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Abstract: To enhance obstacle avoidance abilities of the plant protection UAV in unstructured
farmland, this article improved the traditional A* algorithms through dynamic heuristic functions,
search point optimization, and inflection point optimization based on millimeter wave radar and
monocular camera data fusion. Obstacle information extraction experiments were carried out. The
performance between the improved algorithm and traditional algorithm was compared. Additionally,
obstacle avoidance experiments were also carried out. The results show that the maximum error in
distance measurement of data fusion method was 8.2%. Additionally, the maximum error in obstacle
width and height measurement were 27.3% and 18.5%, respectively. The improved algorithm is
more useful in path planning, significantly reduces data processing time, search grid, and turning
points. The algorithm at most increases path length by 2.0%, at least reduces data processing time by
68.4%, search grid by 74.9%, and turning points by 20.7%. The maximum trajectory offset error was
proportional to the flight speed, with a maximum trajectory offset of 1.4 m. The distance between
the UAV and obstacle was inversely proportional to flight speed, with a minimum distance of 1.6 m.
This method can provide a new idea for obstacle avoidance of the plant protection UAV.

Keywords: the plant protection UAV; obstacle avoidance; improved A* algorithm; millimeter wave
radar; monocular camera; data fusion

1. Introduction

The unmanned aerial vehicles (UAV) have been widely used in agriculture, including
crop monitoring [1,2], crop yield assessment [3,4], and plant protection [5–7]. Plant protec-
tion, especially through pesticide spraying to control pests and diseases is an important part
of agricultural production. Compared to conventional ground-moving plant protection
equipment, the plant protection UAV offer clear advantages in terms of terrain adaptation
and high efficiency [8].

However, obstacles in farmland will pose serious challenges to the safety and au-
tonomous flight of the plant protection UAV. To address the challenge, the scholars have
conducted many researches [9]. Through some sensors, reliable control algorithms, and
pre-measured information on the location of obstacles, autonomous flight can be realized
to a certain extent [10,11]. The primary requirement for safety and autonomous flight of the
plant protection UAV is the ability to obtain environmental information, actively perceive
and understand the environment. Some common sensors, such as millimeter wave (MMV)
radar [12], LIDAR [13], ultrasonic [14], and infrared rangefinders [15] have been widely
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used to detect obstacles. With the development of image processing and airborne computer
technology, monocular camera [16], and binocular camera [17] have been used on UAV to
help acquire environmental information. Some convolutional neural networks [18] and
deep learning [19–21] have shown high performance in obstacle detection and obstacle
avoidance path planning. For example, YOLO [22] and SSD [23] were applied for target
detection and classification. Single-stream recurrent convolutional neural networks (SSR-
CNN) and deep recurrent convolutional neural networks (DRCNN) were used to detect
and render salient objects in images [24]. To further improve the accuracy of environmental
information acquisition, scholars have researched multiple sensor combinations. Based on
the characteristics of different sensors, data fusion has been carried out and some results
have been achieved [25,26].

After obtaining the environmental information, the path planning for the plant pro-
tection UAV also needs to be solved. Additionally, scholars have presents many studies
on this issue, such as sampling based techniques for UAV path planning, including cell
decomposition methods [27], roadmap methods [28], potential field methods [29], etc.
Artificial intelligence techniques can also be used as an effective method for UAV path
planning [30,31].

In summary, a great deal of research has been carried out on UAV environment
awareness, obstacle detection, and path planning. However, it is still a huge challenge to
improving the obstacle avoidance capabilities of the plant protection UAV in unstructured
farmland and generating optimal obstacle avoidance paths based on flight requirements.
Therefore, we conducted the research on obstacle recognition with MMV radar and monoc-
ular camera data fusion. Based on this, an improved A* obstacle avoidance algorithm for
the plant protection UAV combined with flight requirements (high efficiency, smoothness,
and continuity) was conducted. MMV radar can accurately measure the distance and
monocular camera can provide rich image information. Through data fusion, Canny edge
detection and morphological processing, the obstacle information (distance and contour)
can be obtained. Based on the obstacle information obtained and the flight requirements,
the traditional A* algorithms have been improved through dynamic heuristic functions,
search point, and inflection point optimization. This article aiming to provide new ideas to
further improve the safety and autonomous flight of the plant protection UAV in unstruc-
tured farmland and promote the application of the plant protection UAV in a wider range
of fields.

2. Materials and Methods
2.1. Experimental Platform

As shown in Figure 1, this study was conducted on an experimental platform com-
posed of NVIDIA Jetson TX2 airborne computer, Intel RealSense L515 camera, MMV radar,
the plant protection UAV, Pixhawk4 flight controller, and QGroundControl ground station.
The experimental platform parameters as shown in Table 1.
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Table 1. Parameter of the experimental platform.

Equipment Parameter Value

UAV

Self-weight (kg) 8
Wheelbase (mm) 1200

Maximum takeoff weight (kg) 21.5
Flight altitude (m) 0 to 20

Flight speed (m·s−1) 1.0 to 8.0

NVIDIA Jetson TX2

Performance (TFLOPS) 1.33
CPU Dual-core Denver 2 + Quad-core A57
GPU 256-core Pascal

Memory (GB) 8 (LPDDR4 1866 Mhz)
Storage (GB) 32 (eMMC 5.1)

MMV radar

Distance range (m) 1 to 30
Range accuracy (m) 0.05

Angle range (◦) ±25 (Horizontal), ±15 (Vertical)
Sampling frequency (Hz) 90

Intel RealSense L515

Active Pixels (pixels) 1920 × 1080
Sensor Aspect Ratio 16: 9

F Number 2.0
Focal Length (µm) 1880

Pixel size (µm) 1.4 × 1.4
Field of view (◦) 70 ± 3 (Horizontal), 43 ± 2 (Vertical)

Sampling frequency (fps) 30

A two-tier flight control system with an onboard computer and flight controller
compose the experimental platform, which maintains reliability, stability, and expansion
flexibility. NVIDIA Jetson TX2 onboard computer as the main controller with extensive pe-
ripheral interfaces. It runs advanced control programs, such as MMV radar and monocular
camera data fusion, obstacle information extraction, and improved A* obstacle avoidance
algorithm. The Pixhawk4 flight controller as the sub-controller. Due to the sustainable
contribution from the open source community, Pixhawk4 has been proved to be a reliable
standalone flight control firmware for the innovation and implementation of personal-
ized applications based on the UAV platform. With the Pixhawk4’s offboard interface
and MAVLINK communication protocol, it can receive the obstacle avoidance paths di-
rectly from the NVIDIA Jetson TX2 and control the plant protection UAV to execute the
corresponding flight without any hardware compatibility modifications. The QGround-
Control ground station was used to monitor flights and record flight logs in real time. The
two-tier control system integrates NVIDIA Jetson TX2, Pixhawk4 flight controller, Intel
RealSense L515, MMV radar, and the plant protection UAV into a seamless experimental
platform system.

2.2. MMV Radar and Monocular Camera Data Fusion

According to size, the obstacles in Chinese unstructured farmland can be classified
as micro obstacles (e.g., inclined cable, power grid), small and medium obstacles (e.g.,
tree, wire pole), large obstacles (e.g., shelter forest, high-pressure tower), and non-fixed or
visually-distorting obstacles (e.g., bird, pond) [32]. It is worth noting that most obstacles
appearing in farmland are micro, small, and medium obstacles [31]. In order to obtain
accurate obstacles information and improve the obstacle avoidance capability of the plant
protection UAV, we conducted a research on the data fusion method of MMV radar and
monocular camera. When performing data fusion between MMV radar and monocular
camera, due to the installation position on the plant protection UAV and sampling fre-
quency of the two sensors were different, it is necessary to fuse the two sensors in spatial
and time to match the same target and obtain accurate obstacle information.

In this research, a fusion model of the MMV radar and monocular camera was built.
The spatial data fusion was realized according to the transformation relations between
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radar coordinate system, world coordinate system, camera coordinate system, image
coordinate system, and pixel coordinate system. The time fusion was realized by the time
synchronization method.

2.2.1. Spatial Fusion

As shown in Figure 2, the MMV radar and monocular camera were mounted in
different positions on the plant protection UAV, so that the projection of same target in the
radar and camera coordinate systems was not consistent. A spatial fusion model of the
MMV radar and monocular camera was required to connect the two sensors and achieve
spatial data fusion of the same target.
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As shown in Figure 2a, (Xr, Yr, Zr), (Xu, Yu, Zu), (Xc, Yc,, Zc), and (Xw, Yw, Zw) were the
coordinate systems of MMV radar, UAV, monocular camera, and world, respectively. In this
article, the world coordinate system was established with the center of obstacle. The flight
controller mounting point of the plant protection UAV was used as the origin of the UAV
coordinate system, the nose direction was positive on the Y-axis, the Z-axis was vertical
upwards, and the X-axis can be determined according to the right-hand rule. The MMV
radar was mounted on the UAV tank. The monocular camera was mounted above the UAV.
The YOZ planes of the MMV radar coordinate system, monocular camera coordinate system,
and the plant protection UAV coordinate system were located in the same plane. The height
from the plant protection UAV coordinate system origin to the ground was Hu. The height
from the MMV radar coordinate system origin to the ground was Hr and the horizontal
distance to the plant protection UAV coordinate system origin was Lr. The height from
the monocular camera coordinate system origin to the ground was Hc and the horizontal
distance to the plant protection UAV coordinate system origin was Lc.

As shown in Figure 2b, when the MMV radar scans an obstacle, the conversion
relationship between the MMV radar coordinate system and the world coordinate system
was shown in Equation (1). 

xw = Rr sin α
yw = Rr cos α

zw = −Hr

, (1)

where α is the azimuth of obstacle; Rr is the distance between the MMV radar and obstacle;
and xw, yw, and zw are the position of the obstacle in the world coordinate system.

The relationship between the world coordinate system and the pixel coordinate system
has been extensively researched [33–35] and not repeated in this article. Combined with
Figure 2, the transformation relationship from the obstacle P(xw, yw, zw) in the world
coordinate system to the projected point P’(u,v) in the pixel coordinate system was shown
in Equation (2).
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where dx and dy are the physical size of each pixel on the x-axis and y-axis of image
coordinate system, respectively; (u0, v0) is the coordinates of image coordinate system origin
in pixel coordinate system; f is the focal length of monocular camera; R is 3 × 3 orthogonal
unit matrix that describes the rotation of coordinate system about the X, Y, and Z axes,
respectively; and T is a translation vector used to describe the translational relationship of
coordinate system origin.

Combining Equations (1) and (2), the obstacle coordinates under the data fusion of
the MMV radar and monocular camera can be obtained according to Equation (3).

Zc

 u
v
1

 =

 fx 0 u0 0
0 fy v0 0
0 0 1 0

[ R T
0T 1
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Rr sin α
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−Hr

1

 = M1M2


Rr sin α
Rr cos α
−Hr

1

, (3)

where M1 is the internal parameter of monocular camera; and M2 is the external parameter
of monocular camera.

To achieve spatial data fusion between MMV radar and monocular camera, calibration
needs to be carried out. Among the camera calibration methods, the checkerboard grid
calibration method is widely used in computer vision because of its simple operation
and high calibration accuracy [34]. This article uses the monocular camera calibration



Remote Sens. 2021, 13, 3364 6 of 22

toolbox in MATLAB for calibration. The checkerboard grid used for calibration has a size
of 20 mm × 20 mm for each small square.

According to the above calibration method, the internal parameter M1 can be obtained.
The relative positions of the MMV radar and monocular camera on the plant protection
UAV also need to be determined to complete the spatial data fusion. Based on Equation (4),
the relative positions of MMV radar and monocular camera on the plant protection UAV
can be determined. 

Tr =
[

0 Lr Hr − Hu
]

Tc =
[

0 Lc Hc − Hu
]

T = Tr − Tc =
[

0 Lr − Lc Hr − Hc
] , (4)

where Tr is the translation vector of MMV radar relative to the plant protection UAV
coordinate system; and Tc is the translation vector of monocular camera relative to the
plant protection UAV coordinate system.

2.2.2. Time Fusion

The MMV radar and monocular camera have different sampling frequencies, the two
sensors collected data from different times and the data were not synchronized. In order
to ensure that the MMV radar and monocular camera collect distance and image of the
obstacle at the same moment and location, the two sensors need to be time-synchronized.

The sampling frequency of the MMV radar and monocular camera was 90 Hz and
30 fps, respectively. The low sampling frequency of monocular camera was used as a
reference for time synchronization and data fusion. As shown in Figure 3, the time fusion
model consists mainly of MMV radar data acquisition threads, monocular camera data
acquisition threads, and data processing threads. Set the MMV radar and monocular
camera to start working at the same time. Additionally, set the event trigger frequency of
30 Hz to read the distance information from the MMV radar data stream. The distance
information from the MMV radar was used to determine whether there are any obstacles in
front of the UAV. If an obstacle is present and the distance between the UAV and obstacle
is less than or equal to the set safe distance threshold. The monocular camera image data
thread will be triggered to acquire the current image. Then, add the distance and image
data to the buffer queue. The data processing thread reads the distance and image data
from the buffer queue. The image data were used for obstacle contour detection. Eventually,
the distance and contour information of obstacle was sent to the improved A* obstacle
avoidance algorithm of the plant protection UAV. A detailed description of the improved
A* obstacle avoidance algorithm can be found in the Section 2.4. The sampling frequency
of MMV radar and monocular camera time fusion model was 30 Hz to ensure the time
synchronization of data.

2.3. Obstacle Contour Extraction

As described above, the distance and image of the obstacle can be obtained based on
the time-spatial fusion of MMV radar and monocular camera. Ideally, the obstacle captured
by the monocular camera can be completely separable from the surroundings. In reality,
the complexity and interference of images captured by monocular camera make it difficult
to accurately identify the contours of obstacles. Therefore, this article uses the Canny edge
detection algorithm [36–38] and mathematical morphological methods [39–41] to extract
the contour of obstacles. The process was shown in Figure 4.
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The Canny edge detection algorithm usually processes gray images. The output
of monocular camera used in this article was an RGB image, so the image needs to be
processed in greyscale. As shown in Equation (5), a weighted summation was used for the
greyscale processing of the image.

Grayi,j = αRi,j + βGi,j + γBi,j, (5)

where R, G, and B are the red, green, and blue color channels, respectively; i, j are the
pixel point positions; and α, β, and γ are the weights of the different colors, satisfies
α + β + γ = 1. In this research, a weighting value proposed from human physiological
perspective was used [42,43], with α, β, and γ being 0.299, 0.587, and 0.114, respectively.

The above method can remove interference from the obstacle image, enhancing the
obstacle information and making the obstacle contours better visible. Before carrying out
obstacle information extraction in the field, this study presents validation experiments
on the accuracy of MMV radar and monocular camera data fusion and obstacle contour
extraction. The obstacle used for the validation experiment was the manual setting of a
column with 110 mm diameter and 2100 mm height. The research shows that the distance
between the plant protection UAV and obstacle was usually 2–5 m [31,32] and the UAV
has a certain length of the rotor. Therefore, during the validation experiments, the distance
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from the MMV radar and monocular camera to the obstacle was set to 3–5 m. Depending
on the distance, the verification experiment was divided into three groups. The distance
from the UAV to obstacle in Group A, B, and C were 3 m, 4 m, and 5 m, respectively. The
accuracy of the obstacle information extraction was evaluated based on the distance, height,
and diameter of the obstacles obtained from the verification experiment.
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After the verification experiment, the type and distribution of obstacles in unstructured
farmland need to be considered when carrying out the real obstacle information extraction.
As described above, most of the obstacles in unstructured farmland are micro, small, and
medium obstacles. Therefore, the wire poles and trees were used as obstacles in this
article. Additionally, according to the field operation parameters, the flight altitude and
the distance from the UAV to obstacle were 2 m and 3 m, respectively. The MMV radar
and monocular camera data fusion and obstacle contours extraction method were used to
extract obstacle information in the field.

2.4. Improved A* Obstacle Avoidance Algorithm

Based on the obtained obstacle information, this article presents an improved A* ob-
stacle avoidance algorithm for the plant protection UAV obstacle avoidance path planning.
The traditional A* algorithm was based on a heuristic direct search method for solving
shortest paths [44]. However, the traditional A* algorithm has many search nodes, which
leads to lower efficiency. Additionally, to ensure the shortest path, the algorithm has more
inflection points [45,46]. Traditional A* algorithms applied directly to the plant protection
UAV will cause unsmooth and instability flight.

For the high efficiency, smoothness, and continuity flight requirements of the plant
protection UAV, an improved A* obstacle avoidance algorithm was proposed in this article.
The algorithm improves on the traditional A* algorithm in the following three steps.
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First step, a dynamic heuristic function was used to dynamically adjust the weight of
the estimated cost based on the distance between the current point and the target point.
Second step, carry out optimization of search points to reduce the number of search nodes.
Third step, the number of inflection points was optimized to reduce the turns as much as
possible without increasing the distance. After completing the three improvement steps,
efficient obstacle avoidance path planning can be realized and the path only includes the
starting point, ending point, and key turning point. It can reduce the number of turns made
by the UAV during obstacle avoidance to improve avoidance efficiency and flight stability.

2.4.1. Dynamic Heuristic Function

The heuristic function of the traditional A* obstacle avoidance algorithm was shown
in Equation (6). Additionally, the algorithm traverses many unnecessary nodes during the
path search, which affects the efficiency of the search.

f (n) = g(n) + h(n), (6)

where f(n) is the estimated cost from the initial point through the current point to the target
point; g(n) is the actual cost from the initial point to the current point; h(n) is the estimated
cost of the shortest path from the current point to the target point.

The key condition for the shortest path was the h(n). If the d(n) represents the actual
cost of the shortest distance from the current point to the target point, then the following
situation will arise.

When h(n) < d(n), more nodes will be searched with inefficient, but the shortest path
can be found. When h(n) > d(n), the search has fewer nodes and more efficient, but the
shortest path cannot be guaranteed. When h(n) = d(n), the shortest path can be searched
with high efficiency. h(n) and d(n) were related to the position of the current point and if
the current point was farther away from the target point, h(n) was smaller than d(n).

As shown in Equation (7), this article uses a dynamic heuristic function to complete
the first step of improving the traditional A* obstacle avoidance algorithm according to the
relative positions of the current point and the target point. When the current point was far
from the target point, the weight of h(n) will be increased to improve the efficiency. As the
current point approaches the target point, the weight of h(n) will be reduced to ensure that
the shortest path can be searched.

f (n) = g(n) + (1 +
r
R
)h(n), (7)

where R is the distance from the initial point to the target point; and r is the distance from
the current point to the target point.

2.4.2. Search Grid Optimization

According to the Section 2.4.1, the traditional A* algorithm was improved in the
first step by dynamic heuristic function to improve the efficiency of the path planning.
However, the improved dynamic heuristic function A* algorithm still searches the eight
neighborhood grids of the current point during path planning. As shown in Figure 5a,
the blue grid was the current point, and n1 to n8 was the 8 directions of the search grid.
There were still unnecessary nodes in the eight neighborhood grids depending on the
direction from the current point to the target point, resulting in wasted computation time
and storage space.
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Figure 5. (a) 8 directions of the search grid; (b) Diagram of obstacles does not completely surround
current point.

Therefore, in order to further improve search efficiency, this article proposes a search
point optimization method based on the dynamic heuristic function. According to the
relative position of the current point and target point, only four search directions were
reserved. The line connecting the current point and the target point has an angle of α with
n1 and clockwise was positive. The corresponding relationship between α and the search
direction as shown in Table 2.

Table 2. Correspondence between α and search direction.

α (◦) Four Directions for Reservations Four Directions for Abandonment

[0, 45) n1, n2, n3, n4 n5, n6, n7, n8
[45, 90) n1, n2, n3, n5 n4, n6, n7, n8

[90, 135) n2, n3, n5, n8 n1, n4, n6, n7
[135, 180) n3, n5, n7, n8 n1, n2, n4, n6
[180, 225) n5, n6, n7, n8 n1, n2, n3, n4
[225, 270) n4, n6, n7, n8 n1, n2, n3, n5
[270, 315) n1, n4, n6, n7 n2, n3, n5, n8

[315, 0) n1, n2, n4, n6 n3, n5, n7, n8

For the extreme case as shown in Figure 5b, the blue grid was the current point, the
red grid was the obstacle and the green grid was the target point. Obstacles incompletely
surround the current point and the path was not within the four reserved search directions
according to the search point optimization method. At this point the improved A* algorithm
with the only dynamic heuristic function will be re-enabled for path planning. When the
path of the current point has been searched, the search point optimization method will
continue to be used for path planning.

2.4.3. Inflection Points Optimization

As pointed out above, the traditional A* algorithm has many inflection points in path
planning to achieve the shortest path. However, the more turns the plant protection UAV
makes, the less flight stability. Especially when there was liquid in the tank of the plant
protection UAV [47–49]. The path planning for the plant protection UAV should reduce the
turns to ensure the smooth and stability flight.

Based on the dynamic heuristic functions and search point optimization method, this
study proposes an inflection points optimization method to reduce the inflection points
as far as possible without increasing the path length. So that the obstacle avoidance path
only includes the starting point, ending point, and key turning point. This will reduce the
turns during obstacle avoidance and improve the efficiency and flight stability in obstacle
avoidance. The inflection point optimization method was as follows.

The improved A* obstacle avoidance algorithm described in this article divides the
environment into grid points. The points can be divided into obstacle points, non-obstacle
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points, and special points (starting and ending points). In path planning, the starting point
was used as the first parent node for the expansion of non-obstacle points with the search
point optimization method. If there was a point in the extension of the non-obstacle point
that meets the requirements, the point will be upgraded to a candidate point and put into
the candidate point matrix. According to the dynamic heuristic function, the best point
will be selected from the candidate point matrix and upgraded to the next parent node.
After extending to the ending point, the planned path can be found and plotted out by
using the parent nodes.

The best point was selected from the candidate point matrix. Through the direction
information of the best point, it is possible to know which parent node develops the best
point. Then, can get the direction information of the parent node, and get the position
of the next step. For example, if the directional information of the parent node B of the
best point A was right, it means that the parent node B was expanded from the point on
the right side of the best point A. If a straight line path was required, then the next point
C was the point to the left of the parent node B. Get the position of the next point C and
determine whether it belongs to the candidate point matrix. If the next point C was in the
candidate point matrix, and the cost was same as the original point. Then, the next point C
will be used to replace the original point for optimization. Otherwise, the original point
will continue to be used.

2.5. Improved A* Algorithm Performance Simulation

Based on the above, the improved A* obstacle avoidance algorithm improves on the
traditional A* algorithm through dynamic heuristic function, search point optimization,
and inflection points optimization. Different simulation environments were created in
MATLAB to present comparisons of the obstacle avoidance performance between the
improved A* algorithm and traditional A* algorithm.

Environment 1 was a 30 × 30 grid map with a starting point at coordinates (1, 1),
ending point at coordinates (30, 30), and the obstacle was randomly distributed with a
coverage of 30%. Environment 2 was a 40× 40 grid map with a starting point at coordinates
(1, 1), ending point at coordinates (40, 40), and the obstacle was randomly distributed
with a coverage of 30%. Environment 3 was a 50 × 50 grid map with a starting point at
coordinates (1, 1), ending point at coordinates (50, 50), and the obstacle was randomly
distributed with a coverage of 30%. The data processing time, search grids number, path
length, and inflection points number were used as evaluation metrics for the performance
of the different algorithms.

2.6. Obstacle Avoidance Flight Experiments

The experiments of the improved A* obstacle avoidance algorithm for the plant
protection UAV based on MMV radar and monocular camera data fusion were conducted
at Jiangsu University (32◦11′57.1′′ N, 119◦30′07.9′′ E).

As shown in Figure 6, the experimental area was a 100 m × 20 m open field in the
east–west direction, divided into take-off area and obstacle avoidance area. The take-off
area was used for the take-off and stable flight speed of the plant protection UAV. The
obstacle avoidance area was distributed with trees and manually arranged wire poles. To
ensure safety, the plant protection UAV was equipped with an emergency control channel.
If the trend of failed obstacle avoidance occurs, the plant protection UAV can switch to
manual control mode through the emergency control channel. Additionally, at the end of
the obstacle avoidance, the plant protection UAV will fly back to the take-off area and land
through manual control mode.
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The experiment was divided into three scenarios according to the obstacle arrange-
ment in the obstacle avoidance area. Scenario A was only wire poles in the obstacle
avoidance area, Scenario B was only trees in the obstacle avoidance area, and Scenario C
was both wire poles and trees in the obstacle avoidance area. In scenario C, the distance
between wire poles and trees was 9 m.

During the experiment, the take-off point of the plant protection UAU was 30 m from
the obstacle and flying from east to west. Studies have shown that the spray performance of
the plant protection UAV (droplet deposition coverage, deposition distribution uniformity,
etc.) was better when flight speed was 1–3 m·s−1 and flight altitude was 1–3 m during the
spraying [50–52]. Therefore, this article uses flight speed of 1–3 m·s−1 and flight altitude
of 1–3 m as flight parameters for the obstacle avoidance experiment. The experiments
for each scenario were divided into three groups according to different flight parameter
combinations (FPC). FPC 1 has flight speed of 1 m·s−1 and altitude of 1 m, FPC 2 has flight
speed of 2 m·s−1 and altitude of 2 m, FPC 3 has flight speed of 3 m·s−1 and altitude of 3 m.
For consistency, the warning distances of the plant protection UAV for obstacle avoidance
were all set to 3 m. Each FPC in each scenario was repeated three times and the GPS data
of the plant protection UAV was recorded and averaged for obstacle avoidance trajectory
analysis. The obstacle avoidance trajectory was selected with the obstacle avoidance
warning point as the starting point and the obstacle avoidance ending point as the ending
point. The obstacle avoidance path planned by the improved A* obstacle avoidance
algorithm and the actual obstacle avoidance trajectory during flight were compared and
analyzed. The relative distance between the plant protection UAV and obstacles during
obstacle avoidance can reflect the safety of the algorithm. Therefore, the minimum relative
distance between the UAV and obstacle during obstacle avoidance was measured based on
GPS data under different scenarios and FPC.

3. Results
3.1. Data Fusion Results

As shown in Figure 7, the calibration of the monocular camera was carried out
according to the method described in the Section 2.2.

The results of the monocular camera calibration as shown in Table 3. The maximum
error between calibrated focal length and nominal focal length was 1.0%. The mean error
of the pictures used for calibration was 0.3 pixels.

In addition to the calibration of the monocular camera, the relative positions of the
MMV radar and the monocular camera on the plant protection UAV also need to be deter-
mined to complete the data fusion. The plant protection UAV was placed on a horizontal
surface and the height Hu from the UAV coordinate system origin to the ground was
320 mm. The height Hr from the MMV radar coordinate system origin to the ground was
180 mm and the horizontal distance Lr between the MMV radar coordinate system origin
and the UAV coordinate system origin was 250 mm. The height Hc from the monocular
camera coordinate system origin to the ground was 460 mm and the horizontal distance Lc
between the monocular camera coordinate system origin and the UAV coordinate system
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origin was 120 mm. According to Equation (4), the relative position of MMV radar and
monocular camera on the plant protection UAV was T = Tr − Tc =

[
0 130 −280

]
.

Combining the results of monocular camera calibration and time synchronization, the
MMV radar and monocular camera data fusion was completed.
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Table 3. Results of the monocular camera calibration.

Parameter Value

Calibrated focal length (µm)
[

1894.7 1896.2
]
±
[

2.3 2.3
]

Principal point (pixels)
[

987.9 556.8
]
±
[

1.4 1.3
]

M1

 1353.4 0 987.9
0 1354.5 556.8
0 0 1


Mean error (pixels) 0.3
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3.2. Obstacle Information Extraction Results

According to the experiments methods for MMV radar and monocular camera data
fusion and the field obstacle information extraction described above. The results of the
validation experiments were shown in Figure 8 and Table 4. Additionally, the results of the
field obstacle information extraction were shown in Figure 9.
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Table 4. Results of validation experiment.

Items

Group A Group B Group C

Set
Value
(mm)

Measured
Value
(mm)

Error
(%)

Set
Value
(mm)

Measured
Value
(mm)

Error
(%)

Set
Value
(mm)

Measured
Value
(mm)

Error
(%)

Distance to
obstacles 3000 2916 2.8 4000 3738 6.6 5000 4591 8.2

Height of
obstacles 2100 1908 9.1 2100 1825 13.1 2100 1712 18.5

Diameter of
obstacles 110 85 22.7 110 83 24.5 110 80 27.3
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From the validation experimental results, it can be seen that according to the method
of MMV radar and monocular camera data fusion and obstacle information extraction, the
distance and contour of the obstacles can be effectively obtained. The distance measurement
error was proportional to the measuring distance, with a maximum error of 8.2% within the
set measuring range. The measured values of the obstacle’s diameter and height decrease
as the measuring distance increases. The maximum error in the set measuring range was
27.3% for diameter and 18.5% for height. The validation experimental results also show
that the measured values were generally smaller than the true values and the measurement
accuracy depends heavily on the distance from MMV radar and monocular camera to
the obstacle.

The experimental results of field obstacle information extraction show that according
to the method of MMV radar and monocular camera data fusion and obstacle information
extraction described in the article, clear and smooth contours of the obstacle can be obtained.
It can provide a basis for the plant protection UAV obstacle avoidance decision.

3.3. Performance Simulation Results

Based on the Section 2.4, the improved A* obstacle avoidance algorithm improves on
the traditional A* algorithm through the following three steps: dynamic heuristic function,
search point optimization, and inflection points optimization. Three different simulation
environments were built using MATLAB to verify the algorithm performance. Additionally,
the data processing time, search grids number, path length, and inflection points number
were used as evaluation metrics.

The path planning trajectories of different algorithms in different environments, as
shown in Figure 10, and the performance results of different algorithms were shown in
Table 5.

It can be seen from Figure 10 that both the traditional A* algorithm and the A*
algorithm improved by the first step (dynamic heuristic function), the second step (search
point optimization), and the third step (inflection point optimization) can plan the obstacle
avoidance path. The traditional A* obstacle avoidance algorithm has the largest number of
search grids. The A* algorithm with dynamic heuristic function can reduce the search grids
number to some extent. The A* algorithm with search point optimization and inflection
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points optimization has more purposeful in the path search and significantly reduces the
search grid.

Further analysis based on Table 5 shows that the traditional A* obstacle avoidance
algorithm has the shortest path length and longest data processing time. The longest path
of the improved A* algorithm only increased by 2.0% in different environments. However,
the data processing time has been significantly reduced, especially after the search point
optimization and inflection points optimization. Compared to the traditional A* obstacle
avoidance algorithm, the A* obstacle avoidance algorithm with the first optimized step
(dynamic heuristic function) reduces at least 7.5% of data processing time and 6.2% of grid
search number. The algorithm with the second optimized step (search point optimization)
reduces at least 68.4% of data processing time and 79.1% of grid search number. The
algorithm with the third optimized step (inflection point optimization) reduces at least
68.4% of data processing time, 74.9% of grid search number, and 20.7% of turning points.

According to the performance simulation results, the improved A* obstacle avoidance
algorithm proposed in this article can significantly reduce the data processing time, search
grid number, and turning point number. It meets the flight requirements of high efficiency,
smoothness, and continuity for the plant protection UAV.

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 22 
 

 

MATLAB to verify the algorithm performance. Additionally, the data processing time, 
search grids number, path length, and inflection points number were used as evaluation 
metrics. 

The path planning trajectories of different algorithms in different environments, as 
shown in Figure 10, and the performance results of different algorithms were shown in 
Table 5. 

 
Traditional A* algorithm 

 
Dynamic heuristic function 

 
Search point optimization 

 
Inflection points optimization 

(a) 

 
Traditional A* algorithm 

 
Dynamic heuristic function 

 
Search point optimization 

 
Inflection points optimization 

(b) 

 
Traditional A* algorithm 

 
Dynamic heuristic function 

 
Search point optimization 

 
Inflection points optimization 

(c) 

Figure 10. Path planning trajectories for different environments and optimization steps: (a) Environments 1; (b) Environ-
ments 2; (c) Environments 3. 

Table 5. Algorithm performance for different environments and optimization steps. 

Environment Optimization Step and Method Data Processing Time (s) 
Search Grids 

Number 
Path 

Length 
Inflection Points 

Number 

1 

Original: Traditional A* algorithm 3.8 618 58 23 
First: Dynamic heuristic function 2.9 464 58 23 

Second: Search point optimization 1.2 129 58 23 
Third: Inflection points optimization 1.2 155 58 9 

2 
Original: Traditional A* algorithm 6.7 1099 78 29 
First: Dynamic heuristic function 6.2 1031 78 29 

Second: Search point optimization 1.5 164 80 29 

Figure 10. Path planning trajectories for different environments and optimization steps: (a) Environments 1; (b) Environ-
ments 2; (c) Environments 3.



Remote Sens. 2021, 13, 3364 17 of 22

Table 5. Algorithm performance for different environments and optimization steps.

Environment Optimization Step
and Method

Data Processing
Time (s)

Search Grids
Number Path Length Inflection Points

Number

1

Original: Traditional
A* algorithm 3.8 618 58 23

First: Dynamic
heuristic function 2.9 464 58 23

Second: Search
point optimization 1.2 129 58 23

Third: Inflection
points optimization 1.2 155 58 9

2

Original: Traditional
A* algorithm 6.7 1099 78 29

First: Dynamic
heuristic function 6.2 1031 78 29

Second: Search
point optimization 1.5 164 80 29

Third: Inflection
points optimization 1.3 177 78 23

3

Original: Traditional
A* algorithm 10.1 1728 98 47

First: Dynamic
heuristic function 8.6 1499 98 47

Second: Search
point optimization 1.7 242 106 47

Third: Inflection
points optimization 1.6 201 100 27

3.4. Obstacle Avoidance Flight Results

Actual obstacle avoidance flight experiments were carried out at Jiangsu University
(32◦11′57.1′′ N, 119◦30′07.9′′ E) based on the methods described in the Section 2.4. During
the experiments, the outdoor temperature was 28 ◦C, ambient humidity was 21.5%, east
wind, and average wind speed was 0.36 m·s−1. The results as shown in Figure 11. During
the obstacle avoidance trajectory analysis, the obstacle size and flight path offset have been
deliberately magnified by 10 times to make the trajectory clearer. The minimum relative
distance between the plant protection UAV and obstacle during obstacle avoidance under
different scenarios and FPC was shown in Table 6.

Table 6. Minimum distance between UAV and obstacle under different scenarios and FPC.

Scenarios Flight Parameter Combinations Minimum Distance (m)

A
FPC 1 2.8
FPC 2 2.5
FPC 3 1.9

B
FPC 1 2.9
FPC 2 2.2
FPC 3 1.6

C
FPC 1 3.1
FPC 2 2.3
FPC 3 1.8
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The results show that during actual obstacle avoidance flight with different scenarios
and FPC, the MMV radar and monocular camera data fusion and obstacle information
extraction method can obtain the accurate distance and contours of obstacle. It can provide
obstacle information for the improved A* obstacle avoidance algorithm. Based on the
obtained obstacle information, the improved algorithm for the plant protection UAV can
perform path planning and control the UAV to perform autonomous obstacle avoidance
flight. The actual flight trajectory of the plant protection UAV was consistent with the
path planning trajectory under different scenarios and FPC. The flight altitude has non-
significant effects on flight trajectory offset and relative distance between the UAV and
obstacle. The trajectory offset was proportional to the flight speed, with the maximum
trajectory offset of 0.1 m for flight speed at 1 m·s−1 and 1.4 m for flight speed at 3 m·s−1.
The minimum relative distance between the plant protection UAV and obstacle decreases
as flight speed increases. When the flight speed was 1 m·s−1, the distance was 2.8 m, and
when the flight speed was 3 m·s−1, the distance was 1.6 m.

4. Discussion

In order to improve the environment perception and autonomous obstacle avoidance
capability of the plant protection UAV in unstructured farmland. The data fusion of MMV
radar and monocular camera was implemented on the plant protection UAV. Combined
with the operating environment and flight requirements of the plant protection UAV, the
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traditional A* algorithms has been improved through dynamic heuristic functions, search
point, and inflection point optimization based on the data fusion.

The data fusion method can effectively obtain the distance of obstacle and trigger the
monocular camera to capture the obstacle image according to the distance. Additionally,
based on the obstacle image to extract a clear and smooth contour of the obstacle. Which
can provide obstacle information for the improved A* obstacle avoidance algorithm of
the plant protection UAV. The distance measurement error of the data fusion method was
proportional to the measuring distance. Additionally, the maximum error in measuring
distance was 8.2% within the set measurement range. The measured values of the obstacle’s
width and height extracted from the monocular camera image decrease as the measuring
distance increases. The maximum measurement error was 27.3% for width and 18.5%
for height. The measured values were generally smaller than the true values and the
measurement accuracy depends heavily on the distance from MMV radar and monocular
camera to the obstacle.

Compared to the traditional A* obstacle avoidance algorithm, the improved A* ob-
stacle avoidance algorithm at most increases the path length by 2.0%, at least reduces the
data processing time by 68.4%, grid search number by 74.9%, and turning point number by
20.7%. The flight trajectory offset was proportional to the flight speed, with the maximum
trajectory offset of 0.1 m for flight speed at 1 m·s−1 and 1.4 m for flight speed at 3 m·s−1.
The minimum relative distance between the plant protection UAV and obstacle decreases
as flight speed increases. When the flight speed was 1 m·s−1, the distance was 2.8 m, and
when the flight speed was 3 m·s−1, the distance was 1.6 m. Combined with the UAV size
used in this article (wheelbase: 1200 mm, rotor: 736.6 mm), there would be a risk of crash if
the flight speed was further increased. Therefore, the higher flight speed was not tested for
obstacle avoidance.

As can be seen from Figure 11, the trajectory offset at the path inflection points was
large and the minimum relative distance between the plant protection UAV and obstacle
usually occurs at the first inflection point of the obstacle avoidance path. The possible
reason for this phenomenon might be that although the obstacle avoidance algorithm
delivers an obstacle avoidance command, the faster flight speed, the slower to adjust the
flight attitude of the UAV under the effect of inertia. In the same data processing time and
attitude adjustment time, the faster flight speed, the farther flight distance. Eventually, it
shows that the faster the flight speed, the larger trajectory offset, and the smaller distance
to the obstacle.

In general, the results show that the study in this article can improve obstacle avoid-
ance ability of the plant protection UAV in unstructured farmland. It may provide new
ideas for enhance safety and autonomous flight, and promote wider application of the
UAV. In future work, the obstacle avoidance algorithm will be continuously optimized
to improve the speed and safety of obstacle avoidance. Comparisons between different
obstacle avoidance algorithms will also be carried out, integrating evaluation metrics, such
as obstacle avoidance speed, obstacle avoidance zone size, flight stability, computational
cost, and economic cost, aiming to find the most suitable obstacle avoidance algorithm for
the plant protection UAV.

5. Conclusions

This study presented an improved A* obstacle avoidance algorithm for the plant
protection UAV to avoid obstacles in unstructured farmland. The algorithm uses MMV
radar and monocular camera data fusion to obtain obstacle information. Improved the
traditional A* obstacle avoidance algorithms through dynamic heuristic functions, search
point optimization, and inflection point optimization. Compared to the traditional A*
algorithm, the improved algorithm at most increases the path length by 2.0%, at least
reduces the data processing time by 68.4%, grid search number by 74.9%, and turning
points by 20.7%. During the obstacle avoidance flight, the minimum error between actual
flight trajectory and planned trajectory was 0.1 m and the maximum error was 1.4 m. The
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minimum relative distance between the plant protection UAV and obstacle was 1.6 m.
Based on these results, the method presented in this article can enhance the obstacle
avoidance capability of the plant protection UAV in unstructured farmland. It may provide
a new solution for autonomous flight of plant protection UAV.
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