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Abstract: Recently, with the extensive application of deep learning techniques in the hyperspectral
image (HSI) field, particularly convolutional neural network (CNN), the research of HSI classification
has stepped into a new stage. To avoid the problem that the receptive field of naive convolution is
small, the dilated convolution is introduced into the field of HSI classification. However, the dilated
convolution usually generates blind spots in the receptive field, resulting in discontinuous spatial
information obtained. In order to solve the above problem, a densely connected pyramidal dilated
convolutional network (PDCNet) is proposed in this paper. Firstly, a pyramidal dilated convolutional
(PDC) layer integrates different numbers of sub-dilated convolutional layers is proposed, where the
dilated factor of the sub-dilated convolution increases exponentially, achieving multi-sacle receptive
fields. Secondly, the number of sub-dilated convolutional layers increases in a pyramidal pattern
with the depth of the network, thereby capturing more comprehensive hyperspectral information
in the receptive field. Furthermore, a feature fusion mechanism combining pixel-by-pixel addition
and channel stacking is adopted to extract more abstract spectral–spatial features. Finally, in order to
reuse the features of the previous layers more effectively, dense connections are applied in densely
pyramidal dilated convolutional (DPDC) blocks. Experiments on three well-known HSI datasets
indicate that PDCNet proposed in this paper has good classification performance compared with
other popular models.

Keywords: hyperspectral image classification; convolutional neural network; dilated convolution;
dense connection

1. Introduction

Hyperspectral remote sensing image is characterized by high dimension, high res-
olution, and rich spectral and spatial information [1], which have been diffusely used
in numerous real-world tasks, such as sea ice detection [2], ecosystem monitoring [3,4],
vegetation species analysis [5] and classification tasks [6,7]. With the speedy progress
of remote sensing technology and artificial intelligence (AI), a great proportion of new
theories and methods in deep learning have been proposed to handle the challenges and
problems faced by the field of hyperspectral image [8].

Hyperspectral image classification is an vital branch in the subject of HSI, which has
gradually become a crucial direction for scholars in the AI industry. It is worth noting
that hyperspectral image pixel-level classification determines the category label of each
pixel, and segmentation determines the boundary of a given category of objects. HSI
classification and segmentation are related to each other, and segmentation involves the
classification of individual pixels. A number of conventional spectral-based classifiers,
such as support vector machines (SVM) [9,10], random forest [11–13], k-nearest neighbors
(kNN) [14–16], Bayesian [17], etc., can only show good classification performance in the
case of abundant labeled training samples. Recently, more and more methods based

Remote Sens. 2021, 13, 3396. https://doi.org/10.3390/rs13173396 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-0323-9573
https://orcid.org/0000-0002-0895-3127
https://orcid.org/0000-0002-2364-2749
https://orcid.org/0000-0001-8774-8625
https://doi.org/10.3390/rs13173396
https://doi.org/10.3390/rs13173396
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13173396
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13173396?type=check_update&version=2


Remote Sens. 2021, 13, 3396 2 of 24

on deep learning have been applied to HSI classification tasks, and have achieved well
results, for instance, generative adversarial networks (GAN) [18–20], recurrent neural
networks (RNN) [21–23], fully convolutional network (FCN) [24–26] and convolution
neural network (CNN) [27–29]. Among the above methods, the capability of CNN is
peculiarly salient. For most image classification issues, CNN is mainly composed of
input layer, convolutional layer, pooling layer, fully connected layer and softmax layer.
The convolutional layer is the most crucial part of CNN, which consists of multiple hidden
layers. Hu et al. designed one-dimensional CNN (1D CNN) to extract feature maps of HSI
in the spectral domain [30]. Cao et al. proposed a two-dimensional CNN (2D CNN) based
on the active learning method, which reduces cost and improves accuracy by selecting
pixels with the largest amount of information for labeling [31]. Hyperspectral images
are typically divided into three-dimensional cubes, which makes it possible to classify
them with a three-dimensional network structure. Xu et al. suggested a three-dimensional
CNN (3-D CNN) framework for effectively extracting HSI information to acquire accurate
classification results [27]. Li et al. designed a 3D CNN model combined with regularization
to effectively extract the spectral-spatial features of hyperspectral images [32]. In addition,
Woo et al. focused on another architecture design, the convolutional block attention module
(CBAM), which can learned “what” and “where”, respectively, to enhance the network’s
presentation capabilities [33]. Ma et al. proposed a double-branch multi-attention (DBMA)
mechanism for HSI classification, and the branches of the network are used to capture
more discriminative spectral and spatial features [34]. Li et al. proposed a double-branch
dual-attention (DBDA) framework for HSI classification to capture and extract feature
information [35].

Generally speaking, one way to obtain better classification results is by increasing the
depth of the network. However, vanishing gradient and exploding gradient problems will
appear with the increase of network layers, which will lead in the decline of accuracy and
network degradation. He et al. proposed a residual network (ResNet) to solve the above
problems, which integrates the shallow layer features of the network into subsequent layers
through skip connections [36]. Zhong et al. applied the structure of residual blocks in
the field of HSI classification and achieved active results [37]. Zhong et al. designed a
supervised 3D spectral–spatial residual network (SSRN) to mitigate the decrease in model
accuracy [38]. Meng et al. proposed a multipath ResNet (MPRN) framework that makes
the network wider to realize effective gradient flow [39]. Inspired by ResNet, Han et al.
proposed a novel residual structure, namely pyramidal residual network (PresNet), which
can gradually increase the dimension of the feature maps to acquire as much information as
possible [40]. Paoletti et al. designed a deep PresNet for HSI classification, which involves
more location information as the depth of network increasing [41]. A fully dense multi-
scale fusion network (FDMFN) for HSI classification proposed in [42], by fusing multi-scale
spectral spatial features, which can obtain active classification results. Another way to
improve the performance of the network is by reusing the features of all the previous
layers, which can reduce parameters while avoiding the network being too deep or too
wide, and alleviate the problem of vanishing gradient to a certain extent. Huang et al.
proposed a dense connected network (DenseNet), which establishes a dense connection
between all the front layers and back layers to achieve feature reuse on the channel [43].
A mixed link network for HSI classification proposed in [44], by combining the advantages
of ResNet and DenseNet, which can further obtain the richer feature information and
enhance the network learning ability. Paoletti et al. proposed a novel framework for HSI
classification based on DenseNet, which can effectively alleviate overfitting and reduce
excessive parameters [45].

In addition, Nalepa et al. proposed a resource-saving quantitative convolutional
neural network for hyperspectral image segmentation, in which the quantization process
can be well combined with the training process [46]. Moreover, the network can greatly
reduce the complexity of the model without affecting the classification accuracy. Fu et al.
proposed a super-pixel segmentation algorithm [47]. For high-texture hyperspectral images,
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the algorithm can decompose them into inhomogeneous blocks, which well maintains
the homogeneous characteristic. Sun et al. proposed a fully convolutional segmentation
network, which can simultaneously recognize the true labels of all pixels in the HSI
cube [48]. For those cubes that contain more land cover categories, it has better recognition
capabilities. The DeepLab v3+ network shows active performance in the field of semantic
segmentation. Si et al. applied it to the field of HSI image classification for feature
extraction [49]. Then, the SVM classifier is used to get the final classification result.

CNN will have better classification performance if the convolutional layer can cap-
ture more spectral–spatial information. Although the problem that the receptive field of
naive convolution is too small can be effectively solved by dilated convolution, there are
unrecognized regions (blind spots) in the receptive field of dilated convolution. Inspired
by densely connected multi-dilated DenseNet (D3Net) [50], densely connected pyramidal
dilated convolutional network for HSI classification is proposed in this paper to acquired
more comprehensive feature information. The structure of the network is composed of
several densely pyramidal dilated convolutional blocks and transition layers. In order
to increase the size of the receptive field and eliminate blind spots without increasing
parameters, dilated convolution with different dilated factors are applied to develop PDC
layers. A hybrid feature fusion mechanism is applied to obtain richer information and
reduce the depth of the network. The main contributions of the paper are summarized as
follows. Firstly, the larger receptive field is obtained by applying the dilated convolution to
CNN. Furthermore, in order to avoid blind spots in the receptive field of the feature maps
extracted by dilated convolution, we set the dilated factors appropriately and increase the
width of the network. Then, the hybrid feature fusion method of pixel-by-pixel addition
and channel stacking is applied to extract more abstract feature information while effec-
tively utilizing features. In addition, our network (PDCNet) achieves better performance
on well-known datasets (Indian Pines, Pavia University and Salinas Valley datasets) by
combining dilated convolution and dense connections than some popular methods.

The remaining part of this paper is organized as follows: Some state-of-the-art tech-
nologies related to convolutional neural networks for HSI classification will be introduced
in Section 2. In Section 3, methods and network architecture proposed in this paper will be
described in detail. The experimental settings and classification results will be shown in
Section 4. The discussion of training samples, the number of parameters and the running
time of the networks are carried out in Section 5. The conclusion of the paper and the
outlook for future work are given in Section 6.

2. Related Work

Before introducing the hyperspectral image classification network proposed in this
paper, some relevant techniques are reviewed in this section, namely residual network
structure, pyramidal network structure, and dilated convolution.

2.1. Residual Network Structure

CNN can achieve good HSI classification performance. However, when the depth
of the network reaches a certain degree, the phenomenon of the vanishing gradient will
become more and more obvious, which will lead to the degradation of the network perfor-
mance. ResNet [37] addresses the problem by adding identity mapping between layers.
Recently, the idea of ResNet has been applied to various network models with good results.
In order to solve the problems of too small receptive field and localized feature information
obtained by naive convolution, Meng et al. proposed a deep residual involution network
(DRIN) for hyperspectral image classification by combining residual and involution [51]. It
can simulate remote spatial interaction through enlarged involution kernels, which makes
feature information obtained by the network more comprehensive. Hyperspectral images
often have high-dimensional characteristics. The equal treatment of all bands will cause the
neural network to learn features from the useless bands for classification, which will affect
the final classification results. In order to solve the above problem, Zhu et al. combined the
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residual and attention mechanism and proposed a residual spectral spatial attention net-
work (RSSAN) for HSI classification [6]. Firstly, the spectral–spatial attention mechanism
is used to emphasize useful bands and suppress useless bands. Then, the characteristic
feature information is sent to the residual spectral–spatial attention (RSSA) module. How-
ever, how to judge the useless band and the useful band is a key problem. Moreover,
the attention mechanism in RSSA module will increase parameters and the calculation cost.

2.2. Pyramidal Network Structure

Based on the idea of ResNet, a pyramid residual network (PresNet) for hyperspectral
image classification was proposed in [41]. It can involve more location information as
the depth of the network increases. In the basic unit of the pyramid residual network,
the number of channels of each convolutional layer increases in a pyramid shape. In order
to extract more discriminative and refined spectral-spatial features, Shi et al. proposed a
double-branch network for hyperspectral image classification by combining the attention
mechanism and pyramidal convolution [52]. Each branch contains two modules, namely
the pyramidal spectral block (the spectral attention) and the pyramidal spatial block (the
spatial attention). To solve the limitation that the pyramidal convolutional layer has a
single-size receptive field, Gong et al. proposed a pyramid pooling module, which can
aggregate multiple receptive fields of different scales and obtain more discriminative
spatial context information [53]. The pyramid pooling module is mainly implemented
by average pooling layers of different sizes, and then the feature map is restored to the
original image size through deconvolution. However, the multi-path network model has
more parameters than a single-path structure, which increases the running time of the
network. In addition, the average pooling layer will reduce the size of the feature map and
lose some feature information.

2.3. Dilated Convolution

Convolutional neural network has shown outstanding performance in the field of
hyperspectral image classification in recent years. However, naive convolution focuses on
the local feature information of hyperspectral images, which will cause the network to fail
to learn the spatial similarity of adjacent regions. As shown in Figure 1, the receptive field
of dilated convolution is usually larger than that of naive convolution, and more spatial
information can be obtained, which can effectively avoid the problem of limited features
obtained by naive convolution. It is worth noting that, as shown in Figure 1b, there are
unrecognized regions (blind spots) in the receptive field of the dilated convolution, which
will cause the obtained spatial information to be discontinuous.

(a) (b)

Figure 1. The ways of two different convolutions. (a) Naive convolution. (b) Dilated convolution.

A hybrid dilated convolution method is proposed for HSI classification, which com-
bines multi-scale residuals to obtain good classification results [54]. Although it obtains
a larger receptive field through hybrid dilated convolution, there are still a lot of blind
spots in the receptive field. Furthermore, traditional CNN mostly uses fixed convolution
kernels to extract features, which is not friendly to multi-scale features in hyperspectral
images. In order to solve the above problems, Gao et al. proposed a multi-depth and
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multi-scale residual block (MDMSRB), which can fuse multi-scale receptive fields and
multi-level features [55]. Although MDMSRB can integrate multi-scale receptive fields,
the problem of blind spots in the receptive fields has not really been solved. In other words,
when we introduce skip connections in different dilated convolution layers, there are still
unrecognized areas in the receptive field corresponding to the skip connections.

In order to take full advantage of dilated convolution, Xu et al. extended the idea
of multi-scale feature fusion and dilated convolution from spatial dimension to spectral
dimension by combining dilated convolution, 3D CNN and residual connection, which
makes it better applicable to HSI classification [27]. This method can obtain a wider range
of spectral information, and it is a unique advantage of dilated convolution in 3D CNN.
However, the introduction of dilated convolution into the spectrum will bring about the
problem of blind spots, and it will lead to the discontinuity of the obtained spectrum
information. In order to overcome the above problems, a PDCNet model is proposed in
the paper.

3. Materials and Methods
3.1. Densely Connected Network Structure

With the development of deep learning, compared with traditional machine learn-
ing methods, neural networks show excellent performance on image recognition tasks.
Simonyan et al. proposed the famous VGGNet in 2014 [56], which is mainly used in
large-scale image recognition field. Then, ResNet [37] and DenseNet [45] for HSI classifica-
tion came into being, which can extract more abstract spectral–spatial features and have
fewer parameters. DenseNet has more advantages than ResNet in that it applies more
skip connections, which improve the reuse of previous layers spectral–spatial features and
reduce the vanishing gradient.

All layers in DenseNet are directly connected to ensure the maximum transmission of
information between network layers. Simply put, the input of each layer is the output of
all previous layers. As depicted in Figure 2, the densely connected structure is composed
of several basic units, where the input of the nth basic unit (X(n)) is consisted of the outputs
of all previous blocks (1, 2, · · ·, n − 1) nd the input of the 1st basic unit, and the output
of the basic unit will be the input of the next basic unit. Each basic unit contains the
batch normalization (BN) layer, the ReLU activation function and the convolutional layer.
The input data is scaled to the appropriate range through the nonlinear activation function
of the BN layer, and then the expression ability of the neural network is improved by the
ReLU nonlinear activation function. The equation of the BN layer is defined as :

X(i) = γ × X(i) − mean[X(i)]√
Var[X(i)]

+ β , (1)

where γ and β are the scaling factor and the shift factor, respectively. Var[·] is the variance of
the input data. The BN layer can effectively avoid the internal convariate shift and maintain
the data distribution stable. The output of the ReLU layer is sent to the convolution layer
to extract richer information.

3×3
Convolutional layer

Batch normalization

ReLU

Figure 2. Densely connected convolutional block of DenseNet.
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3.2. Densely Pyramidal Dilated Convolutional Block

Dilated convolution, rather than naive convolution, is applied to DPDC blocks, which
can integrate more multi-scale context information without loss of resolution [54], thereby
improving spatial information utilization of HSI. The dilated convolution and receptive
field will be described in detail in Section 3.3.

The three different convolution blocks are depicted in Figure 3. As shown in Figure 3a,
three naive convolutional layers are densely connected. In order to increase the receptive
field and obtain richer hyperspectral information without losing the size of the feature
maps, dilated convolution is applied to replace naive convolution. As depicted in Figure 3b,
a larger receptive field is obtained by densely connecting multiple dilated convolutions
with different dilated factors, but there are blind spots in the receptive field, which will
result in the acquired feature information discontinuous. Reasonably setting the dilated
factors of the dilated convolution and increasing the width of the network like a pyramid
are considered to be effective methods to obtain more abstract and comprehensive feature
information (Figure 3c).

d=1 d=1 d=1

(a)

d=1 d=2 d=4

(b)

d=1 d=1,2 d=1,2,4

(c)

Figure 3. The structures of three different blocks. (a) Densely naive convolutional block. (b) Densely naive dilated
convolutional block. (c) Densely pyramidal dilated convolutional block.

The DPDC block in this paper is composed of several PDC layers, and dense connec-
tions are adopted between different PDC layers to increase the flow of information within
the network. The PDC layers is composed of dilated convolution layers with different
dilated factors:

Nk = n1
1 Λ n2

2 Λ n4
3 Λ · · · Λ nd

k , (2)

where Nk represents the kth PDC layer, and nd
k indicates that kth sub-dilated convolutional

layer with dilated factor d = 2k−1 in the kth PDC layer. Λ represents the stacking of sub-
dilated convolutional layers. Different skip connections correspond to different dilation
factors. Generally speaking, the shallower skip connection corresponds to the smaller
dilated factor. For instance, the skip connection between the input feature and the 3rd PDC
layer corresponds to a sub-dilated convolutional layer with a dilated factor of 1; the skip
connection between the 1st PDC layer and the 3rd PDC layer corresponds to a sub-dilated
convolutional layer with a dilated factor of 2. The width of the network will increase
as the number of PDC layers increases. The advantage of the structure is that more and
larger ranges of spatial information can be obtained, while avoiding blind spots in the
receptive field.

3.3. Receptive Field

The receptive field is defined as the region dominated by each neuron in the model.
In other words, the receptive field refers to the area where the pixels on the output feature
of each layer are mapped on the original image in the convolutional neural network. The re-
ceptive field of the 3rd layer of the densely naive dilated convolutional block (Figure 3b) is
depicted in Figure 4, and the size of convolutional kernel is 3 × 3. Red dots represent the
points to which the filter is applied, and colored backgrounds represent the receptive field
covered by red dots.
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(a) (b) (c)

Figure 4. The receiving fields of the 3rd layer in the different convolutional block (in the case of one-dimension). (a) The
receptive field (densely naive convolutional block). (b) The receptive field (densely naive dilated convolutional block).
(c) The receptive field (densely pyramidal dilated convolutional block).

Suppose that the input data is directly fed into these three blocks. The receptive field
of the 3rd layer in the densely naive convolutional block: As shown in Figure 4a, firstly, the
receptive field of 3 × 3 (purple shaded area) corresponds to the skip connection between
the input and the 3rd layer (see Figure 3a). Secondly, the receptive field of 5 × 5 (green
shaded area) corresponds to the skip connection between the 1st layer and the 3rd layer.
Finally, the receptive field of 7 × 7 (blue shaded area) corresponds to the skip connection
between the 2nd layer and the 3rd layer. Furthermore, they correspond to a grid point in
the output feature map (yellow shaded area).

The receptive field of the 3rd layer in the densely naive dilated convolutional block:
As shown in Figure 4b, the receptive field of 3 × 3 (purple shaded area) corresponds to the
skip connection between the input and the 3rd layer (see Figure 3b), but it contains a large
number of unrecognized areas, which leads to discontinuous hyperspectral information
obtained. The skip connection from the 1st layer to the 3rd layer corresponds to a larger
receptive field than the densely naive convolutional block, but there are still blind spots in
the receptive field, which is caused by the unreasonable setting of the dilated factor.

The receptive field of the 3rd layer in the DPDC block: As shown in Figure 4c, com-
pared with the receptive field of densely naive convolutioanl blocks, the skip connection
from the 1st layer to the 3rd layer in the densely pyramidal dilated convolutional block (see
Figure 3c) has a larger receptive field. Compared with densely naive dilated convolutional
blocks, there are no blind spots in the receptive field corresponding to the skip connections
from the 1st layer to the 3rd layer in the pyramidal dilated convolutional block. This is
mainly benefited from our reasonable setting of the dilated factor and the design of the
PDC layer. The PDC layer performs different convolutional operations on the feature maps
from different skip connections. For instance, the 3rd PDC layer in Figure 3c performs
d = 1 and d = 2 dilated convolutional operations on the feature maps from two different
skip connections, respectively. In DenseNet, feature maps of all previous k − 1 layers
[x0, x1, · · ·, xk−1] are used as the input of the kth layer:

Xk = R([x0, x1, · · ·, xk−1])⊗ wk , (3)

where R(·) refers to the composite operation of batch normalization and ReLU activation
function. [x0, x1, · · ·, xk−1] denotes the stacking of the feature maps (x0: the input feature)
on the channel from layer 0 to k − 1, and the size of convolutional kernel (wk) is 3 × 3.
The ⊗d with the dilated factor d = 2k−1 is used to represent the dilated convolution, and a
variation of Equation (3) can be acquired by applying ⊗d to Densenet:

Yk = R([x0, x1, · · ·, xk−1])⊗d wk . (4)

However, skip connections will cause blind spots in the receptive field, so that the
feature information learned by the convolutional layer is not comprehensive. To overcome
this problem, densely pyramidal dilated convolutional block is proposed and defined
as follows:
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Hk ⊗di
Wk =

k−1

∑
i=1

hi ⊗di
wi

k , (5)

where Hk = [h0, h1, · · ·, hk−1] = R([x0, x1, · · ·, xk−1]) is the output of composite layer, Wk
refers to the set of convolutional kernels at the kth layer and wi

k denotes the convolutional
kernel corresponding to the ith skip connection of the kth layer (wi

k is a subset of Wk).
The continuity of spatial information is well preserved in the DPDC block (Figure 4c).
In other words, blind spots problem in densely naive dilated convolutional block is effec-
tively solved by choosing approprite dilated factors and increasing network width like
a pyramid. The more comprehensive feature information of the PDC layer is obtained
by pixel-level addition of feature maps of its internal sublayers. Furthermore, the dense
connection mode is adopted between PDC layers, which can make more effective reuse of
features.

3.4. PDCNet Model

Take PDCNet with three DPDC blocks as an example, its network structure is shown
in Figure 5. BN + ReLU + Convolution (hereinafter referred to as Conv) is used as our
basic structure. Meanwhile, BN and ReLU operations are omitted in Figure 5. DenseNet
model for HSI classification, DPDC block, receptive fields and dilated convolution were
introduced in Sections 3.1–3.3. Although the size of the receptive field can be effectively
increased by dilated convolution, feature information obtained is discontinuous due to
the existence of blind spots. Therefore, while the dilated factors are effectively set in
the DPDC block, network width gradually increases like a pyramid, which is conducive
to eliminate blind spots, and acquire large-range and multi-scale feature information.
Furthermore, to take advantage of the features of the previous layers, the dense connection
pattern is introduced into PDCNet. High classification accuracy is achieved by combining
dilated convolution and dense connection to extract more comprehensive and rich features.
The Indian Pines dataset is applied as an example to feed into the PDCNet model proposed
in this paper.

Convolution	
Layer DPDC	Block Transition	

Layer

D
PD

C	Block

Transition	
LayerDPDC	Block

Adaptive	
Avgpooling	
Layer

Fully	
Connected	
Layer

Alfalfa

Corn-notill

Corn-mintill

Corn

Grass-pasture

Grass-trees

Stone-steel-towers

……

d=1 d=1,2 d=1,2,4

DPDC	Block

Transition	Layer

Co
nv
‐L
ay
er

1×1 

Figure 5. The framework of PDCNet.

PDCNet is composed of three DPDC blocks and two transition layers. The transition
layers are, respectively, embedded between the three DPDC blocks. The hyperspectral
image is divided into cubes and fed into the proposed network. Firstly, the input features
are sent to a convolution layer (the kernel size is 3 × 3) for feature extraction, and then
they are sent to the subsequent modules of the network. Each DPDC block is densely
connected by different number of PDC layers, while the PDC layer NK is stacked by
different sub-dilated convolutional layers nd

k . The input features of the DPDC block will be
allocated to the dilated convolutional layers in the PDC layer through skip connections.
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Secondly, a hybrid feature fusion mechanism is applied in PDCNet. As shown in Figure 3c,
the DPDC block contains two feature fusion methods: pixel-by-pixel addition and channel
stacking. The feature fusion method of channel stacking is adopted between different
PDC layers , and the pixel-by-pixel addition is used within each PDC layer and channel
stacking is applied between each PDC layers. The hybrid feature fusion mechanism can
realize the reuse of all previous layers output features while integrating large-range and
multi-scale feature maps. In order to flexibly change the number of channels and reduce
the parameters, Conv (the kernel size is 1 × 1) is applied in the transition layer. Finally,
the classification results are obtained by an adaptive average pooling layer and a fully
connected layer.

4. Experiments
4.1. Description of HSI Datasets

Indian Pines (IP): As a famous dataset for HSI classification, IP dataset was captured
by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over the remote
sensing test site in the northwest area of the India, 1992. It is composed of 200 valid
bands with spectral range from 0.4 to 2.5 µm after discarding 20 water absorption bands.
The image of IP has 145 × 145 pixels with a spatial resolution of 20 mpp, and 16 vegetation
classes are considered, e.g., alfalfa, oats, wheat, woods, etc. The ground-truth map, the
false-color image and the corresponding color label are given in Figure 6.

(a) (b)

Alfalfa
Corn‐notill
Corn‐mintill
Corn
Grass‐pasture
Grass‐trees
Grass‐pasture‐mowed
Hay‐windrowed
Oats
Soybean‐notill
Soybean‐mintill
Soybean‐clean
Wheat
Woods
Buildings‐grass‐trees‐drivers
Stone‐steel‐towers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

(c)

Figure 6. The Indian Pines Dataset. (a) The false-color image. (b) The ground-truth map. (c) The corresponding color labels.

Pavia University (UP): It was gathered by the Reflective Optices Spectrographic
Imaging System (ROSIS) over the Pavia University in Italy, 2001. It is comprised of
103 effective bands with spectral range from 0.43 to 0.86 µm after removing 12 noisy bands.
The image of UP has 610 × 340 pixels with spatial resolution of 1.3 mpp, and 9 feature
categories are used, such as trees, gravel, bricks, etc. The ground-truth map, the false-color
image and the corresponding color labels are revealed in Figure 7.

Salinas Valley (SV): SV dataset was obtained by the AVARIS senor over an agricultural
region of SV, CV, USA, in 1998, and it is consisted of 204 effective bands with spectral range
from 0.4 to 2.5 µm after ignoring 20 bands of low signal to noise ratio (SNR). The image of
SV has 512 × 217 pixels with spatial resolution of 3.7 mpp, and 16 land cover classes are
analyzed, e.g., fallow, stubble, celery, etc. The ground-truth map, the false-color image and
the corresponding color labels are displayed in Figure 8.
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Figure 7. The Pavia University dataset. (a) The false-color image. (b) The ground-truth map. (c) The
corresponding color labels.
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Figure 8. The Salinas Valley dataset. (a) The false-color image. (b) The ground-truth map. (c) The
corresponding color labels.
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4.2. Setting of Experimental Parameters

PyTorch deep learning framework is applied to a computer with 2.90 GHz Intel Core i5-
10400F central processing unit (CPU) and 16 GB memory for experiments, and the average
of five experimental results is taken as the final classification result. Three evaluation
indicators are used to evaluate the performance of different networks: overall accuracy
(OA), average accuracy (AA) and kappa coefficient (Kappa).

As shown in Table 1, 15% of the labeled samples in the IP dataset are used as the train-
ing set. Similarly, 5% and 2% of the label samples in the UP and SV datasets are used as the
training set and the remaining labeled samples as the testing set (Tables 2 and 3). To better
illustrate the robustness of the network, the performance of networks for comparison under
different proportions of training samples will be shown in Section 5.

Table 1. The number of samples in the IP dataset.

Number Class Train Samples Test Samples Total Samples

1 Alfalfa 7 39 46
2 Corn-notill 214 1214 1428
3 Corn-mintill 125 705 830
4 Corn 36 201 237
5 Grass-pasture 72 411 483
6 Grass-trees 110 620 730
7 Grass-pasture-mowed 4 24 28
8 Hay-windrowed 72 406 478
9 Oats 3 17 20

10 Soybean-notill 146 826 972
11 Soybean-mintill 368 2087 2455
12 Soybean-clean 89 504 593
13 Wheat 31 174 205
14 Woods 190 1075 1265
15 Buildings-grass-trees-drivers 58 328 386
16 Stone-steel-towers 14 79 93

Sum 1539 8710 10,249

Table 2. The number of samples in the UP dataset.

Number Class Train Samples Test Samples Total Samples

1 Asphalt 332 6299 6631
2 Meadows 932 17,717 18,649
3 Gravel 105 1994 2099
4 Trees 153 2911 3064
5 Painted metal sheets 67 1278 1345
6 Bare Soil 251 4778 5029
7 Bitumen 67 1263 1330
8 Self-Blocking Bricks 184 3498 3682
9 Shadows 47 900 947

Sum 2138 40,638 42,776

To verify the effectiveness of the method proposed in this paper, several network
models are adopted for comparative experiments. The optimal parameters of SVM [9]
are obtained by grid search algorithm, which is a traditional machine learning method.
In addition, comparative experiments are also carried out on some methods based on deep
learning: 3-D CNN [32], FDMFN [42], PresNet [41] and DenseNet [45]. A baseline network
(BMNet) composed of three densely naive convolutional blocks and two transition layers,
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and a dilated convolutional network (DCNet) composed of three dense ordinary dilated
convolutional blocks are proposed for comparison experiments in this paper.

The relevant hyper-parameters of the experiment are set as follows. The patch size of
comparative experiments with other models is set to 11 × 11, and the epoch and batch size
is 100. The learning rate of 3D-CNN, FDMFN, DenseNet, and PDCNet are set to 0.001. The
learning rate of PresNet is 0.1. We use AdaptiveMoment Estimation (Adam) optimizer to
optimize the learning rate for 3D-CNN, FDMFN, DenseNet, and PDCNet. The Stochastic
Gradient Descent (SGD) optimizer is used to optimize the learning rate of PresNet. We use
Cosine Annealing LR scheduler in the comparative experiments.

Table 3. The number of samples in the SV dataset.

Number Class Train Samples Test Samples Total Samples

1 Brocoli_green_weeds_1 40 1969 2009
2 Brocoli_green_weeds_2 75 3651 3726
3 Fallow 40 1936 1976
4 Fallow_rough_plow 28 1366 1394
5 Fallow_smooth 54 2624 2678
6 Stubble 79 3880 3959
7 Celery 72 3507 3579
8 Grapes_untrained 225 11,046 11,271
9 Soil_vinyard_develop 124 6079 6203

10 Corn_senesced_green_weeds 66 3212 3278
11 Lettuce_romaine_4wk 21 1047 1068
12 Lettuce_romaine_5wk 39 1888 1927
13 Lettuce_romiane_6wk 18 898 916
14 Lettuce_romiane_7wk 21 1049 1070
15 Vinyard_untrained 145 7123 7268
16 Vinyard_vertical_trellis 36 1771 1807

Sum 1083 53,046 54,129

4.3. Influence of Parameters

Growth Rate g: It is used to control output channels of the convolutional layer. In the
DPDC block, the number of output channels of each PDC layer will increase by g. For in-
stance, the final output channel number of a DPDC block with three PDC layers will
increase by 3× g. By adjusting the parameter, the information flow in the network can be
controlled flexibly. The growth rate g in PDCNet is set as 52 because it achieved the highest
classification accuracy, as shown in Table 4.

Table 4. OA (%) of PDCNet with different growth rate g in IP, UP, and SV datasets.

Datasets 40 46 52 58 64

IP 99.43 ± 0.28 99.39 ± 0.28 99.43 ± 0.20 99.39 ± 0.21 99.40 ± 0.22
UP 99.78 ± 0.02 99.80 ± 0.05 99.82 ± 0.06 99.81 ± 0.03 99.78 ± 0.07
SV 99.12 ± 0.25 99.09 ± 0.23 99.15 ± 0.13 99.05 ± 0.29 98.93 ± 0.24

PDC Layer: The influence of PDCNet with different numbers of PDC layers in each
DPDC block on the overall accuracy is shown in Table 5. Note that here the number of
DPDC blocks is fixed to 3. PDCNet with 5 PDC layers in each DPDC block has the highest
OA on the IP dataset. However, PDCNet with 3 PDC layers and PDCNet with 5 PDC layers
in each block have little difference in accuracy on the IP dataset, so we choose PDCNet
with 3 PDC layers in each block. PDCNet, which contains 3 PDC layers in each DPDC
block, has the highest OA on the UP dataset. PDCNet with 2 PDC layers in each DPDC
block reached the highest OA on the SV dataset.
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Table 5. OA (%) of PDCNet with different number of PDC layers in IP, UP, and SV datasets.

Datasets 2 3 4 5 6

IP 99.44 ± 0.20 99.43 ± 0.20 99.34 ± 0.23 99.45 ± 0.25 99.41 ± 0.24
UP 99.78 ± 0.01 99.82 ± 0.06 99.76 ± 0.03 99.77 ± 0.05 99.78 ± 0.04
SV 99.18 ± 0.17 99.15 ± 0.13 99.06 ± 0.25 99.02 ± 0.21 98.96 ± 0.15

DPDC Block: The influence of PDCNet with different numbers of DPDC blocks on
the overall accuracy is shown in Table 6. Note that here the number of PDC layers in each
block is fixed to 3. PDCNet with 2 DPDC blocks has the highest OA on the IP dataset.
PDCNet with 3 DPDC blocks has the highest OA on the UP dataset in Table 6. PDCNet
with 3 DPDC blocks has the highest accuracy on the SV dataset.

From the perspective of accuracy, comparing Tables 5 and 6, firstly, we choose PDCNet
with 2 DPDC blocks and 3 PDC layers in each block as the optimal PDCNet in the IP dataset.
Secondly, PDCNet with 3 DPDC blocks and 3 PDC layers in each block is considered the
optimal PDCNet in the UP dataset. Finally, the PDCNet with 3 DPDC blocks and 2 PDC
layers in each block has the highest accuracy in the SV dataset.

Table 6. OA (%) of PDCNet with different number of DPDC blocks in IP, UP, and SV datasets.

Datasets 1 2 3 4 5

IP 99.40 ± 0.19 99.47 ± 0.17 99.43 ± 0.20 99.44 ± 0.20 99.42 ± 0.21
UP 99.73 ± 0.09 99.81 ± 0.02 99.82 ± 0.06 99.78 ± 0.04 99.71 ± 0.06
SV 98.97 ± 0.22 99.14 ± 0.25 99.15 ± 0.13 98.95 ± 0.34 98.88 ± 0.28

Patch Size: The impact of different patches on the overall accuracy of the network is
shown in Table 7. The network proposed in this paper achieves good results under the
different patch sizes. When the patch size is 11 × 11, PDCNet has the highest accuracy on
the UP dataset, and has good performance on other datasets. In addition, considering the
impact of patch size on training time, the patch size of the PDCNet model is set to 11 × 11.

Table 7. OA (%) of PDCNet with different patch size in IP, UP, and SV datasets.

Datasets 9 11 13 15 17

IP 99.36 ± 0.09 99.43 ± 0.20 99.50 ± 0.18 99.38 ± 0.10 99.46 ± 0.06
UP 99.74 ± 0.10 99.82 ± 0.06 99.80 ± 0.05 99.74 ± 0.05 99.71 ± 0.07
SV 98.53 ± 0.13 99.15 ± 0.13 99.29 ± 0.21 99.45 ± 0.15 99.67 ± 0.12

4.4. Ablation Experiments

As shown in Figure 3, three different blocks are designed in the paper. BMNet:
BMNet is constructed by stacking three densely naive convolutional blocks (Figure 3a) and
two transition layers, where the dilated factor of each convolutional layer is 1, and then
densely connecting three naive convolutional layers to form a densely dilated convolutional
block. DCNet: Compared with BMNet, DCNet is constructed by stacking three densely
dilated convolutional blocks (Figure 3b) and two transition layers, where the dilated factor
(d = 2k−1) of each dilated convolutional layer increases in turn, which can obtain larger
the receptive field. However, there are blind spots in the receptive field. PDCNet: In
order to reasonably increase the receptive field without introducing blind spots in the
receptive field, a PDC layer is proposed, which contains sub-dilated convolutional layers
with different dilated factors (Figure 3c). The DPDC block is composed of three PDC layers,
and their width increases as the depth increases like a pyramid. The basic structure of
PDCNet consists of three DPDC blocks and two transition layers through cross-stacking.
To illustrate the effectiveness of the network proposed in this paper, BMNet, DCNet and
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PDCNet are experimented under the same parameter settings (i.e., patch size, learning rate,
growth rate, etc.).

The overall accuracy of BMNet, DCNet and PDCNet in different proportions of
training samples is shown in Figure 9. Overall accuracy on IP dataset of training samples
with different proportions is shown in Figure 9a. The overall accuracy of PDCNet is
represented by the red line, which has the highest accuracy compared to other models.
As depicted in Figure 9b, with the proportion of training samples increasing, the overall
accuracy of three networks become more and more close, but on the whole, PDCNet still
showed good performance. As shown in Figure 9c, the overall accuracy of PDCNet is much
higher than that of other networks with 2% of training samples. The OA, AA and Kappa of
BMNet, DCNet and PDCNet with the same hyper-parameter settings on the three datasets
(IP, UP and SV datasets) are shown in Figure 10. As a whole, the proposed network has the
highest classification performance.
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Figure 9. OA of different training samples with three datasets on BMNet, DCNet and PDCNet. (a) OA on IP dataset. (b)
OA on UP dataset. (c) OA on SV dataset.
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Figure 10. Performance of BMNet, DCNet and PDCNet on different HSI datasets. (a) Metrics on IP dataset. (b) Metrics on
UP dataset. (c) Metrics on SV dataset.

4.5. Classification Results
4.5.1. Classification Results (IP Dataset)

The classification results of PDCNet framework and other comparison methods on
IP datasets are shown in Table 8. Correspondingly, Figure 11 shows classification maps
of the model designed in this paper and other models, where Figure 11a,b are the false
color image and the ground truth, respectively. Obviously, compared with other networks,
the model designed in this paper has higher accuracy.

As shown in Table 8, the OA, AA and Kappa of the proposed network (PDCNet) are
99.47%, 99.03% and 99.39%, respectively. According to the classification results of Alfalfa
(class 1), the accuracy of PDCNet reaches 97.95%, which is higher than that of other models.
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Compared with SVM, 3-D CNN, FDMFN, PresNet and DenseNet, the overall accuracy of
the network proposed in this paper is increased by 14.93%, 2.22%, 1.00%, 0.73% and 0.35%,
respectively. The average accuracy and Kappa coefficient are also improved to different
degrees. As depicted in Figure 11, the classification accuracy of SVM is poor, and there are
many noises and spots in classification map. Three-dimensional CNN has a poor ability
to process edge information, which leads to edge classification errors in many categories,
such as Corn-notill (class 2) and Soybean-notill (class 10) in the classification map. FDMFN,
PresNet, DenseNet and PDCNet have better classification performance, but FDMFN has
poor classification ability on Alfalfa and Corn-notill. Furthermore, PresNet cannot correctly
classify the edges of Soybean-mintill (class 11) and Buildings-grass-trees-drivers (class 15).
Furthermore, DenseNet achieves accuracy close to that of PDCNet, but internal noises of
DenseNet is more than PDCNet. The problem can be avoided by setting the dilated factor
in the dilated convolution reasonably.

While the PDC layer acquires a larger receptive field, it also ensures the continuity
of spatial information, which can effectively reduce noise pollution in the receptive field.
Therefore, compared with the classification results of other models, the classification map
of PDCNet (Figure 11) has less noise and spots on the IP dataset.

Table 8. The classification results for the IP dataset based on 15% training samples. The best results are highlighted in
bold font.

Class SVM 3-D CNN FDMFN PresNet DenseNet PDCNet

1 66.15 ± 8.17 95.90 ± 1.26 88.21 ± 13.63 95.90 ± 3.08 96.92 ± 2.99 97.95 ± 1.92
2 81.55 ± 2.35 96.06 ± 0.79 97.50 ± 0.80 98.93 ± 0.35 99.32 ± 0.30 99.34 ± 0.32
3 76.83 ± 3.44 95.73 ± 1.26 97.44 ± 1.22 98.66 ± 0.98 99.57 ± 0.29 99.46 ± 0.57
4 70.33 ± 4.14 94.26 ± 4.66 96.64 ± 2.70 97.13 ± 3.28 97.43 ± 2.60 99.11 ± 1.34
5 92.55 ± 2.56 96.74 ± 1.16 98.59 ± 0.90 98.93 ± 0.91 99.32 ± 0.64 99.07 ± 1.03
6 96.75 ± 0.70 99.29 ± 0.28 99.52 ± 0.35 99.52 ± 0.51 99.55 ± 0.26 99.71 ± 0.26
7 80.83 ± 5.65 97.50 ± 3.33 93.33 ± 6.77 96.67 ± 4.86 97.50 ± 5.00 96.67 ± 3.12
8 98.33 ± 0.57 100.00 ± 0.0 100.00 ± 0.0 99.95 ± 0.10 100.00 ± 0.0 100.00 ± 0.0
9 63.53 ± 12.0 87.06 ± 5.76 91.76 ± 16.5 98.82 ± 2.35 95.29 ± 4.40 98.82 ± 2.35
10 77.74 ± 4.91 94.49 ± 1.94 97.57 ± 1.16 96.89 ± 1.37 98.13 ± 2.11 98.59 ± 1.39
11 84.32 ± 2.52 98.06 ± 0.69 99.32 ± 0.35 99.29 ± 0.54 98.76 ± 0.94 99.75 ± 0.19
12 80.83 ± 3.73 96.67 ± 1.24 97.75 ± 1.24 96.88 ± 1.16 99.05 ± 0.70 98.93 ± 0.69
13 96.32 ± 2.04 99.31 ± 0.67 99.77 ± 0.46 99.66 ± 0.46 100.00 ± 0.0 99.66 ± 0.46
14 94.42 ± 1.16 99.13 ± 0.62 99.65 ± 0.23 99.74 ± 0.27 99.70 ± 0.24 100.00 ± 0.0
15 67.52 ± 3.90 96.01 ± 4.80 96.50 ± 4.23 96.79 ± 3.01 99.64 ± 0.48 99.70 ± 0.46
16 92.66 ± 0.51 98.48 ± 1.86 99.24 ± 0.62 98.99 ± 0.51 97.72 ± 1.24 97.72 ± 0.95

OA (%) 84.54 ± 0.48 97.25 ± 0.09 98.47 ± 0.28 98.74 ± 0.26 99.12 ± 0.45 99.47 ± 0.17
AA (%) 82.54 ± 1.07 96.54 ± 0.40 97.05 ± 1.50 98.30 ± 0.50 98.62 ± 0.49 99.03 ± 0.31

Kappa (%) 82.39 ± 0.55 96.87 ± 0.10 98.25 ± 0.32 98.57 ± 0.30 99.00 ± 0.51 99.39 ± 0.20
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Figure 11. Classification performance of different network models over IP dataset. (a) False-color image. (b) Ground truth.
(c) SVM. (d) 3-D CNN. (e) FDMFN. (f) DenseNet. (g) PresNet. (h) PDCNet.

4.5.2. Classification Results (UP Dataset)

The classification result of the proposed network and other comparison methods
on the UP dataset are indicated in Table 9. Correspondingly, Figure 12 indicates the
classification maps of PDCNet model and other models, where Figure 12a,b are the false
color image and the ground truth, respectively. In summary, the model suggested in this
paper has the highest accuracy compared to other networks.

Table 9. The classification results for the UP dataset based on 5% training samples. The best results are highlighted in
bold font.

Class SVM 3-D CNN FDMFN PresNet DenseNet PDCNet

1 92.98 ± 0.76 98.44 ± 1.00 99.38 ± 0.23 99.36 ± 0.14 99.77 ± 0.14 99.69 ± 0.31
2 97.33 ± 0.21 99.71 ± 0.15 99.90 ± 0.06 99.88 ± 0.08 99.96 ± 0.03 99.99 ± 0.01
3 76.97 ± 2.25 90.73 ± 2.91 95.74 ± 2.42 95.70 ± 2.67 98.35 ± 0.75 99.82 ± 0.13
4 87.15 ± 1.93 97.62 ± 0.89 98.83 ± 0.38 98.52 ± 0.59 98.91 ± 0.37 98.89 ± 0.52
5 99.31 ± 0.09 99.66 ± 0.36 99.92 ± 0.09 100.00 ± 0.0 99.84 ± 0.13 99.83 ± 0.10
6 77.14 ± 1.28 98.64 ± 1.74 98.86 ± 1.45 99.88 ± 0.15 99.99 ± 0.02 99.99 ± 0.01
7 58.04 ± 5.75 92.29 ± 3.89 98.15 ± 1.52 97.31 ± 2.00 99.76 ± 0.40 99.87 ± 0.15
8 85.25 ± 1.59 96.62 ± 1.81 99.11 ± 0.24 98.81 ± 0.86 99.78 ± 0.33 99.89 ± 0.19
9 99.84 ± 0.15 98.60 ± 0.62 99.64 ± 0.20 99.93 ± 0.13 99.02 ± 0.68 99.07 ± 0.74

OA (%) 90.67 ± 0.16 98.26 ± 0.79 99.28 ± 0.17 99.33 ± 0.09 99.73 ± 0.02 99.82 ± 0.06
AA (%) 86.00 ± 0.79 96.92 ± 1.22 98.84 ± 0.33 98.82 ± 0.24 99.49 ± 0.06 99.67 ± 0.08

Kappa (%) 87.26 ± 0.22 97.70 ± 1.04 99.05 ± 0.23 99.11 ± 0.12 99.65 ± 0.03 99.76 ± 0.07
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Figure 12. Classification performance of different network models over UP dataset. (a) False-color
image. (b) Ground truth. (c) SVM. (d) 3-D CNN. (e) FDMFN. (f) DenseNet. (g) PresNet. (h) PDCNet.

As shown in Table 9, the OA, AA and Kappa of the designed netwrok (PDCNet)
reaches 99.82%, 98.67% and 99.76%, respectively. Compared with SVM, 3-D CNN, FDMFN,
PresNet, DenseNet, the kappa coefficient of PDCNet is improved by 12.50%, 2.06%, 0.71%,
0.65% and 0.11%, respectively. The overall accuracy and average accuracy are also im-
proved to different degrees. As depicted in Figure 12, there are many noises in the classifi-
cation areas of Gravel (class 3), Bare Soil (class 6) and Bitumen (class 7) in the classification
map of SVM. Relatively speaking, the methods based on deep learning can reduce noises
on the classification map of UP dataset. However, 3-D CNN, FDMFN and PresNet still
have unsatisfactory classification results on Gravel and Bitumen. Although DenseNet has
better classification performance on Bitumen, there is still obvious wrong classification for
Gravel. It is worth noting that PDCNet has good classification results on areas that are
difficult to classify, such as Gravel, Bare Soil and Bitumen.

Compared with the single feature fusion method of DenseNet, the feature fusion mech-
anism that combines pixel-by-pixel addition and channel stacking applied in PDCNet is
more effective, and a larger receptive field is captured by dilated convolution. The spectral–
spatial features obtained by PDCNet are more abstract and comprehensive, which makes it
possible to classify some areas that are more difficult to distinguish accurately.

4.5.3. Classification Results (SV Dataset)

The classification result of the network suggested in this paper (PDCNet) and other
comparison methods on the SV dataset are shown in Table 10. Correspondingly, Figure 13
shows the classification maps of PDCNet and other models, where Figure 13a,b are the
false color image and the ground truth, respectively. In short, the proposed model has
higher accuracy compared to other networks on the SV dataset.
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As shown in Table 10, the OA, AA and Kappa of the network proposed in this paper
(PDCNet) obtains the classification results of 99.18%, 99.62% and 99.08%, respectively.
Compared with SVM, 3-D CNN, FDMFN, PresNet, DenseNet, overall accuracy of PDCNet
is improved by 8.52%, 5.43%, 1.56%, 1.02% and 1.06%, respectively. The overall accuracy
and the average accuracy are also improved to different degrees. As depicted in Figure 13,
SVM cannot classify Grapes_untrained (class 8) and Vinyard_untrained (class 15) well,
and there is serious noise pollution in the classification area of these categories. Although 3-
D CNN alleviates the problem of noise pollution to a certrain extent, it is more sensitive to
edge information, such as Soil_vinyard_develop (class 9), Lettuce_romiane_7wk (class 14)
and Corn_senesced_green_weeds (class 10). In addition, for Grapes_untrained and Vin-
yard_untrained, PDCNet has less pollution and higher classification results than FDMFN,
PresNet and DenseNet.

The higher classification results are mainly attributed to the combination of two ideas
in PDCNet. Firstly, the blind spot problem in the receptive field is solved by setting the
dilated factor reasonably and increasing the network width like a pyramid, which makes
the classification map have less noise and spots. Secondly, the feature fusion method
of the hybrid mode is adopted to obtain richer and comprehensive feature information.
Furthermore, a larger receptive field is acquired through dilated convolution, which allows
the edge features of each category to be better distinguished.

From the perspective of experimental results, compared with some traditional classifi-
cation methods, the PDCNet proposed in this paper shows the best classification results on
the three datasets. Firstly, from the classification accuracy of the three datasets, PDCNet
obtained the highest classification accuracy. Secondly, the classification map of PDCNet
on the three datasets suffers the least pollution, and it contains the least noise and spots.
From the point of view of the network structure, we have introduced dilated convolution
and short connections in the DPDC block, while obtaining a larger receptive field, it also
eliminates the problem of blind spots caused by dilated convolution, which allows PDCNet
to obtain more continuous and comprehensive spatial information.

Table 10. The classification results for the SV dataset based on 2% training samples. The best results are highlighted in bold font.

Class SVM 3-D CNN FDMFN PresNet DenseNet PDCNet

1 98.32 ± 0.64 99.22 ± 0.90 99.57 ± 0.67 99.80 ± 0.22 84.33 ± 13.24 100.00 ± 0.0
2 99.67 ± 0.31 99.78 ± 0.18 99.96 ± 0.04 99.75 ± 0.48 99.98 ± 0.03 100.00 ± 0.0
3 96.55 ± 4.33 97.96 ± 2.10 99.73 ± 0.39 99.71 ± 0.24 99.12 ± 1.68 99.98 ± 0.04
4 99.18 ± 0.31 99.33 ± 0.50 99.50 ± 0.56 99.33 ± 0.29 99.41 ± 0.69 99.37 ± 0.55
5 98.31 ± 0.97 97.26 ± 0.93 99.71 ± 0.26 99.66 ± 0.22 99.64 ± 0.26 99.70 ± 0.35
6 99.61 ± 0.18 99.92 ± 0.11 99.99 ± 0.01 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
7 99.44 ± 0.28 99.41 ± 0.25 99.94 ± 0.13 99.90 ± 0.10 99.97 ± 0.03 99.99 ± 0.01
8 86.92 ± 1.67 88.68 ± 1.25 93.05 ± 1.07 95.07 ± 0.31 96.15 ± 1.70 97.62 ± 0.62
9 99.04 ± 0.82 99.38 ± 0.46 100.00 ± 0.0 99.89 ± 0.13 99.69 ± 0.55 100.00 ± 0.0

10 94.24 ± 0.73 96.37 ± 1.72 98.64 ± 0.96 98.85 ± 0.92 99.59 ± 0.41 99.68 ± 0.36
11 94.01 ± 3.98 97.25 ± 1.77 99.69 ± 0.35 98.93 ± 1.06 99.64 ± 0.36 99.90 ± 0.15
12 99.51 ± 0.41 99.59 ± 0.35 99.99 ± 0.02 99.99 ± 0.02 100.00 ± 0.0 100.00 ± 0.0
13 98.37 ± 0.58 99.35 ± 0.46 99.93 ± 0.09 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
14 91.08 ± 2.20 97.16 ± 1.65 99.81 ± 0.13 99.92 ± 0.11 99.56 ± 0.74 99.96 ± 0.05
15 61.00 ± 2.57 77.19 ± 3.89 94.61 ± 1.09 95.58 ± 1.22 97.42 ± 1.81 98.03 ± 0.90
16 98.05 ± 0.98 97.38 ± 1.02 98.45 ± 0.70 99.00 ± 0.64 99.67 ± 0.28 99.74 ± 0.23

OA (%) 90.66 ± 0.50 93.75 ± 0.78 97.62 ± 0.19 98.16 ± 0.15 98.12 ± 0.78 99.18 ± 0.17
AA (%) 94.58 ± 0.62 96.58 ± 0.41 98.91 ± 0.05 99.09 ± 0.13 98.39 ± 1.04 99.62 ± 0.07

Kappa (%) 89.59 ± 0.55 93.03 ± 0.87 97.35 ± 0.21 97.96 ± 0.17 97.90 ± 0.87 99.08 ± 0.19
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 13. Classification performance of different network models over SV dataset. (a) False-color
image. (b) Ground truth. (c) SVM. (d) 3-D CNN. (e) FDMFN. (f) DenseNet. (g) PresNet. (h) PDCNet.

4.6. Comparison with Other Segmentation Method

In this section, we use the PDCNet model structure shown in Figure 5 to conduct a
comparative experiment with another hyperspectral image segmentation method (DeepLab
v3+) [49] on the UP and KSC datasets. The corresponding classification results are shown in
Table 11. We randomly select 5% of the labeled training samples in the UP and KSC datasets.

As shown in Table 11, the network proposed in this paper and DeepLab v3+ achieved
similar OA and Kappa on the KSC dataset. However, AA of PDCNet is lower than that of
DeepLab v3+. It is worth noting that the accuracy of PDCNet on the UP dataset is higher
than DeepLab v3+. Among them, the OA, AA and Kappa of PDCNet are 0.72%, 0.31%
and 0.95% higher than those of DeepLab v3+, respectively. Overall, PDCNet has achieved
similar OA and Kappa to DeepLab v3+ on the KSC dataset. The OA, AA and Kappa of
PDCNet on the UP dataset are all higher than DeepLab v3+.
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Table 11. The classification results of PDCNet and DeepLab v3+ on the KSC and UP datasets based
on 5% of the training samples.

Class
KSC (5%) UP (5%)

DeepLab v3+ PDCNet DeepLab v3+ PDCNet

1 98.89 100.0 99.19 99.69
2 100.0 95.84 99.48 99.99
3 97.98 97.53 99.30 99.82
4 99.13 88.79 97.53 98.89
5 96.20 90.20 99.92 99.83
6 100.0 98.06 99.79 99.99
7 100.0 92.20 98.90 99.87
8 91.42 98.98 96.91 99.89
9 100.0 100.0 99.78 99.07
10 99.47 99.53 / /
11 98.74 99.65 / /
12 97.88 99.54 / /
13 100.0 100.0 / /

OA (%) 98.47 98.40 99.10 99.82
AA (%) 98.44 96.95 98.98 99.67

Kappa (%) 98.29 98.22 98.81 99.76

5. Discussion
5.1. Influence of Training Samples

Different proportions of training samples on IP, UP and SV datasets are adopted to
measure the performance of different networks. The overall accuracy of SVM, 3D CNN,
FDMFN, PresNet, DenseNet and PDCNet are shown in Table 12. Note that here PDCNet
with 3 DPDC blocks (3 PDC layers in each block) is used for comparison. On the IP dataset,
the netwrok suggested in this paper is 0.79%, 0.66%, 0.69%, 0.45% higher than PresNet,
and 0.26%, 0.27%, 0.31%, 0.31%, 0.14% higher than DenseNet. The overall accuracy of
PDCNet is also improved in UP and SV datasets. The designed network shows great
overall accuracy under different proportion of training samples.

5.2. Analysis of Running Time and Number of Network Parameters

Table 13 shows the running time and parameters of different networks on IP, UP and
SV datasets. Note that here PDCNet with three DPDC blocks and three PDC layers in
each block is used for comparison. Since the PDC layer in PDCNet could contain several
sub-dilated convolutional layers, the training time of the network designed in this paper is
longer than that of other networks. In addition, the parameters of the suggested network
are more than those of 3D CNN and FDMFN. However, the proposed network has fewer
parameters than DenseNet and PresNet.
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Table 12. OA(%) of different methods with different proportions of training samples. The best results are highlighted in
bold font.

Dataset Training Samples SVM 3-D CNN FDMFN PresNet DenseNet PDCNet

IP

12.0% 83.19 ± 0.60 95.98 ± 0.23 97.60 ± 0.35 98.38 ± 0.27 98.91 ± 0.27 99.17 ± 0.19
13.0% 83.88 ± 0.58 96.63 ± 0.09 98.04 ± 0.33 98.56 ± 0.31 98.95 ± 0.28 99.22 ± 0.34
14.0% 84.27 ± 0.59 96.95 ± 0.09 98.30 ± 0.36 98.58 ± 0.45 99.03 ± 0.33 99.34 ± 0.20
15.0% 84.54 ± 0.48 97.25 ± 0.09 98.47 ± 0.28 98.74 ± 0.26 99.12 ± 0.45 99.43 ± 0.20
16.0% 84.82 ± 0.65 97.76 ± 0.26 98.70 ± 0.34 99.05 ± 0.24 99.36 ± 0.20 99.50 ± 0.19

UP

4.00% 90.32 ± 0.16 96.84 ± 1.86 98.82 ± 0.24 98.80 ± 0.26 99.57 ± 0.07 99.60 ± 0.06
5.00% 90.67 ± 0.16 98.26 ± 0.79 99.28 ± 0.17 99.33 ± 0.09 99.73 ± 0.02 99.82 ± 0.06
6.00% 90.85 ± 0.16 98.58 ± 0.65 99.54 ± 0.12 99.49 ± 0.21 99.75 ± 0.07 99.85 ± 0.03
7.00% 90.95 ± 0.14 98.75 ± 0.43 99.61 ± 0.08 99.62 ± 0.19 99.79 ± 0.03 99.89 ± 0.04
8.00% 91.05 ± 0.11 98.79 ± 0.57 99.65 ± 0.10 99.65 ± 0.15 99.77 ± 0.16 99.88 ± 0.05

SV

2.00% 90.66 ± 0.50 93.75 ± 0.78 97.62 ± 0.19 98.16 ± 0.15 98.12 ± 0.78 99.15 ± 0.13
3.00% 91.35 ± 0.23 94.46 ± 0.50 97.98 ± 0.49 98.09 ± 0.32 97.98 ± 0.90 99.18 ± 0.33
4.00% 91.90 ± 0.22 95.91 ± 0.40 98.98 ± 0.14 99.42 ± 0.12 99.48 ± 0.20 99.75 ± 0.07
5.00% 92.12 ± 0.18 96.59 ± 0.50 99.27 ± 0.15 99.48 ± 0.18 99.64 ± 0.10 99.86 ± 0.07
6.00% 92.36 ± 0.14 96.71 ± 0.27 99.36 ± 0.13 99.57 ± 0.19 99.66 ± 0.15 99.88 ± 0.05

Table 13. Comparison of networks parameters and running time.

Dataset Method Training Time (s) Testing Time (s) Total Params (M)

IP

SVM 16.562 5.270 /
3-D CNN 77.328 4.313 0.101
FDMFN 45.623 2.177 0.139
PresNet 77.152 3.975 1.126

DenseNet 108.55 5.229 4.749
PDCNet 180.27 3.578 1.020

UP

SVM 12.294 12.575 /
3-D CNN 63.365 22.895 0.050
FDMFN 53.930 15.485 0.137
PresNet 96.108 34.141 1.110

DenseNet 138.71 47.872 4.651
PDCNet 234.46 29.790 0.927

SV

SVM 6.967 9.888 /
3-D CNN 53.659 22.261 0.103
FDMFN 32.264 11.695 0.139
PresNet 54.216 21.372 1.127

DenseNet 75.681 28.788 4.753
PDCNet 125.25 19.043 1.024

6. Conclusions

In this paper, we propose a densely connected pyramidal dilated convolutional neural
network for hyperspectral image classification, which can capture more comprehensive
spatial information. Firstly, the PDC layer is composed of different numbers of dilated
convolutions with different dilated factors to obtain receptive fields of multiple scales.
Secondly, in order to eliminate blind spots in the receptive field, we densely connect
different numbers of PDC layers to form a DPDC block. It can be seen from the classification
result maps on the three datasets that the classification map of PDCNet suffers the least
pollution and contains the least noise and spots, which is mainly due to the design of the
DPDC block. Finally, a hybrid feature fusion mechanism of pixel-by-pixel addition and
channel stacking is applied in PDCNet to improve the discriminative power of features.
This is another reason for our good classification accuracy. In addition, the experimental
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results on three datasets show that our method can obtain good classification performance
compared with other popular models.

In future work, since we have increased the width of the network, the training time
of PDCNet is relatively long. Therefore, some methods to reduce computing cost will be
considered and applied to the network in this paper. In addition, in order to further obtain
more abstract spectral–spatial features, some new methods will be considered, such as
channel shuffling technology and the utilization of more frequency domain information in
pooling layer.
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