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Abstract: Unmanned aerial vehicles have been used widely in plant phenotyping and precision
agriculture. Several critical challenges remain, however, such as the lack of cross-platform data
acquisition software system, sensor calibration protocols, and data processing methods. This paper
developed an unmanned aerial system that integrates three cameras (RGB, multispectral, and thermal)
and a LiDAR sensor. Data acquisition software supporting data recording and visualization was
implemented to run on the Robot Operating System. The design of the multi-sensor unmanned aerial
system was open sourced. A data processing pipeline was proposed to preprocess the raw data and
to extract phenotypic traits at the plot level, including morphological traits (canopy height, canopy
cover, and canopy volume), canopy vegetation index, and canopy temperature. Protocols for both
field and laboratory calibrations were developed for the RGB, multispectral, and thermal cameras.
The system was validated using ground data collected in a cotton field. Temperatures derived from
thermal images had a mean absolute error of 1.02 ◦C, and canopy NDVI had a mean relative error of
6.6% compared to ground measurements. The observed error for maximum canopy height was 0.1 m.
The results show that the system can be useful for plant breeding and precision crop management.

Keywords: UAV; thermal imaging; multispectral imaging; phenotyping

1. Introduction

High-throughput phenotyping is a method of using sensing and automation tech-
nologies to measure phenotypic traits in order to accelerate breeding programs for major
crops [1] in support of increased plant productivity and resilience to biotic and abiotic
stresses impacting plant health and growth. Traditional methods for collecting field data to
support crop breeding require significant human labor. As a result, designing an automatic
phenotyping platform to work in the field has attracted the attention of researchers in both
plant science and engineering communities. Early solutions for an automatic data collec-
tion platform utilized ground vehicles (either tractor or robotic platforms) equipped with
sensors to acquire the desired data [2–4]. During data collection, ground vehicles are driven
either manually or automatically through each plot, and data are collected and stored in
a data logger or computer. Ground vehicles have the advantage of supporting large pay-
loads and can easily carry multiple sensors simultaneously. In addition, these vehicles can
control the data collection environment, for instance, by using enclosures to guarantee data
quality and to ensure similar acquisition conditions (e.g., illumination and wind). Ground
platforms also have several disadvantages, however, including low data scanning speed,
the need to adjust planting layout for certain crops to accommodate vehicle characteristics,
soil compaction resulting from frequent data collection, and challenges of adapting the
platform to different crops once the design is fixed.
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Unmanned aerial vehicles (UAVs) offer an alternative to ground data collection in
support of high-throughput phenotyping and can address disadvantages of ground ve-
hicles to some degree. Compared to ground platforms, UAVs can provide higher data
scanning speed and can cover relatively larger fields. Due to the physical separation from
plants, UAVs can be adapted easily to different types of crops and at different growth
stages. Furthermore, UAVs can be controlled automatically by their onboard autopilot
system; thus, they require less human intervention during data collection. Limitations of
UAVs include reduced payload when compared to ground vehicles, resulting in equipment
weight restrictions. In addition, the quality of data collected by UAVs is more likely to be
affected by the environment due to lack of environmental controls. The spatial resolution
of aerial data is usually lower than that of ground systems.

There have been many studies on UAV-based high-throughput phenotyping published
in recent years [5–7], and a variety of sensors have been integrated into UAV platforms,
including multiple types of cameras (RGB, thermal, multispectral, and hyperspectral) and
Light Detection and Ranging (LiDAR) sensors [8]. Cameras and LiDAR can provide spatial
and spectral information about plants, which can be used to measure directly or indirectly
various phenotypic traits. RGB images can be used to estimate leaf area index (LAI), crop
emergence, and to count flowers [9–11]. The Structure from Motion (SfM) technique can
be used with RGB images to generate a Digital Surface Model (DSM), which can be used
to estimate plant height, predict biomass/yield, detect crop lodging, and derive canopy
structure metrics [12–16]. Multispectral imaging can provide vegetation indices, such as
the widely used Normalized Difference Vegetation Index (NDVI), which have proven to
correlate with leaf area index, plant disease, plant nutrient deficiency, and yield [17–21].
Thermal images have been used frequently to measure canopy temperature, which is an
indicator of stomatal conductance and plants’ response to water stress [22,23]. Therefore,
thermal images can be used to detect water stress [24–26]. Hyperspectral imaging provides
more detailed spectral information of targets when compared to multispectral cameras
and can be used to further monitor plants’ physiological status and related processes [27].
For example, one study showed that the Photochemical Reflectance Index (PRI) from
hyperspectral imaging can be used to access the water stress in maize [28], whereas several
other studies applied hyperspectral images to estimate biomass and yield, as well as to
detect plant diseases [29–32].

Despite the great potential and progress in the field of UAVs when applied to high-
throughput phenotyping, several application challenges remain to be further studied. First,
most UAV platforms have been designed based on a particular aerial vehicle and one or
more sensors. For example, although multi-sensor UAV systems were developed to acquire
complementary information to measure complex phenotypic traits such as water stress
and yield [33,34], these systems are typically limited to up to two specific sensors without
flexible data acquisition software system that can adapt to new sensors. Rigid designs
are difficult to expand, adapt to other needs, and reuse for other research or applications.
This limitation can be circumvented by designing a multi-sensor data acquisition system
that can be deployed on different UAV platforms. Second, since sensors are affected
by environmental conditions that could make the data collected from different sessions
inconsistent and non-comparable, calibration methods need to be developed for different
types of sensors. For example, thermal images are affected by the atmosphere and need to
be calibrated properly using environmental data to obtain accurate thermal readings [35].
Lastly, converting sensor data into meaningful phenotypic traits for variety selection and
plant growth assessment requires a complex set of data processing algorithms and tools.
Therefore, designing a framework that can incorporate existing and future algorithms
remains a major task for researchers. Additionally, although UAVs have been used widely
for plant phenotyping, it has remained a challenge for researchers without an engineering
background to develop a feature-rich data collection UAV system.

In order to address the above challenges, the main goal of this paper is to design a
flexible unmanned aerial data acquisition system as well as an airborne sensor calibration



Remote Sens. 2021, 13, 3517 3 of 28

and data processing framework that can be used by researchers in phenomics and precision
agriculture. Specific objectives include the following: (1) Designing a data acquisition
system that can be attached easily to different UAV platforms, (2) developing camera
calibration protocols that are transferable to other data collection efforts, and (3) designing
a data processing pipeline for extracting phenotypic traits from the raw data. The design
of the system was open-sourced and is available to researchers and other individuals.

2. System Design

We adopted a modularized approach to design the unmanned aerial system (UAS),
aiming to separate the full system into an aerial platform and a data acquisition system
(DAS). In this manner, the DAS can be carried by different aerial platforms or even by
ground platforms. We designed two versions of DAS over the past five years. The first
version consists of a DSLR camera (Lumix G6, Panasonic, Kadoma, Japan), a multispectral
camera (RedEdge, MicaSense, Seattle, WA, USA), and a thermal camera (Tau 2, FLIR
Systems, Wilsonville, OR, USA) (Table 1). This version of the DAS has a simpler de-
sign and does not include the Robot Operating System (ROS). The second version of the
DAS replaced the DSLR camera with an industrial camera (GrassHopper3, FLIR Systems,
Wilsonville, OR, USA) and added a 3D LiDAR sensor (VLP-16, Velodyne Lidar, CA, USA).
In addition, this DAS has an improved mechanical design and can be controlled using ROS.
This paper briefly introduces the design of the first version of the DAS and focuses on the
development of the second version.

Table 1. Specification of the sensors.

Thermal
Camera

Multispectral
Camera

DSLR
RGB Camera

Industrial
RGB Camera LiDAR

Manufacturer FLIR systems MicaSense Panasonic FLIR systems Velodyne
Model Tau 2 RedEdge Lumix G6 GrassHopper3 VLP-16

Dimensions (mm) 44.5× 44.5× 30 113× 65× 46 122× 85× 71 44× 29× 58 103× 103× 72
Weight (g) 112 150 390 90 830

Resolution 640× 512 1280× 800 4608× 3456 2448× 2048 Vertical: 1.33°
Horiz.: 0.1°–0.4°

Focal length (mm) 25 5.4 14–42 5 N/A
Max FPS (Hz) 30 1 1 75 20
Spectral range

(nm) 7500–13,500 475, 560, 668,
717, 840 N/A N/A N/A

Accuracy (cm) N/A N/A N/A N/A Up to ±3

2.1. First Version of the Data Acquisition System

The DSLR, multispectral, and thermal cameras integrated into this DAS were con-
trolled by a single-board computer (Raspberry Pi 3) (Figure 1A). The cameras and Raspberry
Pi were mounted on a camera case, which was attached to a high payload UAV (S1000+,
DJI, Shenzhen, China) (Figure 1B). A GNSS/IMU (VN200, VectorNav, Dallas, TX, USA)
was used to record the position and pose of the images. Two DC-DC converters were used
to power the thermal and the multispectral cameras, as well as the Raspberry Pi (power
supplied by the UAV). Software was developed to run on the Raspberry Pi triggered
cameras and saved thermal images and geolocation to the on-board memory.

2.2. Second Version of the Data Acquisition System

The second version of the DAS consisted of three imaging sensors (thermal, industrial
RGB, and multispectral cameras), a LiDAR sensor, and a single-board computer (Manifold,
DJI, China). For simplicity, the remainder of this paper will use RGB camera to refer
to the industrial RGB camera. Table 1 lists specifications for the sensors. All sensors
were connected mechanically by a sensor bracket, which was designed in CAD software
and fabricated by using a 3D printer. All CAD designs created for this implementation
were open-sourced and can be downloaded from our GitHub (https://github.com/UGA-
BSAIL/UAS_sensor_mount, accessed on 18 June 2021).

https://github.com/UGA-BSAIL/UAS_sensor_mount
https://github.com/UGA-BSAIL/UAS_sensor_mount
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Figure 1. System diagram (A) and mechanical structure (B) of the first version of the data acquisition system.

Sensor brackets (blue part in Figure 2) were printed in ABS plastic using a 3D printer
(uPrint SE Plus, Stratasys, Eden Prairie, MN, USA). Connection brackets (green parts in
Figure 2) are used to connect the DAS to the UAV and were printed in carbon fiber by
using another 3D printer (Markforged Onyx Pro, Markforged, Watertown, MA, USA) to
enhance the strength of connection. Connection brackets have a slide slot which allows
easy attachment and detachment of the DAS to and from the UAV. The DAS also can
be carried by other rotatory UAVs with adequate payload to carry the DAS. Connection
brackets may need to be redesigned to fit the specific drone.

Figure 2. Mechanical structure of the DAS. The left figure is a rendered 3D model, and the right figure is the physical
implemented system.

Each camera is mounted to a bracket; thus, the camera can be individually detached
from the DAS and used as an independent system. This flexibility benefits multiple use
cases, including when only images are needed or only low-payload UAVs are available.
Cameras can be assembled to work horizontally or vertically (Figure 3). Frontward facing
cameras can benefit applications that require a side-looking view of plants, such as imaging
between rows of a vineyard. The vertical mount can be used to acquire nadir views of
plant canopies.
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Figure 3. RGB, multispectral and thermal cameras mounted on a low-payload UAV (Matrice 100, DJI, China). (A) Vertical
mounting. (B) Horizontal mounting.

2.2.1. Electronic Design

The main power (18 V) of the DAS comes from the UAV and directly powers the
single-board computer. A DC-DC converter is used to convert the main power to 12 V
and another DC-DC to convert 12 V to 5 V (Figure 4). The LiDAR is powered at 12 V,
the thermal and multispectral cameras are powered at 5 V, and the RGB camera is powered
at 5 V through the USB port from the single-board computer. The DAS can be powered
with a voltage source from 14 V to 26 V.

Figure 4. Diagram of the electronic connection of the UAS.

The single-board manifold computer, running Ubuntu 14.04 armhf, is used to control
sensors and to acquire data from the sensors (Figure 4). Controlling the RGB and thermal
cameras is achieved through USB and images are transmitted through USB. LiDAR data are
transmitted to the single-board computer through Ethernet. Since the multispectral camera
is an independent system that has its own image processing and storing capabilities, we
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only implemented a trigger function through a GPIO pin to synchronize collection with
other cameras. Complete control of the multispectral camera is also possible by using the
serial and Ethernet interfaces on the camera. The single-board computer can interface with
the UAV through the Universal Asynchronous Receiver/Transmitter (UART) to obtain real-
time flight data (e.g., position and posing of the vehicle). However, additional positioning
hardware (GNSS and IMU) is needed for data post processing if the design incorporates a
UAV platform that cannot output its flight data. The High-Definition Multimedia Interface
(HDMI) port of the single-board computer is connected to the HDMI transmitter on the
UAV so that the user can see the Ubuntu desktop in real-time.

The FLIR Tau 2 camera originally only provided a 50-pin interface that includes a
parallel digital port to output digital data. We designed a circuit based on the Cypress EZ-
USB chip (CY7C68013A, Cypress Semiconductor, San Jose, CA, USA) to convert the parallel
digital output to a USB protocol so that it could interface with the single-board computer
through a USB port. This circuit makes it possible to acquire raw digital radiometric data
from the camera without using a frame grabber. In order to support the calibration of the
thermal camera, ground data including atmospheric conditions (air temperature, humidity,
and air pressure) and temperature of the thermal calibration targets were recorded by using
a customized device. The ground data are transmitted to the single-board computer in real
time through xBee (xBee Pro S1, Digi International, Hopkins, MA, USA).

2.2.2. Software Design

The data acquisition software was implemented by using the Robot Operating System
(ROS) release indigo running on the single-board computer (Figure 5). Implemented nodes
include the following: flir_tau2 (retrieves raw digital images from the thermal camera),
rededge (triggers the multispectral camera), rgb (captures RGB images), and velodyne (obtains
LiDAR data). All cameras are synchronized through the trigger topic. We use the ROS
package dji_sdk provided by DJI to obtain UAV location and pose. The weather_sensor node
is used to receive data from the sensor on the station and to publish atmospheric data as a
ROS topic. Data recordings are conducted by the rosbag node. The rosbag node saves the
sensor data, drone flight data, and weather data to a bag file.

Figure 5. ROS computation graph. Ovals indicate nodes and rectangles indicate topics.

Three data visualization nodes, thermal_display, rgb_display, and pcl_visualization, were
implemented to visualize the RGB image, thermal image, and the LiDAR data. Data
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visualization nodes create a window on the Ubuntu desktop, allowing users to display and
monitor sensor data in real time through radio transmission. In addition, users can check
ROS topics on a ground computer, if the computer and the single-board computer flying
on the UAV are connected to the same wireless network.

3. Camera Calibration
3.1. Geometric Calibration

Geometric calibration included the estimation of geometric parameters of cameras,
which were used to correct for lens distortion. We used the Camera Calibrator app from
MATLAB (MATLAB 2018, MathWorks, Natick, MA, USA) to find calibration parameters for
each camera, including the parameters for the camera’s intrinsic matrix, radial distortion
model (Equation (1)), and tangential distortion model (Equation (2)) [36]:[

xdistorted
ydistorted

]
= (1 + k1r2 + k2r4 + k3r6)

[
x
y

]
(1)

[
xdistorted
ydistorted

]
=

[
x
y

]
+

[
2p1xy + p2(r2 + 2x2)
p1(r2 + 2y2) + 2P2xy

]
(2)

where r =
√
(x− xp)2 + (y− yp)2 is the distance between the pixel (x, y) to the principal

point (xp, yp), k1, k2, k3 are radial distortion coefficients of the lens, and p1, p2 are tangential
distortion coefficients of the lens.

In order to calibrate the RGB and multispectral cameras we used a chessboard pattern
printed on white paper. Two tungsten halogen lamps were used for the multispectral
camera to provide additional light sources for the NIR band. For the thermal camera,
a chessboard pattern was printed using a poster printer. The difference in emissivity
between the ink and the paper was used to create the pattern when collecting thermal
images, and four heat lamps were used to heat the printed chessboard in order to enhance
the definition of the pattern. The grid size of the chessboard is 21 mm× 21 mm for the
RGB and multispectral cameras and 110 mm× 110 mm for the thermal camera. A larger
chessboard pattern was used for the thermal camera because that camera needs to collect
images at a larger distance for images to be in focus. Each camera was used to collect ten
images from different angles.

3.2. Vignetting Calibration

Vignetting is an effect of the radial falloff of intensity from the center of the im-
age, including natural vignetting, pixel vignetting, optical vignetting, and mechanical
vignetting [37]. There are two methods to model the vignetting effect. The first method
models vignetting (V(x, y)) as a high order polynomial (Equation (3)) and assumes zero
vignetting effect (V(xv, yv) = 1) at the center of vignetting (xv, yv):

V(x, y) = V(r) = 1 + α1r + α2r2 + α3r3 + α4r4 + α5r5 + α6r6 (3)

r =
√
(x− xv)2 + (y− yv)2 (4)

where r is the distance of the pixel from the center of vignetting, and α1 to α6 are the
model parameters.

The second method models the vignetting effect as a look up table that stores the
correction coefficients for each pixel. The second method can provide more accurate results,
but it requires multiple tables for different camera settings. Since the first method is simple
to implement and has been considered effective, it was chosen to model the vignetting of
the multispectral camera.

In order to calculate model parameters, we measured the vignetting effect by imaging
a scene with uniform luminance. For the multispectral camera, we used an integrating
sphere to create such a scene. The setup of the integrating sphere is similar to [38], but we
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added a Teflon sheet to cover the exit port so the light could be more evenly distributed
after passing the Teflon sheet. A black body was used for the same purpose for the thermal
camera. We collected ten images for each camera and used the mean image to find the
model parameters. The parameters (xv, yv and α1 to α6) were estimated using least squares
fitting. The value of V(x, y) for fitting the model is the raw pixel intensity subtracting the
black level and normalized against the pixel intensity at the center of vignetting.

4. Data Processing
4.1. Overall Pipeline

The data processing pipeline includes data preprocessing and phenotypic traits ex-
traction (Figure 6). Data preprocessing calibrates images, generates georeferenced or-
thomosaics, and creates 3D models. Several phenotypic traits can be extracted using
the preprocessed data, including canopy morphological traits, canopy vegetation index,
and canopy temperature. Data preprocessing can partially be performed by the computer
onboard the UAV in real time, which helps with field decisions and coordination with
personnel and ground robots. We implemented software for online image geometric correc-
tion for the thermal and RGB images. We used Metashape (Metashape Professional 1.6.4,
Agisoft, St. Petersburg, Russia) and Python to process images offline.

Figure 6. Overall data processing pipeline.
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4.2. Data Preprocessing
4.2.1. Vignetting Correction

Vignetting correction was performed using the vignetting model obtained from
the vignetting calibration. The corrected image intensity (Icorrected) is calculated using
Equation (5) from the original image intensity (I), the sensor black-level (BL), and the
vignetting correction factor (V) [37]. For the multispectral image, the vignetting correction
is integrated as a part of the radiometric calibration.

Icorrected(x, y) =
I(x, y)− BL(x, y)

V(x, y)
(5)

4.2.2. Geometric Correction

The geometric correction was performed using the coefficients of the lens distortion
model obtained from the geometric calibration. For the RGB and the thermal cameras, we
used the image_geometry package coded in the ROS nodes. The calibrated images were
published as rgb/rect_image and flir_tau2/rect_image topics.

4.2.3. Multispectral Image Calibration

Raw multispectral images were processed to compute reflectance of ground objects.
Processing included three steps: radiometric calibration, sunlight intensity correction,
and reflectance calculation. Radiometric calibration was used to convert raw digital values
of the multispectral image to absolute spectral radiances. The radiometric calibration model
provided by MicaSense (https://support.micasense.com/hc/en-us/articles/115000351194-
RedEdge-Camera-Radiometric-Calibration-Model, accessed on 1 October 2020) was used
to compensate for sensor black level, the sensitivity of the sensor, sensor gain and exposure
settings, and optical vignetting effects (Equation (6)):

L(x, y) =
1

V(x, y)
· a1

g
· p(x, y)− pBL

te + a2y− a3tey
(6)

where L is the absolute spectral radiance value in W m−2 sr−1 nm−1, V is the correction
factor from the vignetting model, p is the normalized raw pixel value, pBL is the normalized
black level value, a1 to a3 are the radiometric calibration coefficients that can be obtained
from the image metadata, te is the image exposure time, g is the sensor gain setting, y is the
row number, and (x, y) is the pixel position.

After radiometric calibration, radiance values for each multispectral image were
corrected against incident sunlight; thus, radiance values from different images represent
the same illumination conditions. The intensity of the sunlight was measured using the
downwelling light sensor provided by MicaSense.

In order to account for changes in illumination during flights, a calibrated reflectance
panel (MicaSense, Seattle, WA, USA) was imaged before and after each flight. Average
values of radiance for pixels collected over the panel area were then linearly interpolated
over time to compute a reflectance calibration factor for each spectral band. In order
to compute reflectance bands, radiometrically calibrated bands representing radiance
values were multiplied by reflectance calibration factors. Following the implementation
of image calibration procedures in Metashape, we directly used Metashape’s reflectance
calibration function to compute reflectance.

4.2.4. Thermal Image Calibration

The accuracy of temperature values derived from thermal images largely depends
on how much environmental effects during acquisition can be compensated using image
processing. In particular, environmental effects can be significant when objects are far from
the camera and when atmospheric contributions increase.

https://support.micasense.com/hc/en-us/articles/115000351194-RedEdge-Camera-Radiometric-Calibration-Model
https://support.micasense.com/hc/en-us/articles/115000351194-RedEdge-Camera-Radiometric-Calibration-Model
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According to the Stefan–Boltzmann law, the total radiation emitted by the object is
expressed as Equation (7):

B(T) = ε · σ · T4 (7)

where ε is the emissivity, and σ is the Stefan–Boltzmann constant (5.67× 10−8 W m−2 K−4).
T is the absolute temperature (K).

The total radiation received by the thermal camera (Wsensor) consists of emission of the
object (Eobj), the emission of the surroundings and reflected by the object (Ere f l), and the
emission of the atmosphere (Eatm) (Equation (8)) [39].

Wsensor = Eobj + Ere f l + Eatm (8)

Wsensor can be expressed as follows:

Wsensor = σ · T4
sensor (9)

where Tsensor is the apparent temperature provided by the thermal camera by setting the
emissivity of the object to 1 and distance to 0.

Since the surface radiance is received partially by the camera and some is absorbed by
the atmosphere, Eobj can be expressed as Equation (10) as a function of the transmittance of
the atmosphere (τ) and the object’s temperature (Tobj).

Eobj = τ · ε · σ · T4
obj (10)

Ere f l is the reflected radiation of the surroundings (which is the downwelling atmo-
sphere radiation), and it is partly absorbed by the atmosphere. Thus, Ere f l can be expressed
as the following equation using the reflected apparent temperature (Tre f l),

Ere f l = τ · (1− ε) · σ · T4
re f l (11)

Eatm is the emission of the atmosphere that reaches the thermal camera, which is the
upwelling atmosphere radiation. It can be expressed as the following equation:

Eatm = εatm · σ · T4
atm = (1− τ) · σ · T4

atm (12)

where Tatm is the temperature of the atmosphere (air temperature), and (1 − τ) is the
emissivity of the atmosphere.

Equation (13) can be used to retrieve the temperature of the object and results from
combining Equations (8)–(12).

Tobj =
4

√
T4

sensor − τ · (1− ε) · T4
re f l − (1− τ) · T4

atm

τ · ε (13)

In order to solve Equation (13), the transmittance of the atmosphere, the emissivity of
the object, the air temperature, and the reflected apparent temperature need to be supplied.
The air temperature can be measured by a temperature sensor. The reflected apparent
temperature can be indirectly measured by measuring the apparent temperature of an
aluminum plate or directly measured by measuring the sky’s apparent temperature using
an infrared thermometer.

The transmittance of the atmosphere (τ) is estimated using the water vapor content
(WVC) and flight height above the ground (distance) with the following equation [40]:

τ = Katm · exp
[
−
√

d
(
α1 + β1

√
ω
)]

+ (1− Katm) · exp
[
−
√

d
(
α2 + β2

√
ω
)]

(14)

where ω is the water vapor content (mm), d is the distance (m), and Katm = 1.9 is the scale
factor of atmospheric damping. α1 = 0.0066 and α2 = 0.00126 are the attenuation of the
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atmosphere without water vapor, and β1 = −0.0023 and β2 = −0.0067 are the attenuation
of water vapor. The WVC can be estimated using the air temperature and humidity using
the following equation [40]:

ω = ω% · exp
(

h1 · T3
a + h2 · T2

a + h3 · Ta + h4

)
(15)

where ω% is the relative humidity (ranging from 0 to 1; dimensionless), Ta is the air
temperature (°C), h1 = 6.8455× 10−7, h2 = −2.7816× 10−4, h3 = 6.939× 10−2, and
h4 = 1.558 [40].

It has been reported that the emissivity of vegetation ranges from 0.96 to 0.99, while
the emissivity of soils is around 0.98 [41,42]. The inaccuracy in emissivity can result in
temperature errors of up to several degrees Celsius [43], and in this study we estimated
emissivity of vegetation canopy and soil using the Normalized Difference Vegetation Index
(NDVI), as proposed by [44].

The contribution of Ere f l and Eatm to Wsensor is different under different atmospheric
conditions. Equations (14) and (15) show that higher air temperatures, humidity, and flight
altitude result in lower transmittance of the atmosphere, which makes Eatm contribute
more to Wobj. In other words, the error of Tatm contributes more to the error of Tobj at lower
atmospheric transmittance. Tre f l contributes more when the object has lower emissivity,
which means that the error of Tre f l has more effect on the error of Tobj for objects with lower
emissivity. Since vegetation and soil have emissivity close to one, the effect of Ere f l is small
relative to the measurement of their real temperature.

In order to assist the thermal calibration and validate temperature estimates, we
made two thermal calibration targets and a customized device to record atmospheric
conditions, including air temperature, air pressure, and humidity (Figure 7). Similar
to other studies, the calibration target was made from a 0.6 m× 0.6 m aluminum plate
for which its top surface was painted using flat paint, and the back was covered by
polystyrene insulation foam [35]. The edge of the plate was wrapped with aluminum
tape to assist auto-detection of the target. One target was painted in white to create a
low-temperature reference (cold target), and the other target was painted in black to create
a high-temperature reference (hot target). The top surface temperature of the targets was
measured by a resistance temperature detector (RTD) (700-102AAB-B00, Honeywell, NC,
USA) attached to the back of the aluminum plate. Emissivity calculation used the reference
temperature method [43], and emissivities were 0.968 (white paint) and 0.984 (black paint).
A thermal camera pointing upward was used to measure the reflected temperature. All
ground measurements can be transmitted to the DAS through xBee in real time and be
used to calibrate the thermal images.

Figure 7. Thermal calibration targets. The customized device to record atmospheric conditions
(highlighted by red rectangle) was mounted between the calibration targets.
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4.2.5. LiDAR Data Processing

LiDAR scans can be assembled into point clouds using the scans’ position and pose
in the East North Up (ENU) frame. RTK-GNSS or PPK-GNSS and IMU should be used to
measure the accurate position and posing of the platform/sensor; thus, LiDAR scans can
be assembled accurately. Since the current UAS does not have an RTK-GNSS and IMU,
the LiDAR data were not used in this study. However, the LiDAR data processing was
integrated as part of the overall data processing pipeline and is ready for the additional
positional and attitude data, for example, by using an RTK-GNSS and IMU to obtain the
precise location and orientation of each LiDAR scan [45].

4.2.6. Orthomosaics and 3D Model

Agisoft Metashape and Structure from Motion (SfM) techniques were used to process
RGB images collected by individual UAS flights and to generate orthomosaics, 3D point
clouds, and digital surface models (DSM) for each camera.

4.2.7. Data Registration

Data registration includes the registration of the orthomosaics from different cameras
and the registration of the orthomosaics and the LiDAR data. In this project, the registration
of orthomosaics is based on positional information stored with those products, including
coordinates, spatial resolution, and projection. The accuracy of the registration will depend
on the quality of this information and should increase when high-accuracy GNSS and
ground control points (GCPs) are incorporated into data acqusition and processing.

Since different orthomosaics have different ground sampling distances (GSD), pixel-
wise registration between two orthomosaics requires resampling one orthomosaic to a
larger or smaller GSD in order to match the orthomosaic being used as reference. If dif-
ferences in spatial resolution are considerable, downsampling to a coarser GSD can in-
volve substantial loss of information. Conversely, upsampling can introduce unrealistic
representations of detail to a scene. Considering the characteristics of the cameras incorpo-
rated into our system, for pixel-wise registration, higher-resolution orthomosaics (those
derived from RGB images) were downsampled to spatially match the lower-resolution
thermal orthomosaics.

4.3. Extraction of Phenotypic Traits

Multiple phenotypic traits can be extracted from data captured by the integrated
cameras and LiDAR sensor. Basic traits can be extracted directly following data prepro-
cessing, including vegetation indices (VI) derived from multispectral images and canopy
temperature (CT) derived from thermal images, as well as morphological traits such as
canopy height (CH), canopy cover (CC), and canopy volume (CV). More complex traits,
such as biomass and water stress, are out of the scope of this paper but can be obtained
from the basic traits using regression models [12,21]. A program was created to extract
phenotypic traits automatically by using QGIS 3.10 and Python 3. The extracted traits were
saved to a csv file and visualized in QGIS.

4.3.1. Plot Segmentation

Data collected for an entire field were partitioned into individual plots using a plot
layout map. Data for each plot contained 2D images and a 3D model of the plot. Since each
plot can be observed by several UAV images, a plot can have multiple plot images, including
images extracted from the orthomosaics. Images from different view angles can provide
additional information about the plot and can, for instance, support the detection of fruits
and flowers [11].

The 3D model for each plot was normalized against the ground level to create a
plot height model; thus, the height of data points represented the height above ground.
A 2D plane representing the ground level can be found by fitting the plot model using the
Maximum Likelihood Estimation Sample Consensus (MLESAC) [46]. If the plot model
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does not have enough ground points due to high canopy closure, the ground plane can be
represented by a bare ground model or the Digital Elevation Model (DEM) collected before
plants germinated [12]. In this case, additional data collection and accurate georegistration
between the bare ground model and the plot model are required. Following estimation,
the ground level was subtracted from the plot model to represent height above ground.

4.3.2. Canopy Segmentation

Each plot was segmented in order to isolate and extract canopy specific metrics repre-
senting phenotypic traits. The segmentation result is a canopy mask generated from the
2D plot image or a canopy model generated from the plot height model. Color, spectral,
and height differences between the canopy and ground can be used for the segmenta-
tion [20]. In this study, the thresholding method was verified to adequately segment
canopies by using an RGB image and the 3D model for the plot. Other methods, such as
deep neural networks and including Mask R-CNN, may offer segmentation improvements
but they are out of this paper’s scope.

4.3.3. Morphological Traits

Morphological traits are important phenotypic traits that are often related to plant
growth status. For example, canopy height and volume can be used to quantify cotton
biomass, which is correlated with yield. This work computed two morphological traits
(canopy height and canopy volume) for each plot.

Canopy Height

Canopy height was calculated using the canopy model. Strategies for canopy height
computation vary and some studies use an average or median canopy height to represent
the height of the crop. This approach is suitable for crops whose canopy are evenly
distributed, such as barley and wheat [12,16,47]. Other studies have used a percentile of
the canopy height to represent the height of the canopy, which can reduce the effect of
uneven distribution of the canopy [15,48]. This study used an exploratory approach and
combined both strategies to calculate canopy height using the average, maximum, median,
and 50th to 99th percentiles with a 10th interval.

Canopy Volume

The canopy model was used also to compute canopy volume, represented by the
volume of the mesh that encloses the 3D canopy model. The mesh can be found using
a convex hull algorithm. However, since canopy models generated by aerial images or
LiDAR usually lack information below the canopy surface, computing volume directly
from the mesh can underestimate the canopy. Instead, we proposed to calculate the 2.5D
volume as the canopy volume. The canopy model was first converted to a depth image for
which its intensity represented height, and then the 2.5D volume of the depth image was
calculated using Equation (16):

CV = ∆x∆y ∑
i

∑
j

di,j (16)

where ∆x and ∆y are the ground sample distances, and di,j is the depth of the pixel.

Canopy Cover

Canopy cover is defined as the ratio of the vertical projected area of the canopy to the
area of the plot. After segmenting the canopy, the area of the canopy can be calculated as
the ratio of the pixel area of the canopy mask to the pixel area of the plot.

4.3.4. Vegetation Indices

Multiple indices have been proposed in the literature to describe vegetation status
and processes based on multispectral data [49]. In this paper, we characterized field plots
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by calculating one widely used vegetation indices: the Normalized Difference Vegetation
Index (NDVI). For each plot, a representative vegetation index value was calculated by
averaging all vegetation indices for the area covered by the canopy.

4.3.5. Canopy Temperature

Canopy temperature was calculated using values extracted from the thermal orthomo-
saic that correspond to each plot area. Similarly to the computation of vegetation indices,
canopy temperature was calculated as the average temperature within the canopy for each
individual plot.

5. Data Collection
5.1. Testing Field

Tests of the data collection platform were conducted using a cotton field located on
a university research farm in Watkinsville, Georgia, United States. The field comprised
of 96 plots arranged in 8 columns and 12 rows (Figure 8). The length of each plot was
approximately 3 m, and there was a 1.5 m long alley between the plots. The distance
between the crop rows was 1.8 m.

Figure 8. Testing field layout.

5.2. GCP Deployment and Field Mapping

The testing field was prepared prior to data collection in order to facilitate collections
throughout the growing season, as well as data processing and analyses in the office.
First, in order to improve the accuracy of the georeferencing of the orthomosaic, ground
control points (GCPs) were deployed in the field. GCPs were ground targets with known
coordinates and that had a distinct pattern that allowed for easy identification in images.
Some photogrammetry software, Metashape included, provide GCP patterns that can
be identified automatically by the program. In this study, we made two types of GCPs:
(a) GCP in black and white for RGB and multispectral cameras and (b) GCP for thermal
camera. For the RGB and multispectral cameras, we used 12-bit circular coded targets
generated by Metashape as GCP patterns (Figure 9). The patterns were made of black vinyl
sheet and pasted onto a white acrylic panel. The size of the acrylic panel was 0.6 m× 0.6 m,
and the center point radius of the circular coded target was 30 mm. GCPs for the thermal
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camera were made of 0.8 m× 0.8 m wood panels. The panels were evenly divided into
four quadrants with two opposite quadrants painted in black and the other two covered by
aluminum tape (Figure 9). Due to the distinct emissivities of the black paint and aluminum,
GCPs for the thermal camera could be easily identified in thermal images. For our test field,
we used nine GCPs for the RGB and multispectral collections, and the GCPs were fixed
in the field throughout the growing season. The GCPs were raised above the ground to
avoid being covered by the weeds and plants. Coordinates for those GCPs were measured
periodically over the season using an RTK-GNSS to account for unintended movement
of GCPs by farm operations during the season. For the thermal collections, we used six
GCPs, which were deployed in the field during UAV operations as the GCPs were not
weather proof. Coordinates for the thermal GCPs were obtained from the georeferenced
RGB orthomosaic.

Figure 9. GCPs in the field, including GCP for RGB and multispectral cameras (left) and GCP for
thermal camera (right).

In addition to GCP deployment, we conducted a flight prior to plant emergence to
map the testing field. Pre-collection mapping of a field site was a key step of our workflow
and supports data processing by the following: (a) producing a plot layout map used
for plot segmentation and (b) allowing for the generation of a bare ground model. Field
mapping was performed one week after planting.

5.3. Flight Path Planning

Most UAVs are equipped with autopilot and can fly planned flight paths. To plan our
flights, we paid particular attention to flight height above ground and percentage of image
overlap. Flight height affects the ground resolution of aerial images and the size of image
footprints. Image overlap (forward and side overlap) affects the quality of image stitching
and 3D reconstruction, being a function of flight height, flight speed, image recording
frequency, and flight path configuration. Within the same flight path, lower flight height,
faster flight speed, and/or lower image recording frequency results in lower forward
overlap. Conversely, higher forward overlap can be obtained by increasing flight height,
by reducing flight speed, and/or by increasing image recording frequency. Side overlap
can be increased by increasing flight height and/or by reducing the distance between flight
lines. In addition, image overlap can be increased by using a cross-stitch flight pattern [50].

Lower flight height and higher image overlap can effectively increase image resolution
and the quality of image stitching and 3D reconstruction. On the other hand, these settings
increase flight time and result in a larger number of images being collected, which increases
data processing time. Considering the above, we proposed a general multi-step decision-
making process to balance flight height, flight speed, and image overlap. First, we selected
the appropriate flight height based on the desired aerial image resolution. Second, we
define the side overlap percentage. One study suggested that side overlap should be at least
67% to obtain complete 3D reconstruction for forest [51]. Based on our experience, a good
range of side overlap is 70% to 80% considering flight time, area coverage, and processing
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time. Following the definition of flight height and side overlap, a flight path can be
generated. The final step is to decide the forward overlap and flight speed. Higher forward
overlap can result in more complete and better quality 3D reconstructions [51]. We suggest
a forward overlap from 80% to 90%. Flight speed is defined considering that the camera
should not move more than half the Ground Sampling Distance (GSD) during exposure to
avoid motion blur. As a result, flight speed should be smaller than ph

2Te f , where p is the pixel
pitch, h is the flight height, Te is the exposure time, and f is the focal length. For example,
the flight speed for the RGB camera used by our system should not exceed 8 m/s at 25 m
flight height and 1 ms exposure time. A higher flight speed can be used with a smaller
exposure time without increasing the flight height (or GSD) and creating blurry image.

5.4. Flight Campaign

A DJI Matrice 600 equipped with the second version of the DAS was used for data
collection. Pixel4Dmapper was used to generate the flight path and control the UAV.
The flight path was generated considering a 25 m flight height above the ground, 70%
side overlap, and 90% forward overlap (Figure 10). The speed of the drone was set at
1 m/s. The flight path was calculated based on the specifications of the thermal camera,
considering that camera has the smallest field of view among all the cameras used. This
choice resulted in higher image overlap for the RGB and multispectral cameras. Due to
the DJI Manifold’s limited data saving speed, the camera triggering frequency was set to
0.5 Hz to avoid data loss, although both the RGB and the thermal cameras support much
higher trigger frequency.

The flight campaign was performed on 1 October 2020 at 2:30 p.m. The weather was
sunny, with an average wind speed of 1.5 m/s. The reflectance target for the multispectral
camera was imaged before and after the flight. The thermal calibration targets were
mounted on a mobile robot that moved along the west border of the field so that the
thermal calibration targets could be imaged multiple times by the thermal camera during
the flight (Figure 10). The thermal calibration targets were imaged nine times during
the collection.

Figure 10. Flight path recorded by the UAV during data collection. Distance between horizontal flight paths is 3.3 m.
Direction of movement of thermal calibration targets is also indicated (left).
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5.5. Ground Data Collection

Ground data were manually collected for one crop row in the field simultaneously to
the flight campaign and were used as reference to validate the extracted traits from images.
The height of each plant was manually measured by using a ruler, and the average canopy
height and maximum canopy height were then calculated for each plot as the average and
maximum height of the plants within the plot. Ground measurements of NDVI used a
handheld NDVI sensor (GreenSeeker, Trimble, Sunnyvale, CA, USA) and we calculated
canopy NDVI for each plot as the average of four NDVI measurements conducted at
different locations inside the plot. Temperature measured by the thermal calibration targets
was used as ground reference for the targets’ surface temperature and was compared with
the temperature measured by the thermal camera. Similarly, canopy height and canopy
NDVI resulting from manual measurements were compared to corresponding values
derived from aerial images. The mean absolute error (MAE) (Equation (17)) and mean
relative error (MRE) (Equation (18)) were used to evaluate deviations from measurements
(ground reference).

MAE =
1
N

N

∑
i=1

∣∣UAV derivedi − ground referencei
∣∣ (17)

MRE =
1
N

N

∑
i=1

∣∣UAV derivedi − ground referencei
∣∣

ground referencei
(18)

6. Results
6.1. Camera Calibration
6.1.1. Camera Geometric Distortion

Table 2 shows the cameras’ intrinsic parameters and the parameters of the distortion
models. The multispectral camera’s nominal focal length is 5.4 mm, but the focal lengths
over the five bands ranged from 5.469 mm in the red band to 5.513 mm in the green band.
The RGB camera’s and the thermal camera’s focal lengths are very close to their nominal
focal length (5 mm and 25 mm, respectively). For the multispectral camera, the NIR band
has the largest offset of the principal point from the origin (central pixel). The thermal
camera’s principal point also has a large offset from the origin in the y-axis. The total
distortion (combination of radial and tangential distortions) of the three cameras is shown
by Figures 11 and 12. The three cameras have low distortion, and the distortion is only
noticeable near the border of the image.

Table 2. Camera calibration parameters for the RGB, multispectral, and thermal cameras.

RGB
Camera

Multispectral Camera Thermal
CameraBlue Green Red RedEdge NIR

Focal length (mm) 5.004 5.470 5.513 5.469 5.477 5.499 25.099
xp (mm) 0.072 0.036 0.041 0.023 0.028 0.049 −0.049
yp (mm) 0.020 0.061 0.000 −0.045 −0.015 0.098 −0.240

Skew angle (rad) 8.26 × 10−4 −1.00 × 10−3 −1.87 × 10−3 −7.75 × 10−4 −1.14 × 10−3 −5.82 × 10−4 −3.12 × 10−3

K1 −5.42 × 10−2 −9.78 × 10−3 −9.85 × 10−3 −2.61 × 10−2 −8.10 × 10−3 −1.09 × 10−2 −3.27 × 10−1

K2 1.08 × 10−1 −1.57 × 10−1 −1.27 × 10−1 −5.42 × 10−2 −2.61 × 10−1 −7.20 × 10−2 1.77 × 100

K3 −4.44 × 10−2 −4.38 × 10−1 −3.90 × 10−1 −4.66 × 10−1 1.71 × 10−1 −8.09 × 10−1 −3.61 × 101

P1 −1.34 × 10−3 2.08 × 10−3 5.72 × 10−4 −1.55 × 10−3 −2.10 × 10−3 6.55 × 10−5 8.50 × 10−3

P2 1.25 × 10−3 5.86 × 10−5 2.76 × 10−3 1.95 × 10−3 7.78 × 10−4 1.64 × 10−3 6.73 × 10−4
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Figure 11. Geometric distortion of the five bands of the multispectral camera. The orange cross indicates the image center.
The red circle indicates the principal point. Contour lines indicate distortion in pixels. Arrows indicate the magnitude and
direction of the distortion.

In practice, camera distortion optimization is usually part of the bulk bundle adjust-
ment of the photogrammetry process for image stitching and 3D reconstruction. Thus,
it is unnecessary to perform the correction separately. However, the model parameters
in Table 2 can be used as initial values for the camera distortion optimization in the pho-
togrammetry process.
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Figure 12. Geometric distortion of the RGB and thermal camera. The orange cross indicates the image center. The red circle
indicates the principal point. Contour lines indicate distortion in pixels. Arrows indicate the magnitude and direction of
the distortion.

6.1.2. Camera Vignetting

Figure 13 shows vignetting for images collected by the multispectral camera, where
image centers are brighter than borders. Measured and modeled vignette show that each
image band is affected differently by vignetting, as a function of their individual lens
system and aperture. The correction of vignetting is, thus, conducted on a per-band basis,
and the results of vignette correction are also shown by Figure 13.

Figure 13. Measured vignette, modeled vignette, and results of vignetting correction for each band of the multispectral camera.

The vignetting pattern for the thermal camera was comparable to the pattern observed
for the multispectral camera (Figure 14). However, unlike the multispectral camera, for
which vignetting mainly results from optical properties of the lens, the vignetting of
an uncooled thermal camera can be caused by differences in response to irradiance by
each detector element, which depends on ambient temperature and the temperature of
the detector. To address vignetting of thermal images, multiple vignetting correction
models need to be created for different ambient temperatures. Effects of vignetting on
temperature estimates for pixels near the edge of images can be significant, as temperature
for those pixels can be offset by up to 3 °C [52]. In this study, we did not perform vignetting
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correction for the thermal camera. Instead, we discarded pixels close to edges and measured
temperature by using only the central portion of images (within a distance of 100 pixels
from the optical center). A more thorough study addressing corrections of vignetting effect
for the thermal camera is planned for future work.

Figure 14. Vignetting effect of the thermal camera. The color bar indicates the temperature in degree
Celsius.

6.2. Data Preprocessing
6.2.1. Accuracy of the Thermal Camera Calibration

During the data collection flight, the air temperature and humidity varied from
28.3 °C to 31.7 °C and from 35.7% to 40.5%, respectively (Figure 15). Conditions resulted
in high transmittance of the atmosphere (mean = 0.9249, standard deviation = 0.0011) and
resulted in little impact of upwelling atmosphere radiation on thermal images. After image
calibration, temperatures of the two calibration targets derived from thermal images were
highly correlated with temperatures measured by the RTD sensor, and pre-calibration MAE
(6.62 °C) was significantly reduced to 1.02 °C (Figure 16).
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Figure 15. Atmospheric conditions recorded by the weather station on the ground during the flight. The transmittance of
the atmosphere was estimated by using Equation (14).
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highly correlated with temperatures measured by the RTD sensor and pre-calibration MAE
(6.62 °C) was significantly reduced to 1.02 °C (Figure 16).
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Figure 15. Atmospheric conditions recorded by the weather station on the ground during the flight. The transmittance of
the atmosphere is estimated using Equation (14).
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Figure 16. Correlation between image-derived temperatures (Timage) and temperatures measured by
the RTD (TRTD) for the thermal calibration targets.

6.2.2. Results of Orthomosaic Generation

We used GCPs and image locations provided by the UAV as input to Metashape to
successfully generate georeferenced orthomosaics for RGB, multispectral, and thermal
images (Figure 17). To ensure adequate spatial resolution and to facilitate overlay and
comparisons the GSD of processing outputs were set to 0.016 m for all cameras. The RGB
camera had the largest FOV, followed by the multispectral camera and the thermal camera.
Resulting from the larger FOV of the RGB camera, the RGB orthomosaic had the largest
ground coverage and included areas outside the cotton field. When preparing flights,
the FOV of the RGB camera can be reduced by increasing the camera’s focal length. This
results in reduced GSD without losing the coverage of the field.

Figure 16. Correlation between image-derived temperatures (Timage) and temperatures measured by
the RTD (TRTD) for the thermal calibration targets.

6.2.2. Results of Orthomosaic Generation

We used GCPs and image locations provided by the UAV as input to Metashape to
successfully generate georeferenced orthomosaics for RGB, multispectral, and thermal
images (Figure 17). In order to ensure adequate spatial resolution and to facilitate overlay
and comparisons, the GSDs of processing outputs were set to 0.016 m for all cameras.
The RGB camera had the largest FOV, followed by the multispectral camera and the thermal
camera. Resulting from the larger FOV of the RGB camera, the RGB orthomosaic had
the largest ground coverage and included areas outside the cotton field. When preparing
flights, the FOV of the RGB camera can be reduced by increasing the camera’s focal length.
This results in reduced GSD without losing the coverage of the field.
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Figure 17. Overlay of UAV-derived orthomosaics, including RGB (background), temperature (section of mosaic; light yellow
to black), and NDVI (section of mosaic; light green to dark green). Zoom-in images showing calibration targets, and the
GCPs for the thermal camera are also displayed (bottom right).

6.3. Phenotypic Traits Extraction
6.3.1. Results of the Canopy Segmentation

The performance of canopy segmentation is key to the extraction of phenotypic traits
that depend on the number, size, and location of segments in order to calculate plant and
ground cover metrics. Considering the significant differences in color between canopies
and soil at the field site, a simple thresholding method was able to segment canopies and
to create canopy masks efficiently (Figure 18). For crops with a large canopy, such as cotton,
the plot height model can be used to refine results and to remove weeds that are lower
than a threshold (0.2 m for this study).

6.3.2. Accuracy of the Canopy Height

Canopy height values derived from RGB images were highly correlated with man-
ual measurements. The MAE of maximum canopy height derived from images was
0.1 m and the majority of UAV-based measurements were lower than manual measure-
ments. This is consistent with other studies in which the error associated with canopy
height estimates based on photogrammetric methods is within the range of 0.07 m to 0.1 m
(Figure 19) [15,16,20]. Errors linked to canopy height estimates largely depend on the accu-
racy of the DSM, which is affected by the spatial resolution of images. Incorrect detection
of the ground plane can also result in large errors when generating the plot height model
and can usually occur under close canopy and little ground exposure. In this case, the bare
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ground model should be used to define the ground plane. Other environmental factors,
such as plant movement because of wind, also contribute to increased error.
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Figure 18. Illustration of a canopy segmentation result. The plot surface model was first subtracted by the ground plane
to derive a plot height model. The canopy mask was generated by thresholding the RGB image and the height model for
the plot.
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Figure 19. Correlation between maximum canopy height derived from images and maximum canopy
height manually measured in the field.
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The 99th percentile canopy height had the smallest MAE compared with the average
of manually measured canopy heights (Table 3), but the median canopy height had the
largest coefficient of determination. It is hard to conclude which statistical metric can better
represent the true plot-level canopy height with such a small validation dataset. The choice
of metric can be dependent on the type of crop being analyzed and should be determined
experimentally by collecting validation data in the field.

6.3.3. Accuracy of the Canopy Vegetation Index

The image-extracted canopy NDVI had an MAE of 0.0518 with an MRA of 6.6%
compared with the ground-measured NDVI. Results show that our workflow can derive
accurate computations of this vegetation index. Other studies have confirmed that the
MicaSense RedEdge camera was able to provide accurate NDVI measurements when
compared to the GreenSeeker sensor [53]. It is noteworthy that multispectral images can
reveal NDVI variations within the canopy, which can be an advantage over point-based
sensors with limited FOVs.

6.3.4. Data Visualization

The extracted phenotypic traits were visualized in QGIS (Figure 20), where polygons
delineate individual plots, and the shade of a color represents a range of values for a given
metric or trait. For instance, those plots with lower vegetation correspond to lower NDVI
and NDRE and higher canopy temperature. The visualization is helpful for researchers
to examine the spatial distribution of the data and to present the results to the general
audience. It also supports interplot comparisons and analyses with other co-located data,
such as those associated with irrigation or use of fertilizers.

Figure 20. Visualization of the extracted phenotypical traits. The 99th percentile canopy height was used to represent the
canopy height.
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Table 3. Comparisons between canopy height derived from images and average canopy height manually measured in
the field. Haverage: average canopy height. Hmedian: median canopy height. Hmax: maximum canopy height. Hnp: n-th
percentile canopy height MAE: mean absolute error. R2: coefficient of determination using linear model.

Haverage Hmedian Hmax H50p H60p H70p H80p H90p H99p

MAE (m) 0.501 0.531 0.100 0.531 0.462 0.395 0.308 0.196 0.060
R2 0.742 0.799 0.691 0.799 0.651 0.543 0.481 0.619 0.766

7. Discussion

UAVs have been used widely for plant phenotyping, and the literature shows a variety
of platforms being used for the calculation of biophysical descriptors based on RGB, ther-
mal, and multispectral cameras. In general, a multi-sensor system is able to collect more
feature-rich data and derive more complex phenotypic traits than a single sensor. For ex-
ample, cotton yield can be estimated more accurately using multiple features extracted
from RGB, multispectral, and thermal images than a single image feature extracted from
a single camera [54]. Different types of sensors can provide complementary information
to improve the accuracy of phenotypic trait extraction. For example, high-resolution RGB
images can support more detailed segmentation of canopies and can more accurately guide
the calculation of canopy temperature from low-resolution thermal images. The downside
of multi-sensor systems is the relatively higher payload requirement when UAVs need to
carry multiple sensors simultaneously. Compared to existing UAV systems, our system
was designed to allow for system customization, considering the need for flexible payload
configurations based on study requirements and potential budget limitations. Each sensor
can be attached to or detached from the UAV system as needed. Our system is not tied
to specific crops and can be used for different fields including row crops and vineyard,
with no specific requirement for the field layout (e.g., row spacing). For example, the UAS
can be used to collect multispectral image to detect tomato spot wilt disease in peanuts and
color images to measure the blueberry bush morphological traits [19,55]. Other potential
applications include forestry and environment monitoring. In order to ensure good image
quality, it is preferred to collect images under uniform lighting conditions, such as a clear
sunny or overcast day. It is also preferred to collect data with no strong wind since the
movement of the crops can affect the accuracy of the 3D reconstruction from images and
LiDAR scans.

We also provided a complete data processing pipeline to calibrate multispectral and
thermal images, to generate registered orthomosaics and 3D models, and to extract basic
phenotypic traits. The basic phenotypic traits can be used to support the computation of
more complex phenotypic traits. For example, morphological traits can be used to monitor
crop growth and estimate the yield. Vegetation indices and canopy temperature can be
used to evaluate the water status of plants. The data processing pipeline used to extract
phenotypic traits was implemented in open-source software Python and QGIS, which
allows for easy integration of other methods and data visualization. The data processing
pipeline can be improved by replacing the commercial software Metashape with open-
source software, such as OpenSfM (www.opensfm.org, accessed on 1 March 2021), to
render it more streamlined.

8. Conclusions

This paper presented a design of a multi-sensor unmanned aerial systems with ROS
that can be used for plant phenotyping and precision crop management. Both laboratory
and field calibration methods were developed and evaluated for the RGB, multispectral,
and thermal cameras with satisfactory results. A data processing pipeline was presented to
derive plot-level phenotypic traits from calibrated images, and it achieved a comparable
performance with other similar studies. The design of the UAS was open-sourced and can
be used by other researchers. We will continue to improve our implementation by adding an
RTK-GNSS and IMU to the system so that LiDAR scans can be correctly registered. A data

www.opensfm.org


Remote Sens. 2021, 13, 3517 26 of 28

management system that integrates data storing, data processing, and data visualization is
also planned for future work.
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