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Abstract: Nowadays, a large number of remote sensing instruments are providing a massive amount
of data within the frame of different Earth Observation missions. These instruments are characterized
by the wide variety of data they can collect, as well as the impressive volume of data and the
speed at which it is acquired. In this sense, hyperspectral imaging data has certain properties that
make it difficult to process, such as its large spectral dimension coupled with problematic data
variability. To overcome these challenges, convolutional neural networks have been proposed as
classification models because of their ability to extract relevant spectral–spatial features and learn
hidden patterns, along their great architectural flexibility. Their high performance relies on the
convolution kernels to exploit the spatial relationships. Thus, filter design is crucial for the correct
performance of models. Nevertheless, hyperspectral data may contain objects with different shapes
and orientations, preventing filters from “seeing everything possible” during the decision making.
To overcome this limitation, this paper proposes a novel adaptable convolution model based on
deforming kernels combined with deforming convolution layers to fit their effective receptive field
to the input data. The proposed adaptable convolutional network (named DKDCNet) has been
evaluated over two well-known hyperspectral scenes, demonstrating that it is able to achieve better
results than traditional strategies with similar computational cost for HSI classification.

Keywords: deep learning (DL); hyperspectral images (HSIs); convolutional neural networks (CNNs);
receptive field (RF); deformable kernel (DK); deformable convolution (DC)

1. Introduction

Within the remote sensing (RS) field, major advances in spectroscopy and imaging
technologies since the first approaches in 1979 have enriched the knowledge gained about
the Earth’s surface, significantly enhancing our capacity to explore and exploit terrestrial
resources [1]. As a consequence, hyperspectral imaging (HSI) has become one of the fore-
most data acquisition methods within RS, as it captures the spatial distribution of large
observation areas whilst differentiating the solar absorption features of the different materi-
als contained in the target scene. Indeed, HSI facilitates the acquisition of detailed spectral
information, gathering large datacubes composed of a mesh of N1 × N2 pixels, which col-
lect in C bands of the solar radiation reflected by materials along the visible-to-shortwave
infrared (VSWIR) regions of the electromagnetic spectrum. As a result, each hyperspec-
tral pixel contains the continuous radiance spectrum (known as spectral signature) of a
particular material, in the form of peaks and valleys that capture the physico-chemical
behavior of the material at different wavelengths [2]. The large amount of rich spectral
information provides a detailed characterization of the land cover, as each signature is
unique for each type of material. Hence, HSI data are very useful in a wide variety of fields
with a high economic and social impact, such as: climate change study; crop management,
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which ranges from pest and plague detection to the prevention and recovery of degraded
and eroded soils; forestry; mineral identifications and resource exploitation; urban plan-
ning and land-use/land-cover (LULC) classification; military, defense and intelligence
applications; risk prevention; and disaster monitoring, among many others [3–7].

Nowadays, HSI data analysis is considered a hot topic due to the great relevance of
this data in RS and its consequent impact on the applications mentioned above. A mul-
titude of methods have been implemented to efficiently process and extract the relevant
spectral–spatial information contained in HSI cubes. Nevertheless, these methods must
cope with several challenges, drawbacks and limitations that characterize this kind of data.
For instance, there is extensive literature on unmixing methods that attempt to separate the
spectral signatures contained in the scene by searching for pure or almost-pure pixels (end-
members) and measuring the spectral mixture and composition of the remaining non-pure
pixels [8,9]. Indeed, spectrometers often exhibit a low spatial resolution due to instrument
limitations and the restriction imposed by their high data rate, so the compactness of
channels results in the limitation of pixel size. In addition, other uncontrolled phenomena
may degrade and introduce non-desired artifacts within the data obtained [10,11], for in-
stance limitations in the radiometric and geometric resolution of the sensor, atmospheric
scattering, lighting disturbances (such as light obstruction by aerosols and clouds), sensor
noise or imperfect imaging optics hinder the data acquisition, obtaining noisy images in
the end with an important number of mixed pixels that greatly degrade the detection and
recognition performance, preventing the material identification.

The resulting high data variability is compounded by the lack of labeled samples.
Indeed, although it is relatively easy to collect HSI data, obtaining image-like label infor-
mation is utterly arduous [12]. These challenges severely impair classification algorithms,
which analyze the HSI data distribution in order to identify the land cover contained in
each pixel, assigning them the corresponding label. Traditionally, HSI classification meth-
ods implemented isolated pixel analysis strategies through non-guided analysis of data
divergence and similarity-based measurements (unsupervised methods) [13–15] or guided
training with known ground-truth information (supervised classifiers) [16–19]. More re-
cently, semi-supervised and hybrid strategies are gaining popularity to deal with the lack
of data problem, estimating the distribution of unlabeled data from a very small pool of
labeled data (semi-supervised models) [20–22]. Among these methods, the support vector
machine (SVM) stands out for its efficiency in processing large data, it being relatively easy
to include kernels to adjust and improve its performance in the data [23,24]. Other widely
used methods are: probabilistic methods, such as multinomial logistic regression (MLR)
because of its outstanding results when few training samples are provided [25,26]; ensem-
ble methods such as decision trees (DTs) and random forests (RaF) [27,28]; and iterative
classifiers, such as multilayer perceptrons (MLP) and other shallow/deep artificial neural
networks (ANNs), which do not require prior information of the data distribution [29].
In fact, the great generalization capability of ANNs, their great architectural flexibility
and their impressive ability to extract abstract features and relationships from raw data,
i.e., without the need for handcrafted features, have made them very popular classifiers
within HSI data processing, achieving a never-before-seen performance on current HSI
benchmarks [30,31].

Nevertheless, learning based on isolated spectrum analysis is not stable due to the
large spectral mixture of the HSI data, which is mainly introduced by the low spatial
resolution. In this context, some works introduce spatial information in order to eliminate
the classification uncertainty by stating that neighboring pixels must belong to the same
class. This mitigates the spectral mixture, as more spectral signatures are introduced to
support the classification as well as spatial information in the form of spatial patterns
such as shapes, edges or textures. As a result, many classification algorithms have been
implemented to process the spectral–spatial information contained in HSI data [32–34].
These algorithms may usually be divided into those that concatenate the spectra of several
pixels, applying or not a band reduction/selection step in order to process them all together,
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and those that extract shape and texture features, such as morphological profiles (MP) [35]
or global Gabor features [36]. Despite their accurate results, many of these methods are
based on a feature vector, vectorizing the original 3D data in order to process it. In this
sense, the spatial and structural relationships of the data are disregarded [37]. In contrast
with these methods, the convolutional neural network (CNN) is based on multidimensional
kernels that process the spectral-spatial information of the HSI data without flattening
the data. Indeed, the convolutional model is designed to process multi-dimensional input
samples, respecting the original distribution. This is performed using kernels locally
connected to small regions of the input data. These kernels are defined as arrays with one
dimension more than the input data, thus indicating, on the one hand, the number of filters
to be applied and, on the other hand, the size of the region where they will be applied.
Hence, different kernels can be defined, such as: 1D kernels, which are applied locally to
several channels of the input data; 2D kernels, which are locally applied to areas of the
input maps, and 3D kernels, which are locally applied to both areas and channels of the
input maps. This provides different ways to process HSI data, where 2D and 3D kernels
are the most widely used because of the spectral–spatial processing they conduct [31].

1.1. The Rigid Kernel: Limitation of CNNs for Spatial Analysis

It is noteworthy that ANNs (in general) and CNNs (in particular) try to model the
visual cortex by creating a deep stack of layers composed of neurons. These layers are
connected by weights that modify the inputs to extract their features. As a result, each
layer produces a feature representation, which is increasingly abstract and tailored to
the task for which the network is designed. In this way, by learning the weights that
best fit the data, they are able to extract the best data representations to enhance the
classification performance [38]. Focusing on HSI data processing, after the success of the
first attempts [39], a vast amount of deep learning (DL) approaches have been used on
HSI processing [31]. Particularly in the case of CNNs, the flexibility of the convolution
kernel provides a natural processing as it is applied as a sliding and locally-connected
multidimensional-array to the input data. In addition, the backpropagation mechanism
adjusts the kernel weights, creating a filter adapted to the data to automatically extract the
most discriminative features. Hence, the network extracts abstract representations tailored
to the classification task, obtaining very accurate results. This behaviour has positioned
CNN as the current state-of-the-art in HSI analysis, and there is a vast literature of adapted
and improved HSI-CNNs [2,40–49].

Nevertheless and despite its impressive results, the CNN has some drawbacks related
to its training procedure and its tendency to overfit. Indeed, the CNN consumes a large
amount of labeled samples in order to adjust its parameters properly and to be effective in
generalizing to unseen data, i.e., the CNN requires a representative training set to cover the
high data variability and its classification results tend to degrade in the absence of labeled
samples. Recently, more complex and deeper models have been developed to improve
the performance of the HSI classification process, introducing skip connections that reuse
extracted data representations at different levels of the architecture in order to avoid
overfitting and vanishing gradient problems, such as residual models (ResNets) [50,51],
developing dual-path models to enhance the feature extraction [52] or introducing new
architectures based on capsule networks (CapsNets) to process the spatial relationships
of extracted features [53,54]. Despite these improvements, the CNN still struggles with
a significant loss of information caused by the rigid structure of the convolution kernels.
Inspired by the visual cortex, the multidimensional array that composes the kernel is
organized as a regular square mesh, which is overlapped over the data, applied as an
affine transformation, and sliding by means of a stride hyperparameter. In this regard,
the structure of the kernel has a decisive impact on how the input data affect the output
features, and hence the final classification. This is due to the dependencies between
the generated output feature and a certain input region, known as the receptive field
(RF), i.e., the size of the input region that has produced the output feature. Therefore,
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the receptive field depends on the size and shape of the convolution kernel. Due to the their
rigid structure, convolution kernels suffer a considerable loss of information, as the objects
located in remotely sensed images do not usually have regular shapes and may appear
different in size and orientation, as is observed in Figure 1. Although data augmenting
and multiscale-based strategies [55,56] have traditionally been employed to overcome this
limitation, their kernels exhibit the same restraint, i.e., they cannot be adaptively tailored
with respect to the spatial features.

(a) Spatial transformations of a building (University of Pavia).

(b) Different parking lot areas (University of Houston).

Figure 1. Often, objects located in remotely sensed hyperspectral images do not have regular shapes
and may appear with different sizes and orientations. For instance, some data augmentation methods
apply spatial transformations to the input samples to increase the size of the datasets and cover the
variability in the data (a), whilst other scenes contain the same elements with different orientations
and poses; for example, in (b) we can observe several parking areas, with different sizes and where
the cars are placed differently. However, the convolution kernel disregards these spatial variations,
defining a rigid regular mesh.

Some strategies have been implemented to face the limitations of the rigid kernel.
For instance, Zhu et al. [57] proposed the deformable HSI classification network (DHCNet),
where deformable convolutional sampling locations are introduced by applying 2D offsets
to the input features. As a result, deformable feature images are obtained, which adaptively
combine the similar neighboring information of each pixel into fixed grids that will be
employed by standard convolution layers. However, this proposal does not control the
impact that each item of the fixed grid has on the outputs due to the intrinsic behavior
of the convolution RFs, where central items exhibit a higher impact than those items in
the outer area of the RF, following a Gaussian distribution. In this sense, there is a much
smaller effective area (ERF) within the theoretical RF (TRF) [58], whose information flow is
crucial for the model performance.
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1.2. Contributions

This paper attempts to resolve the aforementioned limitation by adjusting the ERF to
the HSI data through deformable kernels (DKs) [59], which adapt the kernel spaces leaving
the data intact, instead of reconfiguring the data to meet geometric deformations. In this
sense, not the input features (which remain untouched), but the kernel itself is modified by
means of offsets to produce the deformation. Moreover, to enhance the data deformation
modeling, deformable convolution (DC) [60] is combined with DK. The resulting model is
an adaptable convolutional network, which adapts the application of each convolutional
kernel to the features of the input data by deforming its kernel space. In this context,
the main contributions of this work are:

1. A strategy based on DKs is proposed to train CNNs for HSI data classification tasks
in an effective way. Moreover, CNN with DKDC (DKDCNet) has been implemented
and tested over two widely-used HSI scenes.

2. An experimental section is provided to compare the performance of KDCNet with
common DL-based classification models. Conducted experiments demonstrate the
DKDCNet can outperform the classification performance achieved by popular DL-
based classification models.

The rest of this work is organized as follows. Section 2 discusses the role of the RF,
providing the details of the deformable kernel method. Section 3 describes the experimental
results, evaluating the classification performance exhibited by the implemented DKDCNet
over two well-known HSI datasets. Finally, Section 4 presents the obtained conclusions
and future work.

2. Methodology
2.1. The Receptive Field

Traditionally, an ANN defines an architecture of interconnected neurons that com-
municate with each other through weighted connections. However, this fully-connected
(FC) architecture presents severe limitations in image processing, involving an expensive
computational burden coupled with severe overfitting due to a large number of param-
eters. On the contrary, CNNs have adapted their behaviour to mimic the visual cortex,
where output neurons are activated by some input visual stimuli that fall within their RF,
following a hierarchical organization where deeper neurons are activated by combined
and more complex stimuli. In this context, the visual cortex behaviour is artificially imple-
mented by the CNN through a deep stack of convolution layers, where each layer defines a
filter bank, i.e., a set of learnable, locally-connected and shared weights that composes a
linear n-dimensional kernel. Indeed, the kernel is basically a group of data-fitted filters
which slide over the input data following a stride, overlapping and applying themselves to
the data. Each application produces a weighted sum between the filter weights and the
inputs falling within the application region. Moreover, in order to determine the existence
of the features they filter (such as edges and shapes), a non-linear activation function is
introduced to encode the neural response of the convolution layer to the seek features.
Mathematically, this behavior is defined by Equation (1):

X(l)
j = H

(
∑

k∈K
X(l−1)

j+k W(l)
k

)
, (1)

where the superscript l indicates the l-th layer of a CNN. Hence, X(l−1) ∈ RP×P×K(l−1)
and

X(l) ∈ RQ×Q×K(l)
denote the input and output data, also known as input and output feature

maps, respectively, where the former comprises K(l−1) maps of P× P features (pixels) and
the latter K(l) maps of Q×Q features. W(l) ∈ RK(l−1)×M×M×K(l)

denotes the convolution
weights of the l-th layer (to simplify the notation, the bias is ignored), composed of K(l)

filters of M×M weights. Coordinate k enumerates discrete kernel positions at the l-th
layer within the support of the regular mesh K = [−M/2, M/2]2 ∩ Z (where Z denotes
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the set of integers), whilst j is indexing each output coordinate. Finally, H defines the
activation function, which is usually implemented with ReLU. This is graphically depicted
by Figure 2. Particularly, Figure 2b depicts a 3× 3 kernel which is applied with stride 1
and zero padding over a 6× 6 input feature map. In this context, for the output coordinate
j = (3, 5, z), k will sample the input features positions from (2, 4) to (4, 6) (using part of
the padding added to the map border) according to the grid based on K = [−1, 1].

(a) (b)

Figure 2. Graphical representation of a convolution kernel. (a) The multidimensional array of weights
W(l) (in red) is slid and locally applied over regions on the input feature maps X(l−1) (highlighted in
green and yellow), obtaining the corresponding output features in X(l) as a weighted sum. (b) 2D
detail of a 3× 3 kernel with stride 1 and zero padding. Index l denotes the l-th layer, subscripts
i, j ∈ [0, 5] represent the spatial coordinates of the features, whilst z indicates the feature.

As we can observe, the output unit X(l)
i only depends on a small region of the input

feature map that the kernel is “looking” at. This region is denoted as the RF for that
unit, so any information within the input feature map but outside the RF will not affect
the value of the output unit [61]. Figure 3a represents the number of times that a 3× 3
kernel has been applied on a 13× 13 feature map with stride 1, i.e., the overlapping of all
RFs of the output features. In this sense, the central pixels are used more often than the
pixels located at the edges of the map, i.e., central RF pixels are part of more calculations,
playing a major role within the convolution layer as they propagate their information more
times. This follows the behavior of the visual cortex, where local features are detected and
processed in early visual stages (or layers) of the cortex and then progressively combined
in a hierarchical fashion, creating more complex patterns [62,63]. The connotations behind
this behaviour are quite intuitive: the pixels in the RF do not contribute equally to the layer
output response [58]. There is an effective receptive field (ERF) that defines the areas of the
input data that influence and modulate the output activations by tracing the hierarchy back
from the considered output feature to the input image. This extends to the entire network;
for instance, Figure 3b highlights the RF of a CNN output response relative to the input
data. In this sense, the ERF of a CNN follows a Gaussian distribution, defining not only a
region to “look at”, but also exponentially concentrating the attention on the middle of the
feature map. Indeed, it can be identified as a Gaussian-based soft attention map [59,64].

Following Equation (1), the computation of the output coordinate j within the fi-
nal (L-th) layer can be generalized by Equation (2) as follows (H is omitted to simplify
the formulation):

X(L)
j = ∑

kL∈K
X(L−1)

j+kL
W(L)

kL
= ∑

(kL−1,kL)∈K2

X(L−2)
j+kL−1+kL

W(L)
kL

W(L−1)
kL−1

= ∑
(k1,...,kL)∈KL

(
Xj+∑L

l=1 kl

L

∏
l=1

W(l)
kl

)
,

(2)

where X is the original HSI input and kl the discrete kernel positions related to the kernel
weights W(l) at the l-th convolution layer. In this regard, the ERF value of an output
coordinate j that depends on input i can be defined asR(L)(i; j):



Remote Sens. 2021, 13, 3637 7 of 19

(a) (b)

Figure 3. Graphical representation of the receptive field. (a) Considers a unique input layer to which
a 3× 3 kernel is applied with a stride of 1. The color map indicates the number of times the kernel
has been applied on each feature (i.e., the darker the color, the more kernel applications). The number
of times the kernel has been applied over a feature is also included. For instance, the edge pixels are
used between 0 and 3 times, while the center pixels are used 9 times. (b) Receptive field of an output
feature obtained by a CNN composed of two 3× 3 convolution layers (in red) and a 2× 2 pooling
layer (in yellow).

R(L)(i; j) ≡ ∂X(L)
j /∂Xi = ∑

(k1,...,kL)∈KL

(
1

[
j +

L

∑
l=1

kl = i

]
L

∏
l=1

W(l)
kl

)
, (3)

where 1 defines the indicator function. As we can observe, the ERF depends on the data
and kernel sampling locations j and k, and the kernel weight arrays {W(l)}L

l=1.
In addition, if the m-th convolution kernel W(m) is implemented by a 1× 1 kernel of a

single learnable parameter at position k̃m, i.e., W(m)

k̃m
, the ERF can be obtained by extracting

the weight of the summation and multiplying it directly to the remaining kernels, following
Equation (4):

R(l)(i; j, k̃m) = ∑
(k1,...,km−1,km+1,...kL)∈KL−1

(
1

[
j + ∑

l=S
kl = i

]
∏
l=S

W(l)
kl

W(m)

k̃m

)
, (4)

where S = [1, L] \m contains all the layers of the CNN architecture except the m-th layer.
Furthermore, any M × M kernel can be considered as a composition of M2 point-wise
1× 1 kernels [59], hence Equation (3) can be reformulated as:

R(l)(i; j) = ∑
kl∈K
R(l)(i; j + kl , kl). (5)

In this regard, although the ERF can be modified in several ways, for instance by
stacking more or less convolution layers, changing the kernel size M, implementing sub-
sampling stages through pooling layers and striding, or including dilated convolutions
and multiple data paths, the rigid shape of the convolution kernel imposes a serious
limitation, as it applies a regular mesh regardless of the spatial characteristics of the
elements contained in the HSI image. In this context, the convolution kernel must be
properly controlled to ensure that the entire relevant region is covered, dealing with
data deformations. Taking Equation (5) into account, we automatically adapt the ERF to
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spatially fit HSI data, developing a deformable kernel (DK)-based architecture [59] for
spectral–spatial HSI analysis.

2.2. Adaptable Deep Model with Deformable Kernels and Deformable Convolution

The strategy for adapting the ERF to geometric deformations and transformations
of the data is quite simple. Indeed, the DK method takes the layer input features X(l−1)

and automatically generates a group of kernel offset ∆kl . Then, taking the original kernel
weights W(l) with a certain size M′ × M′, the DK method performs an interpolation
between them and the generated offsets ∆kl , obtaining as a result the desired kernel W̃(l)

with size M × M. This final kernel is convolved with the input data X(l−1) in order to
obtain the output feature maps. The procedure is detailed below.

The DK method attempts to adapt the computation of how much each input pixel
contributes to the final output response directly during runtime. In this context, its purpose
is to modify the kernel space by resampling the kernels weights, adapting them to the input
data but leaving the data untouched. As a result, Equations (2) and (5) are re-interpreted as:

X(l)
j = ∑

kl∈K
X(l−1)

j+kl
W(l)

kl+∆kl︸ ︷︷ ︸
Interpolation through B

= ∑
kl∈K

X(l−1)
j+kl

W̃(l)
kL︸︷︷︸

Defromable kernel

(6a)

R(l)(i; j) = ∑
kl∈K
R(l)(i; j + kl , kl + ∆kl). (6b)

Focusing on Equation (6a), the DK can be addressed as a bilinear interpolation problem
within the rigid kernel grid and the desired adaptive/deformable kernel.

Denoting W(l) ∈ RM′×M′ as the original kernel weights and W̃(l) ∈ RM×M as the
desired deformable kernel of the l-th layer (where the M′ is any kernel scope size that meet
the restriction of the number of sampling locations M2 determined by M), the DK conducts
a sub-pixel sampling in the kernel space to handle data deformation by resampling the
original weights into W̃(l) through a group of learned kernel offsets ∆kl . These offsets are
automatically computed from the input data X(l−1) through a generator G; therefore, they
are automatically adapted to the characteristics of the input data. It should be noted that
local generators have been adopted to build the DK method. In this sense, each G(l) has
been implemented by a lightweight rigid convolution layer with the same configuration as
the target kernel W̃(l) and 2M2 output channels. Moreover, each offset of ∆kl is indexed
by output locations j. Knowing the original kernel weights W(l) and the offsets {∆kl},
the DK samples a new set of kernel weights W̃(l) employing a bilinear sampler B following
Equation (7):

W̃(l) ≡ W(l)
kl+∆kl

= ∑
k′l∈K
B
(
kl + ∆kl , k′l

)
W(l)

k′l
, (7)

where B = max(0, 1− |kl,x + ∆kl,x − k′l,x|)max(0, 1− |kl,y + ∆kl,y − k′l,y|). Finally, the ob-

tained W̃(l) is applied over the input volume following Equation (1).
In contrast to other methods, such as the DC which resamples the features to counter

the effects of geometric data deformation [57,60], the application of the kernel offsets
∆kl to each kernel location kl and deforms the rigid grid imposed by K, modifying the
kernel space but keeping the data untouched, which preserves the input information intact.
In this sense, DK and DC are perfectly compatible methods that may be combined to
enhance the feature extraction. Therefore, with the aim of completing the data deformation
modeling, DK is combined with DC to implement the proposed adaptable model for HSI
data classification, which have been denoted as DKDCNet. In this sense, the DC learns
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a group of data offsets {∆j} with respect to data positions j. DC is combined following
Equation (8):

X(l)
j = ∑

kl∈K
X(l−1)

j+kl+∆jW
(l)
kl+∆kl

, (8a)

R(l)(i; j) = ∑
kl∈K
R(l)(i; j + kl + ∆jl , kl + ∆kl). (8b)

As can be observed, the DC method introduces a learnable 2D offset ∆j to the regular
grid, sampling the positions of the input feature map, thereby deforming the ERF of
the activation unit. Similarly to ∆kl , the obtained ∆j offsets are learned from the input
feature maps using additional lightweight convolutional layers. As a result, the data is first
deformed and then the deformable kernel is obtained by the DK method and applied to
the feature maps. In this sense, the deformations applied within each DKDC block depend
on the input features in a local and adaptive manner.

Figure 4 provides the graphical representation of the implemented adaptable network,
detailing the DK computation. As we can observe, the developed model computes three
principal components from the original HSI datacube by PCA, obtaining 25× 25× 3 patches
from each HSI pixel to encode the most relevant spectral–spatial information whilst re-
ducing the dimensionality. These patches are sent to the adaptable DKDCNet, whose
architecture is detailed in Table 1, following [57]. In particular, the implemented DKDCNet
defines a convolution block with DK and DC mechanisms (denoted as DKDC). These
layers define an offset (first row), original kernel scope (second row), and final depth-wise
layer (third row), where F = 3 is the number of spectral bands, and N = number of classes.
Maxpooling and average pooling have also been introduced. The model has been trained
in about 5000 iterations, applying the ADAM optimizer with a learning rate of 1× 10−3

and a batch size of 150.

Table 1. DKDCNet architecture.

ID Type Kernel/Neurons Data Norm. Act. Funct. Dropout

1 CONV2D 96× 1× 1× F Yes ReLU 5%

2 DKDC
18× 3× 3× 96 - - -

9× 9 - - -
96× 3× 3× 96 Yes ReLU 5%

3 MaxPOOL 2× 2 - - -

4 CONV2D 108× 1× 1× 96 Yes ReLU 5%

5 DKDC
18× 3× 3× 108 - - -

7× 7 - - -
108× 3× 3× 108 Yes ReLU 5%

5 MaxPOOL 2× 2 - - -

6 CONV2D 128× 1× 1× 108 Yes ReLU 5%

7 DKDC
18× 3× 3× 128 - - -

4× 4 - - -
128× 3× 3× 128 Yes ReLU 5%

8 AvgPOOL 2× 2 - - -

9 FC N Yes Softmax 5%
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Figure 4. Graphical overview of the proposed adaptable network architecture. Standard convolu-
tions have been implemented as point-wise CONV2D layers. Focusing on DK layers, a kernel scope
W(l) ∈ RK(l−1)×M′×M′×K(l)

is considered. Then, the generator G (implemented as a CONV2D) com-
putes the kernel offsets {∆kl} from input X(l−1). The bilinear sampler B samples a new set of kernels
W̃(l) from W(l) and {∆kl}, which is convolved over the input as a depth-wise layer, obtaining the
output volume X(l).

3. Experimental results
3.1. Experimental Environment

An implementation of the proposed HSI DKDCNet has been developed and tested
on a hardware environment with an X Generation Intel® Core™i9-9940X processor with
19.25 M of Cache and up to 4.40 GHz (14 cores/28 way multi-task processing), installed
over a Gigabyte X299 Aorus with 128 GB of DDR4 RAM. Furthermore, a graphic processing
unit (GPU) NVIDIA Titan RTX GPU with 24 GB GDDR6 of video memory and 4608 cores
has been used.

3.2. Hyperspectral Datasets

One of the greatest achievements of DL is to design and exploit the same neural
architecture for the classification of different images. In this sense, the experiments de-
veloped an aim not only to evaluate the performance of the model in terms of accuracy
and complexity (understood as number of parameters), but also its generalization capacity.
Thus, following [57], the same architecture has been exploited for classifying two real
widely-used HSI scenes with different spectral–spatial characteristics: (i) University of
Pavia and (ii) University of Houston scenes. Details are provided below.

• The University of Pavia (UP, Figure 5) dataset [65] is an HSI scene gathered by the
airborne reflective optics system imaging spectrometer (ROSIS-3) over the university
campus of Pavia, northern Italy, in July 2002. The scene consists of 610× 340 pixels
with 1.3 m of spatial resolution, and 113 spectral bands with a spectral range coverage
ranging from 430 to 860 nm. The ground truth contains a total of 42,776 labeled
samples grouped into nine different land-cover classes, covering different urban
elements, including asphalt, meadows, gravel, trees, metal sheet, bare soil, bitumen,
brick, and shadows.

• The University of Houston (UH, Figure 6) dataset [66] is an HSI scene collected by
the lightweight compact airborne spectrographic imager (CASI) over the Houston
University area. It consists of 349 × 1905 pixels with 2.5 m of spatial resolution
and 144 channels in the 380 nm to 1050 nm spectral region. The ground truth comprises
15,029 labeled samplescontaining 15 different classes within an urban environment too.
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Color Land cover type Samples
Background 164,624

Asphalt 6,631

Meadows 18,649

Gravel 2,099

Trees 3,064

Painted metal sheets 1,345

Bare Soil 5,029

Bitumen 1,330

Self-Blocking Bricks 3,682

Shadows 947

Total samples 207,400

Figure 5. Ground truth of University of Pavia scene.

Color Land cover type Samples Color Land cover type Samples
Background 649,816 Grass-healthy 1,251

Grass-stressed 1,254 Grass-synthetic 697
Tree 1,244 Soil 1,242

Water 325 Residential 1,268
Commercial 1,244 Road 1,252

Highway 1,227 Railway 1,235
Parking-lot1 1,233 Parking-lot2 469
Tennis-court 428 Running-track 660

Total samples 664,845

Figure 6. Ground truth of University of Houston scene.

3.3. Experimental Discussion

The performance of the DKDCNet for HSI data classification has been evaluated
through widely used classification metrics, in particular: (i) the overall accuracy (OA), which
measures the probability that a sample will be correctly classified by the classification model;
(ii) the average accuracy (AA), which measures the mean of each obtained classification
accuracy per class; and (iii) the statistical Cohen’s Kappa coefficient K(×100), which measures
the inter-rater agreement between the observed and expected agreements. Moreover,
the number of parameters has been considered.

In addition, the accuracy performance of the network has been compared with stan-
dard CNN [57] and with other deformable-based models, in particular the DC-based
network (DCNet) and DHCNet [57]. Finally, several well-known HSI classification meth-
ods have also been considered, such as the pyramidal ResNet (pResNet) [51], and the
spectral–spatial squeeze-and-excitation residual bag-of-feature (S3EResBoF) model [67].
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3.3.1. Experimentation on UP Dataset

The first experiment evaluates the performance of the proposed model in the UP
image. In this sense, a different number of training samples have been randomly selected
from the pool of labelled data; particularly, 45, 55, and 65 random samples per class have
been considered to train the proposed DKDCNet and the standard CNN, DCNet, DHCNet,
pResNet and S3EResBoF models.

In this context, it is quite interesting to compare the behavior of the original convo-
lutional model and the proposed model for HSI data analysis throughout the training
epochs, both in terms of training and validation loss and in terms of accuracy during the
training and validation stages. In this regard, Figure 7a depicts the comparison between
the proposed model and the standard CNN considering 55 randomly selected training
samples. In particular, from left to right we can observe the evolution of both models
regarding their training and validation loss and their training and validation accuracy
along different epochs. Focusing on training and test loss, the proposed model seems to
achieve a training loss quite similar to CNN during the first epochs; even its test loss is
higher than CNN in the first 10 epochs. Nevertheless, the training loss drops drastically,
below the CNN already in the first five epochs, whilst the validation loss drops abruptly
from the first 15 epochs onward. This suggests the model parameters are not over-fitted to
the training data, which allows the optimizer to converge to a more optimal solution than
the CNN. Indeed, during the training stage, the obtained accuracy climbs rapidly above
90%, whilst the validation accuracy evolves slower but better than the CNN.

(a) University of Pavia

(b) University of Houston

Figure 7. From left to right: training loss, validation loss, training accuracy, and validation accuracy. First row: obtained
results with University of Pavia dataset. Second row: obtained results with University of Houston

Furthermore, Figure 8a provides the measurements of the OA, AA, and Kappa coeffi-
cients for each model, along with their respective standard deviations, in order to compare
the accuracy achieved by each network. These data have been obtained considering 45,
55, and 65 randomly selected training samples after 10 Monte Carlo runs. As an overall
conclusion, the proposed DKDCNet model outperforms the results of the other models.
When evaluating in detail, the S3EResBoF model achieves the worst results with the highest
deviation due to its feature processing; indeed, its Kappa coefficient does not exceed 88%,
as we can observe in Table 2, whilst its OA and AA measurements involve the highest
uncertainty due to their large variability. On the contrary, the CNN and the pResNet
models achieve better results, where the CNN has a lower standard deviation compared to
the pResNet. This is due to the higher complexity of the pResNet model, which introduces
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3.22M parameters that must be appropriately learned. Indeed, behaviours of the CNN and
the pResNet vary depending on the amount of training data; thus, the pResNet, which
is more complex than the standard CNN, is greatly affected by the lack of samples, but
outperforms the CNN when it has enough samples to properly fit its parameters. Regard-
ing deformable models, the implemented DKDCNet clearly outperforms the DCNet and
DHCNet models, exhibiting a higher OA and a very small deviation, which makes it very
stable even when there are few training samples.

(a) University of Pavia

(b) University of Houston

Figure 8. From left to right, graphical representation of the OA, AA, and Kappa Coefficient (coupled
with their corresponding standard deviations) reached by each classification model.

Regarding the model complexity (in terms of number of parameters), Figure 9 depicts
the number of trainable parameters of each model considering the UP scene. Moreover,
Table 2 provides the estimated number of parameters. The pResNet model is the most
complex classifier with more than 3M parameters, followed by DHCNet, DCNet, and
CNN by far. Indeed, such deformable solutions as DHCNet and DCNet exhibit a large
number of parameters. On the contrary, the proposed adaptive model has significantly
less parameters, exhibiting not only less over-parametrization (which helps to reduce
overfitting problems), but also a lower memory consumption. In this sense, the proposed
network contains light depth-wise layers that prevent the overgrowth of the parameters.
This feature makes it not only a lightweight, but also a pretty efficient model for HSI data
classification. In this context, the adaptation of this model to low-power environments or
embedded devices for onboard processing can be highly interesting.

Table 2. Classification results and number of parameters obtained for UP scene.

Tr = 45 Tr = 55 Tr = 65

Method Params. OA AA K(×100) OA AA K(×100) OA AA K(×100)

CNN 585K 95.98(0.50) 95.95(0.51) 94.70(0.64) 96.05(1.04) 96.58(0.74) 94.80(1.36) 96.88(1.03) 97.31(0.46) 95.88(1.34)
pResNet 3.22M 95.16(1.67) 96.03(1.00) 93.63(2.17) 95.12(0.67) 96.33(0.62) 93.56(0.88) 97.33(1.03) 97.97(0.43) 96.46(1.34)

S3EResBoF 200K 89.72(1.68) 89.35(1.22) 86.55(2.13) 90.92(1.43) 90.24(1.65) 88.07(1.84) 90.28(1.96) 90.86(1.51) 87.32(2.46)
DCNet 880K 96.19(1.56) 97.07(0.75) 94.99(2.02) 96.77(0.79) 97.21(0.46) 95.74(1.03) 97.35(0.92) 97.81(0.56) 96.49(1.20)

DHCNet 1.14M 94.93(1.78) 96.67(0.59) 93.37(2.29) 96.59(1.19) 97.61(0.63) 95.50(1.55) 97.20(1.02) 98.04(0.39) 96.31(1.33)
DKDCNet 96.3K 97.30(0.34) 97.58(0.29) 96.42(0.44) 98.27(0.14) 98.13(0.16) 97.70(0.19) 98.48(0.22) 98.36(0.19) 97.97(0.30)
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Figure 9. Trainable parameters of the models considering the image University of Pavia.

Finally, Table 2 reports in more detail the obtained classification results in terms of
OA, AA, Kappa (with the respective standard deviations after 10 MonteCarlo runs), and
number of trainable parameters. As already observed, the implemented HSI DKDCNet
outperforms the accuracy results achieved by the other five deep classification models.
Moreover, its low deviation results indicate its classification performance is quite stable.
Finally, the model lightness in terms of the number of parameters makes it a potential
candidate for onboard processing.

3.3.2. Experimentation on UH dataset

The second experiment evaluates the performance of the proposed model on the UH
image. Similar to the first experiment with the UP scene, different numbers of training
samples have been randomly selected from the pool of labeled data; particularly, 30, 40,
and 50 random samples per class have been considered to train the proposed DKDCNet
and the standard CNN, DCNet, DHCNet, pResNet, and S3EResBoF models.

Once more, a comparison between the standard CNN and the proposed DKDCNet has
been conducted to evaluate the behaviour of the models along different epochs. Figure 7b
depicts, from left to right, the evolution of both models regarding their training and vali-
dation loss and their training and validation accuracy along different epochs considering
40 randomly selected training samples. Focusing on training and test loss, the proposed
model has a fairly similar evolution to that presented in the previous experiment. Indeed,
the training loss drops drastically between the first 10 epochs, overcoming the CNN model,
whilst the validation loss drops abruptly from the first 15 epochs onward. Furthermore,
during the training stage, the obtained accuracy climbs rapidly above 90%, whilst the
validation accuracy evolves slower but better than the CNN, reaching an OA of over 90%.

Furthermore, a deeper comparison is conducted between the proposed DKDCNet
and the considered CNN, pResNet, S3EResBoF, DCNet, and DHCNet models. Figure 8b
provides the obtained OA, AA and Kappa coefficients for each model, along with their
respective standard deviations, in order to compare the accuracy achieved by each deep
network. Following the previous experiment, these results have been obtained considering
30, 40, and 50 randomly selected training samples after 10 Monte Carlo runs. Once more,
similar behaviors are observed in the UH scene, where the proposed method reaches the
best measurements in terms of OA, AA, and Kappa. Again, the S3EResBoF model achieves
the worst results with the highest deviation for each measurement. Focusing on the CNN
and the pResNet models, in this case, due to the data distribution of UH scene, the pResNet
obtains better performance than CNN, since its skip connections provide a path to reuse
local features. On the other hand, the DKDCNet outperforms the deformable DCNet and
DHCNet models.

Table 2 reports not only the OA, AA, and Kappa measurement, but also the complexity
of each model. Indeed, the first column of Table 3 provides the estimated number of
parameters. It must be noted that the size of the model depends on the size of the input
data and the number of classes, which increases or decreases the number of parameters to
be trained. In this sense, models with a UH scene are slightly larger than those with UP
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since they contain 16 classes instead of 9. This increase in the number of classes is hardly
noticeable in very large models, such as the pResNet or the DHCNet, or even the S3EResBoF
(with only 220K), so their approximation is practically the same as the parameters in UP.
However, in the proposed DKDCNet model, the increase can be observed because of its
reduced number of parameters.

Table 3. Classification results and number of parameters obtained for UH scene.

Tr = 30 Tr = 40 Tr = 50

Method Params. OA AA K(×100) OA AA K(×100) OA AA K(×100)

CNN 585K 91.53(0.55) 92.83(0.43) 90.84(0.60) 93.98(0.39) 94.93(0.51) 93.49(0.43) 95.04(0.43) 95.84(0.52) 94.64(0.46)
pResNet 3.22M 92.57(0.41) 93.61(0.63) 91.97(0.44) 94.09(0.96) 95.14(0.84) 93.61(1.04) 96.06(0.67) 96.64(0.63) 95.73(0.73)

S3EResBoF 200K 83.11(1.84) 85.72(1.54) 81.74(1.98) 87.86(1.96) 89.78(1.66) 86.87(2.12) 88.04(1.65) 89.92(1.50) 87.07(1.78)
DCNet 880K 93.02(0.74) 94.21(0.64) 92.45(0.80) 94.81(0.36) 95.72(0.42) 94.39(0.39) 96.18(0.63) 96.83(0.55) 95.86(0.69)

DHCNet 1.14M 93.59(0.83) 94.64(0.71) 93.07(0.90) 95.20(0.54) 95.99(0.37) 94.81(0.58) 95.83(0.43) 96.58(0.38) 95.49(0.47)
DKDCNet 97.1K 95.59(0.26) 96.19(0.32) 95.23(0.28) 95.94(0.39) 96.47(0.42) 95.61(0.42) 97.12(0.23) 97.64(0.20) 96.88(0.25)

Finally, Figure 10 provides the classification maps of the UH scene obtained by each
network considering 30 randomly selected training samples. As we can observe, the HSI
DKDCNet extract classification maps with high quality, even when small training sets
are employed.

(a) False RGB (b) Ground truth

(c) CNN (91.53%) (d) pResNet (92.57%)

(e) S3EResBoF (83.11%) (f ) DCNet (93.02%)

(g) DHCNet (93.59%) (h) Proposed DKDCNet (95.59%)

Figure 10. Classification maps obtained from UH scene (considering 30 samples per class). The ob-
tained OAs are shown in brackets.

4. Conclusions and Future Lines

This paper presents a new deep convolution-based neural network for HSI data
classification. The model is inspired by deformable kernels, which are combined with
deformable convolutions to automatically adapt the effective receptive field of the CNN
classifier to spatial deformations within remote sensing HSI data. In this regard, the adapt-
able classification network fits its parameters to the HSI data patches in an optimal way,
not only by being able to deform the convolution (i.e., adding an offset to the feature
positions), but by automatically exploiting the deformation of the kernel itself applied to
each receptive field on the input feature volume. Moreover, the deformations included
in the model through different offsets are learned directly from the input data in a local
and adaptive way. The conducted experiments over two widely-used HSI scenes (i.e., the
University of Pavia and University of Houston scenes) demonstrate the HSI DKDC model
is able to overcome the current state-of-the-art HSI data classification considering different
deep models, some of them also with data deformation modeling, such as DCNet and
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DHCNet. In this sense, the implemented network is able to extract relevant spectral–spatial
features more effectively from HSI data, using fewer parameters and reaching satisfactory
accuracy results.

In future works, new deformable schemes will be studied to enhance the data de-
formation modeling within deep architectures, also improving the flexibility of current
neural models.

Author Contributions: The authors have contributed as equally to this work. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by Junta de Extremadura FEDER under Grant GR18060 and
Leonardo Grants for Researchers and Cultural Creators awarded by the Fundación BBVA under
grant 2021/00203/00.

Conflicts of Interest: The authors declare no conflict of interest.

Acknowledgments: We gratefully thank the Associate Editor and the Anonymous Reviewers for
their outstanding comments and suggestions, which greatly helped us to improve the technical
quality and presentation of our work.

Acronyms
List of acronyms used in this paper:

Acronym Full name
ANNs Artificial Neural Networks
AA Average Accuracy
CapsNets Capsule Networks
CASI Compact Airborne Spectrographic Imager
CNNs Convolutional Neural Networks
CONV2D Convolutional 2D
DC Deforming Convolution
DK Deforming Kernels
DL Deep Learning
DTs Decision Trees
EO Earth Observation
ERF Effective Receptive Field
FC Fully Connected
GPU Graphics Processing Unit
HSI Hyperspectral Image
K(x100) Cohen’s Kappa coefficient
LULC Land-Use/Land-Cover
MLP Multi-Layer Perceptron
MLR Multinomial Logistic Regression
MP Morphological Profiles
OA Overall Accuracy
pResNet Pyramidal ResNet
RaF Random Forests
RAM Random Access Memory
RF Receptive Field
ROSIS-3 Reflective Optics System Imaging Spectrometer
RS Remote Sensing
RS-HSI Remote Sensing Hyperspectral Image
S3EResBoF Spectral-Spatial Squeeze-and-Excitation Residual Bag-of-Feature
SVMs Support Vector Machines
TRF Theorical Receptive Field
UH University of Houston
UP University of Pavia
VSWIR Visible-to-Shortwave Infrared
ResNets Residual Networks
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