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Abstract: Potassium (K) plays a significant role in the formation of crop quality and yield. Accurate
estimation of plant potassium content using remote sensing (RS) techniques is therefore of great
interest to better manage crop K nutrition. To improve RS of crop K, meteorological information
might prove useful, as it is well established that weather conditions affect crop K uptake. We aimed
to determine whether including meteorological data into RS-based models can improve K estimation
accuracy in rice (Oryza sativa L.). We conducted field experiments throughout three growing seasons
(2017–2019). During each year, different treatments (i.e., nitrogen, potassium levels and plant varieties)
were applied and spectra were taken at different growth stages throughout the growing season. Firstly,
we conducted a correlation analysis between rice plant potassium content and transformed spectra
(reflectance spectra (R), first derivative spectra (FD) and reciprocal logarithm-transformed spectra (log
[1/R])) to select correlation bands. Then, we performed the genetic algorithms partial least-squares
and linear mixed effects model to select important bands (IBs) and important meteorological factors
(IFs) from correlation bands and meteorological data (daily average temperature, humidity, etc.),
respectively. Finally, we used the spectral index and machine learning methods (partial least-squares
regression (PLSR) and random forest (RF)) to construct rice plant potassium content estimation
models based on transformed spectra, transformed spectra + IFs and IBs, and IBs + IFs, respectively.
Results showed that normalized difference spectral index (NDSI (R1210, R1105)) had a moderate
estimation accuracy for rice plant potassium content (R2 = 0.51; RMSE = 0.49%) and PLSR (FD-IBs)
(R2 = 0.69; RMSE = 0.37%) and RF (FD-IBs) (R2 = 0.71; RMSE = 0.40%) models based on FD could
improve the prediction accuracy. Among the meteorological factors, daily average temperature
contributed the most to estimating rice plant potassium content, followed by daily average humidity.
The estimation accuracy of the optimal rice plant potassium content models was improved by adding
meteorological factors into the three RS models, with model R2 increasing to 0.65, 0.74, and 0.76, and
RMSEs decreasing to 0.42%, 0.35%, and 0.37%, respectively, suggesting that including meteorological
data can improve our ability to remotely sense plant potassium content in rice.

Keywords: potassium nutrition; spectral index; machine learning; meteorological factors; opti-
mal model

1. Introduction

Potassium (K) is an essential nutrient for crop growth. Key plant functions involving
K include regulation of stomatal function, enzyme activation, and the formation and
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transport of photosynthate [1]. Thus, K content can affect the yield, quality, and water use
efficiency of crops [2–5]. Meanwhile, the price and utilization rate of K fertilizer is high,
and overfertilization may pollute water resources [6]. Therefore, accurate estimation of K
nutritional status of crops and improving the K fertilizer utilization rate has great potential
for increasing agricultural productivity and environmental sustainability [7,8].

Over the last couple of decades, remote sensing (RS) techniques have been used to
monitor crop K nutrition with the goal of improving fertilizer management (Table 1). Many
of these studies focus on spectral data collected at the leaf [9,10] and canopy [11–22] (in
situ) level. Some studies have been relying on spectral indices that use reflectance readings
in the near-infrared and shortwave infrared to remotely monitor plant K nutrition [9,12–15].
These indices mainly utilized spectral transformation techniques, such as first derivative
(FD) [23] and reciprocal logarithm-transformed spectra (log (1/R)) [24,25], and included
single-band spectral indices (e.g., FD1686 and Log(1/R1337)) and two-band spectral indices
(e.g., ratio spectral index (FD760/FD630) and normalized difference spectral index (NDSI
[FD1430, FD1295])). Other studies have used multiple bands of transformed spectra to build
stepwise multiple linear regression (SMLR) [12,16,17] and partial least-squares regression
(PLSR) models [11,15,18–22] to estimate crop K nutrition. The spectral index approach is
simple and often only requires two spectral bands. In contrast, machine learning (PLSR)
requires multiple bands but might provide more reliable K estimates.

Table 1. Summary of the literature on estimating vegetation potassium nutrition with different remote sensing methods.
Leaf, straw, and plant potassium content are expressed in %.

References Species Spectral Range Related to Method Accuracy (RMSE, %)

[16]

Mopane (Cholophospermum
mopane) Olive (Olea europaea

L.) Willow (Salix cinera L.)
Heather (Calluna vulgaris L.)

350–2490 nm LKC SMLR (R)
SMLR (FD)

0.134
0.117

[12] Graminoids 450–900 nm PKC
R780/R650,

FD760/FD630
SMLR (R/FD)

0.232/0.208
0.251/0.219

[18] Rice (Oryza sativa L.)
Wheat (Triticum aestivum L.) 1100–2500 nm SKC PLSR (Log (1/R)) 0.235

[14] Graminoids 350–2500 nm PKC NDSI (R523, R583) 0.450

[15] Wheat (Triticum aestivum L.) 350–2500 nm PKC
NDSI (R1645, R1715)
NDSI (R870, R1450)

PLSR (R)

0.194
0.222
0.197

[13] Litchi (Litchi chinensis Sonn.) 350–2500 nm LKC FD1686,
Log(1/R1337) 0.0024/0.0022

[21] Graminoids 420–2400 nm PKC PLSR (R/FD/
(Log (1/R)) 0.490/0.500/0.530

[17] Graminoids 325–1075 nm PKC SMLR (R) 0.055

[22] Loblolly pine (Pinus taeda L.) 350–2500 nm LKC PLSR (R/FD) 0.130/0.110

[20] Maize (Zea mays L.)
soybean (Glycine max L.) 550–1700 nm LKC PLSR (R) 0.41

[11] Maize (Zea mays L.) 400–2500 nm LKC PLSR (R) 0.301

[9] Rice (Oryza sativa L.) 350–2500 nm LKC NDSI (R1705, 1385)
NDSI (FD1430, 1295)

0.173
0.151

Note: SKC = straw potassium content, LKC = leaf potassium content, PKC = plant potassium content, R = reflectance, FD = first derivative
spectra, Log (1/R) = reciprocal logarithm-transformed spectra, SMLR = stepwise multiple linear regression, PLSR = partial least-squares
regression, and NDSI = normalized difference spectral index.
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Machine learning (ML) is a large class of non-linear data-driven algorithms employed
mainly for pattern recognition, data mining, and regression tasks. ML algorithms do
not require certain assumptions (e.g., normal distribution) as opposed to statistical ap-
proaches [26]. Therefore, ML is increasingly used for monitoring and mapping agricultural
systems [26–38]. This study will employ two types of machine learning methods (i.e., PLSR
and random forest (RF)) for rice plant potassium content estimates. Though previous
remote sensing studies show that RS might provide some valuable information about
crop K status, the accuracy of such information might be further improved by including
meteorological information.

Indeed, changes in meteorological factors can affect K nutrition in crops. For example,
Hao et al. [39] found that rising temperatures increased K accumulation of soybean (Glycine
max L.). Similarly, Wang et al. [40] showed that the increase in temperature improved the
plant K nutrition accumulation of rice (Oryza sativa L.). Yin et al. [41] showed that higher
daily average temperature, total precipitation and potential evaporation increased the
demand for potash fertilizer in rice. Nieves-Cordones et al. [42] summarized that drought
stress would enhance K cation uptake in crop leaves to improve osmotic adjustment and
retain water within cells. In addition, precipitation controls over soil moisture may affect
passive transport of soil K ions as they transfer from root to leaf to regulate the osmotic
potential of guard cells. This process helps to regulate stomatal opening and ultimately
affects transpiration rates to retain water [43–45].

To consider the important effect of meteorological factors on plant growth, meteoro-
logical variables have been incorporated into RS-based models to improve the estimation
accuracy of crop yield and biochemical parameters [46–49]. For example, Ramoelo et al. [49]
found that using non-linear PLSR to combine RS and meteorological data could effectively
improve the estimation accuracy of nitrogen (N) and phosphorus (P) content in graminoid
leaves. Similarly, Gao et al. [47] used machine learning to combine RS and meteorological
data, which improved the estimation accuracy of foliar P content in graminoids. Further-
more, using machine learning to combine satellite RS and meteorological data helped to
significantly improve the estimation accuracy of wheat (Triticum aestivum L.) and maize
(Zea mays L.) yield [33,46,48]. However, to date little work has been focused on using
remote sensing for monitoring K in rice. As part of this work, we address the following
specific questions: Question 1: which spectral index (existing and newly proposed spectral
index) provides the most reliable plant potassium content estimates in rice; Question 2:
which type of remote sensing approach (e.g., machine learning, spectral index) results in
the most reliable crop K estimates; and Question 3: Can the combination of remote sensing
and meteorological data improve K estimates?

The overarching objective of this study was to explore whether the inclusion of
meteorological data could improve the estimation accuracy of RS-based K nutrition models.
To reach this overarching goal, we addressed the following three objectives: (1) to compare
the ability to detect variations in rice plant potassium content (PKC) between simple
spectral indices and machine learning methods; (2) to build rice PKC models that combine
RS and meteorological data; and (3) to test the stability and temporal transferability of RS
models for predicting rice PKC. For objective (2), we hypothesized that the inclusion of
meteorological data will significantly improve the estimation accuracy of K models using
remotely sensed data.

To test this, a field experiment with different K, nitrogen and plant variety treatments
was designed and data were collected throughout the growing season during three consecu-
tive years (2017–2019). Data collected included canopy spectra, meteorological information,
and rice plant potassium content.

2. Materials and Methods
2.1. Experimental Design

We conducted this study at the experimental station of the National Engineering
and Technology Center for Information Agriculture (NETCIA), Rugao, China (120◦05′E,
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32◦06′N), where the annual average temperature, average humidity, average wind speed,
number of precipitation days, precipitation, and annual average frost-free period are
14.6 ◦C, 79.37%, 1.91 m/s, 121.3 days, 1055.5 mm, and 215.6 days, respectively. The
predominant soil type was a loam (before the beginning of experiment in the year 2017),
with an organic carbon concentration of 12.95 g/kg, a total nitrogen content of 1.20 g/kg,
a total potassium content of 12.26 g/kg, an available nitrogen content of 75.73 mg/kg,
and an available potassium content of 65.40 mg/kg (general potassium deficiency soil:
50–70 mg/kg).

We conducted experiments from June–November in 2017–2019 (Exp. 1–3, respectively)
where 48 plots with three replicates and 16 treatments (two cultivars × four K levels × two
N levels) were cultivated in a nested blocks design with each K treatment [19]. The area of
each plot was 30 m2 (6 m long and 5 m wide) and all experimental area of the field was
about 2 km2. The plant spacing was 30 cm× 15 cm. Four different K fertilization treatments
(0 kg·ha−1 (K0), 100 kg·ha−1 (K1), 200 kg·ha−1 (K2), and 300 kg·ha−1 (K3)) were applied
using K fertilizer (muriate of potash) (50% at pre-planting and 50% at panicle initiation).
Further, two different N fertilization treatments (100 kg·ha−1 (N1) and 300 kg·ha−1 (N2))
were applied using urea (N content is 46%) (30% at pre-planting, 30% at tillering, 20%
at panicle initiation, and 20% at booting). Additionally, phosphate fertilizer supplement
(135 kg·ha−1 P2O5) was applied to all experimental plots at pre-planting. In Exp. 1 and
Exp. 2, japonica (Wuyunjing 27 (V1), erect-leaf type) and indica (Liangyou 728 (V2),
drooping-leaf type) rice were sown on 15 and 14 May, respectively, and transplanted on
19 and 15 June, respectively, while in Exp. 3, japonica (Wuyunjing 27 (V1), erect-leaf
type) and indica (Suliangyou 295 (V3), drooping-leaf type) rice were sown on 15 May and
transplanted on 18 June. The irrigation was performed every three days (consistent equal
amounts throughout the growing season) and weed mitigation every month.

2.2. Acquisition of Canopy Reflectance and Agronomic Parameters

We collected canopy hyperspectral reflectance of rice using an ASD FieldSpec Pro
spectrometer (Analytical Spectral Devices, Boulder, CO, USA) during key growth stages of
rice development (tillering, productive tiller critical stage (N-n), jointing, booting, heading,
and filling stage). We conducted measurements between 10:00 and 14:00 under clear skies
to minimize confounding effects caused by variability in illumination geometry. Before
data acquisition for each plot, we collected a white reference panel measurement using
a Spectralon panel (Spectralon®, Labsphere, Inc., North Sutton, NH, USA) (approximate
reflectance values of 100%). We used a one-meter-long plastic pipe to ensure the fiber
optic of the spectrometer was always one meter above the top of the canopy during each
sampling campaign. The field of view of bare fiber was 25◦. At each plot, three reflectance
readings were taken and averaged. The spectrometer collects 2151 bands from 350 to
2500 nm at a sampling interval 1.4 nm and 3 nm spectral resolution in the 350–1050 nm
region, and 2 and 10 nm in the 1050–2500 nm region. We removed very short wavelength
bands (350–399 nm) and the spectral reflectance values from 1351–1440 nm, 1801–1960 nm,
and 2401–2500 nm due to the influence of atmospheric moisture absorption characteristics.

After collecting the spectral data, we selected three whole representative rice plants
from each plot to be uprooted, placed in a bucket of water, and brought back to the
laboratory for PKC analysis. The rice plants were cut at the roots and put in paper
bags, oven-dried at 105 ◦C for 30 min, and kept at 80 ◦C until the weight was constant.
After drying, the rice plants were ground, and chemical analysis was conducted. The
PKC was measured using an atomic absorption spectrometer (ICE 3000; ThermoFisher,
Sunnyvale, CA, USA).

2.3. Meteorological Data Collection and Analysis

We collected meteorological data using the automated weather station Dynameta-
1K (Dynamax Inc., Houston, TX, USA) from May to October (Figure 1), which included
daily average temperature (Temdaily) (◦C), average relative humidity (%), accumulative
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precipitation (mm) and average wind speed (m/s). The temperature data was divided
into Temdaily and accumulated growing degree day (AGDD). AGDD represents the sum of
growing degree days (GDD) from transplanting to test day, GDD = Temdaily −12.5 ◦C [50].

Figure 1. Daily average temperature (a), precipitation (b), average humidity (c), and average wind speed (d) during the rice
growth seasons in different years.

To determine the effect of meteorological factors on rice PKC, we used a linear mixed
effects model and set rice PKC as a dependent variable, meteorological factors as fixed
effects, and day as a random effect with a random intercept. To avoid collinearity and over-
fitting, meteorological factors were removed using a stepwise multiple linear regression
(SMLR) until the variance inflation factor (VIF) of all meteorological factors was less than
3 [51]. The linear mixed effects analysis was performed with the “lme4” package [52] in the
R language (R Core Team, 2018). We considered meteorological factors at p < 0.001 to have
a statistically significant effect on rice PKC and selected them as important meteorological
factors (Ifs). The standardized slope (b*) was used to determine the effect size of each
meteorological factor.

2.4. Modeling and Validation of Potassium Nutrition

The workflow associated with our approach to identify a reliable remote sensing model
for predicting rice PKC is shown in Figure 2. First, using normalized difference spectral
index (NDSI) and correlation analysis, we selected two-band indices and correlation
bands (CBs) based on three transformed spectra (reflectance spectra (R), first derivative
spectra (FD) and reciprocal logarithm-transformed (log [1/R])). Next, we used the genetic
algorithms partial least-squares (GA-PLS) (more details see below) and linear mixed
effects model to select important bands (IBs) and important meteorological factors (IFs),
respectively. Finally, we used spectral indices and machine learning (partial least-squares
regression (PLSR) and random forest (RF)) to build K nutrition RS models and combined
RS models and IFs to build new K nutrition models. Furthermore, we used a validation
dataset to evaluate the performance of K nutrition models and divided all data into different
datasets to test the stability and temporal transferability of K models and selected optimal
K models according to simplicity and estimation accuracy.
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Figure 2. Workflow of the methodology used here to identify optimal remote sensing models for predicting rice PKC.
Note: R = reflectance, FD = first derivative spectra, LOG = reciprocal logarithm-transformed spectra, NDSI = normalized
difference spectral index, PLSR = partial least-squares regression, RF = random forest, GDD = growing degree day, and
GA-PLS = genetic algorithms partial least-squares.

To select important bands that contribute the most to the variability of rice PKC,
we performed variable selection with the commonly used GA-PLS [53]. GA-PLS was
implemented through the “plsVarSel” package [54] in the R language. To compare the
ability of simple spectral indices and machine learning methods to detect variability in
rice PKC, we did the following. First, we built simple linear regression models between
rice PKC and spectral indices proposed by previous studies and this paper. The optimal
spectral index was selected by root mean square error (RMSE), bias and relative root mean
square error (RE). Meanwhile, a SMLR model was developed between rice PKC and the
optimal spectral index and IFs. To avoid overfitting, two statistical parameters of the SMLR
model (VIF and tolerance (TOL)) were set less than 3 and greater than 0.33, respectively [51].
We also employed machine learning (i.e., PLSR and RF), which selected IBs and IFs as input
variables. PLSR was implemented through the “pls” package [55] in the R language. RF
included two important tuning parameters: (1) the number of regression trees (ntree) and
(2) the number of predictors tested at each node (mtry). The ntree was set to 1000 according
to previous studies [37,56] and mtry was determined by the “randomForest” package [57]
in the R language.

To build the rice PKC estimation models and test their performance, a total of 864
samples from three growing seasons (2017–2019) were randomly split into a calibration
(2/3 of data, 576 samples) and validation (1/3 of data, 288 samples) dataset (Table 2).
The coefficient of determination (R2), RMSE, bias, RE, and Akaike information criterion
(AIC) [58] of all model types were calculated in R (R Core Team, 2018) and used to evaluate
the prediction accuracy of these models.
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Table 2. Statistics of PKC (%) for all 6 sampling times (tillering, productive tiller critical stage (N-n),
jointing, booting, heading, and filling stage) for experiments conducted in 2017, 2018, and 2019.

Dataset Number of
Samples Min Max Mean STD CV (%)

PKC (%)

2017 288 0.82 3.76 2.22 0.60 26.94
2018 288 0.86 4.17 2.36 0.67 28.48
2019 288 0.55 3.52 2.16 0.74 34.49

Calibration dataset 576 0.55 4.17 2.25 0.68 30.20
Validation dataset 288 0.55 4.00 2.24 0.68 30.32

All 864 0.55 4.17 2.25 0.68 30.22
Note: STD and CV are standard deviation and coefficient of variation (STD/Mean), respectively.

3. Results
3.1. Variation Patterns of Rice PKC and Canopy Spectral Parameters

Table 2 showed the descriptive statistics of PKC for different datasets. The 2018 dataset
exhibited a higher mean PKC, and the 2019 dataset exhibited a higher degree of dispersion.
The PKC decreased with the growth of rice plant; the no K fertilization (K0) had the lowest
PKC and K2 had the highest PKC (Figure 3a,b). We selected the optimal treatment (V1N2K2)
to show the mean reflectance with six growth stages (Figure 3c); before the booting stage, the
spectral reflectance decreased in the visible region and increased in the near-infrared region,
after the booting stage, the spectral reflectance decreased in the near-infrared region due to the
influence of ears. Then, we showed the variation pattern of mean NDSI for R, FD, and LOG
with different AGDD (calculation of NDSI see Section 3.4), in summary, NDSI values of R and
FD showed a similar variation, they decreased with the growth of rice plant, no K fertilization
treatment (K0) had lowest NDSI value, and K2 had the high NDSI value (Figure 3d,e). For
the NDSI value of LOG, it showed an opposite variation to R (Figure 3f).

Figure 3. The variations pattern of rice plant potassium content (PKC) (N1 (a), N2 (b)) and normalized
difference spectral index (NDSI) based on reflectance spectra (R) (d), first derivative spectra (FD) (e),
and reciprocal logarithm-transformed spectra (log (1/R)) (f), respectively, with different accumulated
growing degree day (AGDD). Mean reflectance for selected V1N2K2 treatment with several growth
stages (c). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.) Note: Data of all figures used here were in 2017. V1 = japonica
(Wuyunjing 27), N1 = 100 kg·ha−1, N2 = 300 kg·ha−1.



Remote Sens. 2021, 13, 3502 8 of 21

3.2. Correlation of Rice PKC with Spectral and Meteorological Data

The reflectance spectra (R) were positively correlated with rice PKC at 400–723, 1441–
1800, and 1961–2400 nm (maximum R2 value of 0.38 at 1969 nm) and negatively correlated
at 750–955 and 1008–1130 nm (Figure 4a). The log (1/R) spectra had an opposite trend of
the R spectra. The FD spectra had a negative correlation with rice PKC at 759–810, 985–1066,
and 1268–1341 nm (maximum R2 value of 0.38 at 1045 nm) and a positive correlation at
920–973 and 1077–1264 nm. Correlation bands (CBs) were selected by significant correlation
analysis and used for selecting important bands (IBs) (see Section 3.3 below).

Figure 4. The correlation between rice plant potassium content (PKC) (a), reflectance spectra (R), first
derivative spectra (FD), and reciprocal logarithm-transformed spectra (log (1/R)). Dotted horizontal
lines illustrate significance level (p value < 0.001). Standardized slope (b*) estimates for meteorological
factors of the linear mixed effects model with PKC as the dependent variable and the following
fixed effects: daily average temperature, average wind, and humidity. The symbol of *** represents
statistical significance levels (p < 0.001) (b). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article).

After excluding highly collinear meteorological factors based on TOL and VIF values
(Table 3), we fit a linear mixed effects model with daily average temperature, humidity, and
wind speed as fixed effects and day as a random effect with a random intercept on rice PKC.
The results from the linear mixed effects model revealed that daily average temperature
had the strongest (b* = 0.233, p < 0.001) significant effect on the rice PKC, followed by
average humidity (b* = −0.065, p < 0.001) (Figure 4b). Thus, daily average temperature
and humidity were selected as important meteorological factors (Ifs).

Table 3. Results of stepwise multiple linear regression between meteorological data and rice plant
potassium content.

Variables and Intercept Value R2 adj p-Value TOL VIF

Intercept −1.883 0.57 <0.001
Daily average
temperature 0.221 <0.001 0.878 1.139

Daily average humidity −0.031 <0.001 0.882 1.134
Daily average wind 0.170 <0.001 0.967 1.034

Note: VIF = variance inflation factor, TOL = tolerance, and R2 adj = adjusted coefficient of determination.

3.3. Important Bands Selection

The GA-PLS was used to select IBs that were sensitive to variability in rice PKC from
the CBs. The results showed that the number of IBs were 40, 57, and 30 for the R, FD, and
Log (1/R), respectively (Table 4). Some IBs for transformed spectra were located in the
visible region that was influenced by pigment content. Most IBs for transformed spectra
were located in near-infrared and shortwave infrared regions that were influenced by water,
protein, starch, lignin, cellulose, and sugar (Figure 5d).
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Table 4. Correlation bands and important bands selection using correlation analysis and GA-PLS, respectively.

Variables CBs Numbers of CBs IBs Numbers of IBs

R 400–723; 750–955; 1008–1130;
1441–1800; 1961–2400 nm 1453

421; 425; 427–428; 698; 701–704; 707; 759;
1050–1062; 1081; 1122–1123; 1577–1582;

1586–1587; 1607; 1962; 2373; 2380; 2391 nm
40

FD

400–420 . . . 713–715; 717–757;
759–810; 920–973 . . . . . .

985–1066; 1077–1264;
1268–1341 . . . 1465–1473;
1477–1531; 1728–1730 . . .

1976–1978; 2014–2018;
2027–2033 . . . 2071–2078;
2090–2095; 2281–2284 nm

918

401; 403; 406; 412; 466; 602–603; 639; 762;
795; 799; 802; 804–805; 841; 845; 849–850;

947; 999; 1185–1186; 1190; 1192; 1194; 1269;
1469; 1481; 1483; 1485; 1497–1498; 1500;
1506–1507; 1662; 1728; 1767–1768; 1789;
1977–1978; 1982; 1988; 2005; 2014; 2016;
2029; 2050; 2057; 2091–2092; 2109; 2121;

2124; 2165; 2284 nm

57

Log (1/R) 400–724; 747–957; 1004–1130;
1441–1800; 1961–2400 nm 1463

427–429; 538–541; 689–691; 1101–1107;
1122–1123; 1579–1580; 1963; 1969; 1995;
2129–2130; 2346; 2372; 2374; 2380 nm

30

Note: R = reflectance, FD = first derivative spectra, Log (1/R) = reciprocal logarithm-transformed spectra, CBs = correlation bands,
IBs = important bands, and GA-PLS = genetic algorithms partial least-squares.

Figure 5. Important bands (IBs) selection based on reflectance spectra (R-IBs) (a), first derivative
spectra (FD) (b), and reciprocal logarithm-transformed spectra (LOG) (c) using the genetic algorithms
partial least-squares (GA-PLS). Some IBs and their corresponding absorption features [59–61] (d).

3.4. Estimation of Rice PKC with Spectral Index and Machine Learning Methods

For this part of the analysis, we selected two RS methods (spectral index and machine
learning) to compare their ability to detect variations in rice PKC. A random combination
with two bands of different transformed spectra was selected to construct a normalized
spectral index (NDSI) (Figure 6) following previous work [9]. Our results showed NDSI
(R1210, R1105), NDSI (FD1505, FD805), and NDSI (LOG1210, LOG1180) to be the strongest
predictors of rice PKC among the spectral indices based on R (R2 = 0.51, RMSE = 0.48%),
FD (R2 = 0.58, RMSE = 0.44%), and log (1/R) spectra (R2 = 0.44, RMSE = 0.51%) (Figure 7).
Additionally, among previously identified spectral indices (see Table 5), NDSI (R1645, R1715)
(R2 = 0.39, RMSE = 0.55%), NDSI (R1705, R1320) (R2 = 0.32, RMSE = 0.57%) and NDSI (R870,
R1450) (R2 = 0.21, RMSE = 0.63) showed to be the strongest predictors of rice PKC. R780/R650,
NDSI (R523, R583), FD760/FD630, FD1686, NDSI (FD1450, FD1295), and Log(1/R1337) showed
to be the poorest predictors of rice PKC (R2 < 0.05, RMSE > 0.67%) (Table 5).
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Figure 6. Contour maps of coefficients of determination (R2) for linear relationships between rice plant potassium content
(PKC) and normalized spectral indices (NDSI) based on reflectance spectra (R) (a), first derivative spectra (FD) (b), and
reciprocal logarithm-transformed spectra (log (1/R)) (c), respectively. Lambda (λ) represents a wavelength from 400 to
2400 nm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article).

Figure 7. Relationships between rice plant potassium content (PKC) and normalized spectral index (NDSI): NDSI (R1210,
R1105) (a), NDSI (FD1505, FD805) (b), and NDSI (LOG1210, LOG1180) (c) using the calibration dataset. R, FD, and LOG
represent reflectance, first derivative spectra, and reciprocal logarithm-transformed spectra, respectively.

Table 5. Relationship between rice plant potassium content (PKC) and new spectral indices and
existing spectral indices using the calibration dataset.

Spectral Indices
Calibration Validation

R2 R2 RMSE (%) RE (%) Bias (%)

NDSI (FD1505, FD805) * 0.58 0.53 0.47 20.70 0.008
NDSI (R1210, R1105) * 0.51 0.47 0.49 22.00 0.011

NDSI(LOG1210, LOG1180) * 0.44 0.44 0.51 22.72 0.007
NDSI (R1645, R1715) 0.39 0.35 0.55 24.45 0.018
NDSI (R1705, R1320) 0.32 0.29 0.57 25.49 0.011
NDSI (R870, R1450) 0.21 0.15 0.63 27.90 0.014
NDSI (R523, R583) 0.01 0.02 0.67 29.97 0.010

FD1686 0.03 0.01 0.68 30.43 0.008
R780/R650 0.02 0.00 0.68 30.24 0.007

Log(1/R1337) 0.01 0.01 0.68 30.14 0.010
NDSI (FD1450, FD1295) 0.02 0.05 0.69 30.97 0.001

FD760/FD630 0.01 0.12 0.72 32.04 0.024
Note: R = reflectance, FD = first derivative spectra, and LOG = reciprocal logarithm-transformed spectra. We use
the reflectance at 1320 nm and 1450 nm to replace at 1385 nm and 1430 nm due to the influence of atmospheric
moisture absorption at 1385 nm at the canopy level. * represents spectral indices proposed in this paper.

For our machine learning models (PLSR and RF), we used IBs identified with GA-PLS
to predict rice PKC. The PLSR model based on FD-IBs showed to be the strongest predictor
of rice PKC (R2 = 0.69, RMSE = 0.38%) (Figure 8b), followed by the PLSR models based
on R-IBs and LOG-IBs (R2 = 0.67, RMSE = 0.39%) (Figure 8a,c). RF modelling showed
similar results to PLSR modelling and the RF model based on FD spectra showed to be
the strongest predictor of rice PKC, followed by RF models based on R-IBs and LOG-IBs
(R2 = 0.71, 0.62 and 0.61, RMSE = 0.37%, 0.42% and 0.43%, respectively) (Figure 9a–c).



Remote Sens. 2021, 13, 3502 11 of 21

Compared to the ability of spectral indices to detect the variations in rice PKC, the machine
learning methods showed better estimation accuracy (R2 and RMSE increase and decrease
of more than 0.1 and 0.06%, respectively).

Figure 8. Relationships between the measured plant potassium content (PKC) and predicted PKC
with the calibration dataset using partial least-squares regression (PLSR) based on important bands
(IBs) of reflectance spectra (R-IBs) (a), IBs of first derivative spectra (FD-IBs) (b), IBs of reciprocal
logarithm-transformed spectra (LOG-IBs) (c), R-IBs + important meteorological factors (IFs) including
daily average temperature and humidity (IFs-Temdaily) (R-IBs + IFs-Temdaily) (d), FD-IBs + IFs-
Temdaily (e), LOG-IBs + IFs-Temdaily (f), R-IBs + IFs including accumulated growing degree day
(AGDD) and daily average humidity (IFs-AGDD) (R-IBs + IF-AGDD) (g), FD-IBs + IFs-AGDD (h),
and LOG-IBs + IFs-AGDD (i).
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Figure 9. Relationships between the measured plant potassium content (PKC) and predicted PKC
with the calibration dataset using random forest (RF) based on important bands (Ibs) of reflectance
spectra (R-Ibs) (a), Ibs of first derivative spectra (FD-Ibs) (b), Ibs of reciprocal logarithm-transformed
spectra (LOG-Ibs) (c), R-Ibs + important meteorological factors (Ifs) including daily average tem-
perature and humidity (Ifs-Temdaily) (R-Ibs + Ifs-Temdaily) (d), FD-Ibs + Ifs-Temdaily (e), LOG-IBs +
IFs-Temdaily (f), R-IBs + IFs including accumulated growing degree day (AGDD) and daily average
humidity (IFs-AGDD) (R-IBs + IF-AGDD) (g), FD-IBs + IFs-AGDD (h), and LOG-IBs + IFs-AGDD (i).

3.5. Estimation of Rice PKC with a Combination of Remote Sensing and Meteorological Data

Here, we added meteorological data identified in our correlation analyses (see
Section 3.2) into RS models. The optimal spectral indices among different transformed
spectra and IFs (daily average temperature and humidity) were selected to develop SMLR
models (Table 6). We found that SMLR models that combined spectral indices and IFs
improved the estimation accuracy of rice PKC, and the model based on the FD index
performed better than R and log (1/R) indices for estimating rice PKC. The SMLR model
of NDSI (FD1505, FD805) + AGDD showed the best performance for estimating rice PKC,
followed by NDSI (R1210, R1105) + AGDD and NDSI (LOG1210, LOG1180) + AGDD. Com-
pared to the models using spectral index alone, the R2 of these SMLR models increased by
17.24%, 24.45%, and 45.45% to 0.68, 0.65, and 0.64, respectively.
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Table 6. Results of stepwise multiple linear regression with spectral indices and meteorological data using the calibra-
tion dataset.

Transformed
Spectra Variables and Intercept Value R2 adj p-Value TOL VIF

R
Intercept −1.194 0.60 <0.001

NDSI (R1210, R1105) 0.145 <0.001 0.441 2.269
Average temperature 5.413 <0.001 0.441 2.269

FD
Intercept −1.811 0.64 <0.001

NDSI (FD1505, FD805) 1.606 <0.001 0.441 2.268
Average temperature 0.118 <0.001 0.441 2.268

LOG
Intercept −1.638 0.58 <0.001

NDSI (LOG1210, LOG1180) 0.217 <0.001 0.890 1.124
Average temperature −0.028 <0.001 0.890 1.124

R
Intercept 3.991 0.65 <0.001
AGDD −0.002 <0.001 0.335 2.988

NDSI (R1210, R1105) 2.152 <0.001 0.335 2.988

FD
Intercept 2.927 0.68 <0.001
AGDD −0.001 <0.001 0.37 2.704

NDSI (FD1505, FD805) 1.117 <0.001 0.37 2.704

LOG

Intercept 4.736 0.64 <0.001
AGDD −0.002 <0.001 0.347 2.879

Humidity −0.012 <0.001 0.826 1.211
NDSI (LOG1210, LOG1180) −31.414 <0.001 0.374 2.675

Note: R = reflectance, FD = first derivative spectra, LOG = reciprocal logarithm-transformed spectra, AGDD = accumulated growing degree
day, VIF = variance inflation factor, TOL = tolerance, and R2 adj = adjusted coefficient of determination.

The IBs (Table 4) and IFs were used as independent variables of machine learning
methods to build models with rice PKC. The PLSR models using FD-IBs and IFs resulted in
the most accurate rice PKC estimates (R2 = 0.71, 0.74, RMSE = 0.37%, 0.35%, respectively)
(Figure 8e,h), followed by PLSR models based on R-IBs + Ifs and LOG-Ibs + Ifs, respectively
(Figure 8d,f,g,i). The RF models based on FD-Ibs + Ifs showed to most accurately predict
variability in rice PKC (R2 = 0.75 and 0.76, RMSE = 0.34%, 0.33%, respectively) (Figure 9e,h),
followed by RF models based on R-Ibs + Ifs (R2 = 0.67, RMSE = 0.39%, respectively)
(Figure 9d,g) and LOG-Ibs + Ifs (R2 = 0.65, 0.68, RMSE = 0.41%, 0.39%, respectively)
(Figure 9f,i). Compared to the machine learning models using Ibs alone, the models using
a combination of Ibs and Ifs could slightly improve the estimation precision of rice PKC
(R2 increased by 5.97–11.47%).

3.6. Model Evaluation and Testing

We used a validation dataset to evaluate the performance of rice PKC models (Table 7)
and the results showed that NDSI (FD1505, FD805) had a best performance for predict-
ing rice PKC (RMSE = 0.47%, RE = 20.70%, bias = 0.008%, AIC = −436), followed by
NDSI (R1210, R1105) and NDSI (LOG1210, LOG1180), respectively. The models of spec-
tral index + AGDD showed higher prediction accuracies than spectral index + Temdaily
and NDSI (FD1505, FD805) + AGDD showed a best performance for predicting rice PKC
(RMSE = 0.41%, RE = 18.36%, bias = 0.001%, AIC = −504), followed by NDSI (R1210, R1105)
+ AGDD and NDSI (LOG1210, LOG1180) + AGDD, respectively. Compared to the PKC
models using spectral index alone, the models using spectral index + AGDD had smaller
RMSE, RE, and bias values.
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Table 7. Relationships of plant potassium content (PKC) and various methods.

Type of Modeling Methods
Calibration Validation

R2 R2 RMSE (%) RE (%) Bias (%) AIC

LR (Section 3.4) NDSI (R1210, R1105) 0.51 0.47 0.49 22.00 0.011 −401
SMLR (Section 3.5) NDSI(R1210,R1105) + Temdaily 0.60 0.55 0.45 20.20 0.002 −447
SMLR (Section 3.5) NDSI (R1210, R1105) + AGDD 0.65 0.61 0.42 18.92 −0.004 −486

LR (Section 3.4) NDSI(FD1505, FD805) 0.58 0.53 0.47 20.70 0.008 −436
SMLR (Section 3.5) NDSI (FD1505, FD805) + Temdaily 0.64 0.59 0.43 19.30 0.002 −475
SMLR (Section 3.5) NDSI(FD1505, FD805) +AGDD 0.68 0.63 0.41 18.36 0.001 −504

LR (Section 3.4) NDSI(LOG1210, LOG1180) 0.44 0.44 0.51 22.72 0.007 −383
SMLR (Section 3.5) NDSI(LOG1210, LOG1180) + Temdaily 0.58 0.55 0.46 20.32 0.008 −445
SMLR (Section 3.5) NDSI(LOG1210, LOG1180) +AGDD 0.64 0.62 0.42 18.78 −0.001 −491
PLSR (Section 3.4) PLSR(R-IBs) 0.67 0.64 0.41 18.14 0.007 −438
PLSR (Section 3.5) PLSR(R-IBs + IFs-Temdaily) 0.70 0.67 0.39 17.50 0.009 −455
PLSR (Section 3.5) PLSR(R-IBs + IFs-AGDD) 0.72 0.69 0.38 17.08 −0.200 −486
PLSR (Section 3.4) PLSR(FD-IBs) 0.69 0.71 0.37 16.56 −0.012 −485
PLSR (Section 3.5) PLSR(FD-IBs + IFs-Temdaily) 0.71 0.71 0.36 16.30 −0.015 −501
PLSR (Section 3.5) PLSR(FD-IBs + IFs-AGDD) 0.74 0.73 0.35 15.88 0.014 −524
PLSR (Section 3.4) PLSR(LOG-IBs) 0.67 0.67 0.39 17.42 −0.006 −440
PLSR (Section 3.5) PLSR(LOG-IBs + IFs-Temdaily) 0.69 0.69 0.38 16.96 −0.006 −447
PLSR (Section 3.5) PLSR(LOG-IBs + IFs-AGDD) 0.72 0.70 0.37 16.54 −0.015 −455

RF (Section 3.4) RF(R-IBs) 0.62 0.56 0.47 21.26 0.160 −347
RF (Section 3.5) RF(R-IBs + IFs-Temdaily) 0.67 0.63 0.45 20.24 0.180 −371
RF (Section 3.5) RF(R-IBs + IFs-AGDD) 0.67 0.63 0.45 20.15 0.179 −374
RF (Section 3.4) RF(FD-IBs) 0.71 0.70 0.40 17.96 0.130 −445
RF (Section 3.5) RF(FD-IBs + IFs-Temdaily) 0.75 0.75 0.37 16.60 0.120 −488
RF (Section 3.5) RF(FD-IBs + IFs-AGDD) 0.76 0.75 0.37 16.69 0.128 −493
RF (Section 3.4) RF(LOG-IBs) 0.61 0.57 0.44 19.78 0.019 −388
RF (Section 3.5) RF(LOG-IBs + IFs-Temdaily) 0.65 0.63 0.43 19.02 0.046 −423
RF (Section 3.5) RF(LOG-IBs + IFs-AGDD) 0.68 0.66 0.40 18.06 0.039 −432

Note: R = reflectance, FD = first derivative spectra, LOG = reciprocal logarithm-transformed spectra, IBs = important bands, IFs = important
meteorological factors, NDSI = normalized difference spectral index, LR = linear regression, SMLR = stepwise multiple linear regression,
PLSR = partial least-squares regression, RF = random forest, AGDD = accumulated growing degree day, IFs-Temdaily represents daily
average temperature and humidity, IFs-AGDD represents AGDD and daily average humidity, and the italic font represents the best
performances of various methods.

The models based on machine learning approaches showed higher prediction ac-
curacies of rice PKC than spectral indices and had smaller RMSE and RE values. The
PLSR (FD-IBs) models showed the best prediction accuracies of rice PKC (RMSE = 0.37%,
RE = 16.56%, bias = −0.012%, AIC = −485), followed by PLSR (LOG-IBs) and PLSR (R-IBs),
respectively. The PLSR models using IBs + IFs-AGDD showed higher prediction accuracies
than those using IBs + IFs-Temdaily and PLSR (FD-IBs + IFs-AGDD) showed the best pre-
diction accuracies of rice PKC (RMSE = 0.35%, RE = 15.88%, bias = 0.014%, AIC = −524),
followed by PLSR (LOG-IBs + IFs-AGDD) and PLSR (R-IBs + IFs-AGDD), respectively.
The RF (FD-IBs) models had the best performance for predicting rice PKC (RMSE = 0.40%,
RE = 17.96%, bias = 0.130%, AIC = 445), followed by RF (LOG-IBs) and RF (R-IBs), respec-
tively. The RF (IBs + IFs-AGDD) models showed higher prediction accuracies than RF
(IBs + IFs-Temdaily) models and RF (FD-IBs + IFs-AGDD) showed a best performance for
predicting rice PKC, followed by RF (LOG-IBs + IFs) and RF (R-IBs + IFs), respectively.
Compared to the models of machine learning using IBs alone, the models using IBs + IFs
showed better performance and had smaller RMSE and RE values.

To test the stability and temporal transferability of rice PKC models further, all the
data was divided into eleven different datasets according to N level, K level, variety,
and experiment year (Table 8). We selected NDSI (R1210, R1105) and NDSI (FD1505, FD805)
using fewer bands and PLSR (FD-IBs) and RF (FD-IBs) using many bands to test their
performance. Our results showed that the rice PKC models of spectra combined with
meteorological factors could better detect the variability of rice PKC than using spectra
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alone (with higher R2 and lower RMSE). Considering the ability of RS models for detecting
the variability in rice PKC, they performed better when used in japonica rice than indica
rice; Low N level (N1) could be better detected by them than high N level (N2); K stress
levels could be better detected by them than normal K level: K1 > K3 > K0 > K2. Meanwhile,
the K RS models have good performances under different years and performed better when
used in Exp. 3 (2019) than Exp. 2 (2018) and Exp. 1 (2017). Finally, we selected the optimal
PKC models: one was NDSI (FD1505, FD805) + AGDD; another was PLSR (FD-IBs + IFs)
and RF (FD-IBs + IFs).

Table 8. Correlations between rice plant potassium content (PKC) and different remote sensing methods under the
different datasets.

Methods
Variety Nitrogen Potassium Experiments (Exp.)

Japonica Indica N1 N2 K0 K1 K2 K3 Exp.1 Exp.2 Exp.3

NDSI (R1210, R1105) R2 0.51 0.53 0.59 0.46 0.64 0.65 0.56 0.65 0.44 0.57 0.46
RMSE (%) 0.49 0.44 0.41 0.53 0.33 0.37 0.45 0.40 0.45 0.44 0.55

NDSI (R1210, R1105)
+ AGDD

R2 0.67 0.55 0.68 0.61 0.69 0.78 0.72 0.78 0.61 0.68 0.72
RMSE (%) 0.40 0.43 0.38 0.47 0.30 0.29 0.36 0.31 0.37 0.38 0.39

NDSI (FD1505, FD805) R2 0.57 0.56 0.60 0.55 0.64 0.71 0.55 0.68 0.43 0.58 0.66
RMSE (%) 0.46 0.43 0.41 0.48 0.32 0.34 0.45 0.38 0.45 0.44 0.44

NDSI (FD1505, FD805)
+AGDD

R2 0.72 0.62 0.73 0.62 0.73 0.82 0.72 0.80 0.62 0.71 0.73
RMSE (%) 0.38 0.40 0.33 0.44 0.28 0.27 0.36 0.30 0.37 0.36 0.39

PLSR (FD-IBs) R2 0.69 0.62 0.73 0.65 0.73 0.80 0.76 0.78 0.61 0.76 0.76
RMSE (%) 0.39 0.40 0.36 0.42 0.28 0.29 0.34 0.31 0.37 0.33 0.36

PLSR (FD-IBs
+ IFs-AGDD)

R2 0.71 0.70 0.80 0.65 0.76 0.83 0.79 0.82 0.63 0.76 0.78
RMSE (%) 0.38 0.35 0.29 0.42 0.26 0.26 0.32 0.28 0.36 0.33 0.34

RF (FD-IBs) R2 0.74 0.62 0.75 0.69 0.79 0.82 0.74 0.81 0.64 0.75 0.78
RMSE (%) 0.34 0.40 0.33 0.40 0.24 0.27 0.35 0.29 0.36 0.34 0.34

RF (FD-IBs +
IFs-AGDD)

R2 0.78 0.75 0.82 0.71 0.83 0.88 0.82 0.87 0.67 0.78 0.81
RMSE (%) 0.33 0.33 0.27 0.39 0.22 0.22 0.30 0.24 0.34 0.32 0.32

Note: R = reflectance, FD = first derivative spectra, IBs = important bands, IFs = important meteorological factors, NDSI = normalized
difference spectral index, PLSR = partial least-squares regression, RF = random forest, AGDD = accumulated growing degree day, and
IFs-AGDD represents AGDD and daily average humidity.

4. Discussion
4.1. Canopy Sensitive Bands and Transformed Spectra for Plant K Estimation

Our results showed that the spectral bands of rice canopy that were sensitive to
PKC were mainly concentrated in the near-infrared and shortwave infrared regions
(1000–1340 nm, 1450–1800 nm, and 1961–2400 nm) (Figure 6a). This result was consis-
tent with previous studies that the shortwave infrared spectra could be used to identify
crop K nutrition levels in other crops [9,15,62,63]. The K spectral index proposed here
included bands at 1210 nm and 1505 nm (Table 5), which have previously been used to
construct a spectral index to monitor vegetation moisture status [64]. Meanwhile, the K
spectral indices NDSI (R1645, R1715) and NDSI (R870, R1450) proposed by Pimstein et al. [15]
and NDSI (R1705, R1320) proposed by Lu et al. [9] performed well in this paper, included
shortwave infrared bands and these bands were also closely related to vegetation moisture
status [65]. In addition, most of the important bands selected by GA-PLS were also located
in the near-infrared and shortwave infrared regions, and only a few important bands were
located in visible regions (Figure 5). The near-infrared and shortwave infrared bands
contributed the most to the K estimation (Figure 10). For K element, it does not have
strong absorption features in spectra, and their predictions are due in part to correlations
with other traits such as pigments, water, starch, protein, cellulose, and sugar [66,67]. One
physiological explanation of why important spectral regions for the remote sensing of K
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appear to be mainly located in the near-infrared and shortwave infrared spectral regions
is that K exists in the form of K ions in the plant, which regulates stomatal conductance
and osmotic potential, and enhances the synthesis of many enzymes, proteins, starches,
and cellulose [1]. Finally, the variations in the plant K element will influence the spectral
changes of corresponding absorption features.

Figure 10. Relative variable importance analysis based on important bands (Table 4) for reflectance
spectra (a), first derivative spectra (b), and reciprocal logarithm-transformed spectra (c). We used
the importance function in the “RandomForest” package to perform this analysis. The %IncMSE
represents the percent increase in mean squared error.

The rice PKC models using a novel spectral index and machine learning based on the
FD spectra showed better estimation accuracy than these rice PKC models based on the
R spectra (Table 7). This was consistent with the conclusion by Lu et al. [9] who found
that the FD spectral index was better than the R spectral index on estimating the rice
leaf K content, and Gao et al. [47] found that the performance of machine learning based
on the FD spectra on estimating leaf phosphorus content in forage was better than the
R spectra. The K RS models using FD spectra had a better performance than using the
original reflectance spectra in that FD spectra could reduce noise signals generated by
atmospheric water absorption, soil background, and data redundancy, and enhance the
absorption characteristics of plant leaf biochemical parameters [23].

4.2. Performance of Spectral Index and Machine Learning for Estimating Plant K

The results of this paper showed that the optimal estimation model of rice PKC could
be divided into two types: one was the spectral index NDSI (FD1505, FD805) using two
bands, and the R2 and RMSE of the model were 0.58 and 0.47%, respectively. Another
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was the PLSR (FD-IBs) and RF (FD-IBs) of the machine learning method using multi-band
spectral information, the R2 of the models were 0.69 and 0.71, and the RMSEs were 0.37%
and 0.40%, respectively. The spectral index-based approach requires only two bands, hence
it seems to be feasible to design a relatively low-cost sensor that could be installed on
a tractor or Unmanned Aerial Vehicle to inform K fertilizer decisions. Even though the
estimation accuracy was higher for machine learning approaches, they rely on data from
hyperspectral sensors that are expensive, fragile, and require expert knowledge to be
processed. Hence, for K nutrition estimation, machine learning approaches might be most
useful for scientists, but might be less practical for operational decision making.

4.3. Incorporating Remote Sensing and Meteorological Data for Plant K Estimation

Of the meteorological variables in our study, the daily average temperature con-
tributed the most to estimating rice PKC (b* = 0.233), followed by the daily average
humidity (b* = −0.065). This was consistent with previous studies [39,40,42] that found
rising temperature would increase crop K uptake. Similarly, Gisleröd et al. [68] showed
that reducing air humidity would increase plant K uptake. Meanwhile, Yin et al. [41] also
found an increase in average temperature and evaporation would increase the demand
for potash fertilizer. The increase or decrease in average temperature and humidity will
affect stomata opening and closing, thereby influencing plant transpiration and water
transfer. K is closely related to water [9], which mainly regulated the opening and closing
of stomata and the penetration potential to affect plant moisture status [69]. Thus, the daily
average temperature and humidity will affect crop K uptake. Our study suggested that
combining RS and meteorological data could effectively improve the estimation accuracy of
crop K nutrition. Specifically, combining spectral and IFs-AGDD in models outperformed
models with spectral and IFs-Temdaily (Table 7). AGDD represents the effective accumu-
lated temperature that crops require to complete their different growth stages [70], which
suggests the accumulated temperature is more important than daily conditions for our
results. Our finding that meteorological information could improve the RS of rice PKC in all
model types was consistent with previous works which found that combining spectra and
meteorological factors could improve the estimation accuracy of forage P content [47,49].
Similarly, other studies found that combining spectra and meteorological factors could
improve the estimation accuracy of crop yield [33,46,48,71]. Meteorological factors mainly
represent plant environmental information that plants are dynamically responding to and
the spectra represent the current status of the plant. This might explain why combining
spectra and meteorological factors can improve the accuracy of crop K nutrition estimation.

4.4. Evaluation of K Models and Future Directions

Compared to K estimation models using remote sensing data alone, the optimal K
estimation models proposed in this study which incorporated meteorological data showed
better stability under different datasets and better temporal transferability between different
years (Table 8). The reason why RS models performed better when used in japonica rice
than in indica rice is that japonica rice is more sensitive to K, which leads to more abundant
K accumulation [9,19]. Low N levels can be better detected using RS than high N levels due
to ammonium ions in plant roots under high N concentrations, which have an inhibitory
effect on K uptake and thus reduce plant K accumulation [72]. K stress levels can be better
detected using RS than normal K levels, indicating that K stress could affect the stomatal
opening and closing of plant leaves and osmotic potential regulation, thus affecting leaf
water status [73]. Therefore, vegetation signals under K stress are easier to remotely sense.
Though beyond the scope of this study, phosphorus levels may also influence the transfer
of soil potassium ions. Therefore, it would be valuable if future work could focus on the
interaction between phosphorus and potassium.

When we tested the performance of RS models in different years, our result showed
that RS models performed better when used in Exp. 3 (2019) than Exp. 2 (2018) and
Exp. 1 (2017); this is as our study carried out the same K treatment experiment of a
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rice–wheat rotation system in the same experiment location. With the progress of the
experiment, the difference of soil K gradient is more obvious, which can be seen from
the coefficient of variation of the dataset (Table 2). Hence, the K gradient difference of
Exp. 3 is the largest and the estimation accuracy of the K nutrition model is the highest.
These experiments were conducted at only one crop and ecological site and the band
used in the novel K spectral indices had been used for monitoring vegetation water status.
Additionally, for other crops at different field sites, variability in topography will likely
influence water movement and hence the availability of K. Thus, future studies should
consider the topography attributes as predictor variables and test their importance in
different crops, field sites (including different soil types), and drought stress conditions.
Meanwhile, the ease of access to meteorological data continues to increase thanks to the
establishment of environmental monitoring networks in many agricultural regions [74],
fusing NDSI from a multi-band remote sensing device with air temperature and humidity
information from the environmental monitoring networks could help to more effectively
manage PKC in rice.

5. Conclusions

This study systematically compared the performance of different transformed spectra,
spectral indices, machine learning, and spectra combined with meteorological factors for
estimating rice K nutrition. Results showed that the K sensitive bands for rice canopy were
mainly located in the near-infrared and shortwave infrared regions of the electromagnetic
spectrum. The K nutrition models of spectral index and machine learning based on the FD
spectra showed good estimation accuracy. Meanwhile, among the meteorological factors,
daily average temperature explained most of the variability of observed rice PKC, followed
by daily average humidity. The estimation accuracy of rice PKC could be significantly
improved by combining spectra and meteorological data in all model types. The rice PKC
estimation models of NDSI (FD1505, FD805) + AGDD, PLSR (FD-IBs + IFs-AGDD) and
RF (FD-IBs + IFs-AGDD) showed the best performance, with R2 of 0.68, 0.74, and 0.76,
and RMSEs of 0.41, 0.35, and 0.37, respectively. Furthermore, the optimal models showed
better stability and temporal transferability under different years and cultivation factors
(N and K levels and varieties). Our findings will provide novel evidence for the improved
estimation of crop K nutrition based on RS combined with meteorological data.
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