other competing band selection methods on the three tested
datasets even when we reduced the dataset sizes. We also observed that more than one
VIF threshold in the IBRA step can lead to the same or similar selection of bands that were
found to be equally as effective. This behavior was found to be consistent when the dataset
size was reduced.

We also showed how to use our IBRA method as part of a novel feature selection
framework. Two variants of this framework were tested, namely IBRA-PCA and IBRA-PLS-
DA, which were able to obtain better results than all of the band selection methods when k
was sufficiently large. In that sense, we demonstrated that the dimensionality reduction
task becomes harder when k becomes smaller. Thus, given that our IBRA-GSS method
consistently outperformed the other dimensionality reduction techniques when selecting a
reduced set of spectral bands, we consider it the most suitable band selection method for
the design of compact multispectral imagers. This is also supported by the fact that our



Remote Sens. 2021, 13, 3649 29 of 31

multispectral filter simulations showed that IBRA effectively provides representative filter
centers that are suitable for the design of multispectral sensors.

In the future, we plan to develop multispectral sensors based on the wavelengths
recommended by our IBRA-GSS method. This would allow us to study implementation
issues that may not be noticed using our multispectral filter simulation. Having compact
multispectral sensors would also enable us to easily acquire data from drones and other
platforms of opportunity for cost-effective sensing of herbicide-resistant weeds and many
other applications.
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