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Abstract: Exploring land use structure and dynamics is critical for urban planning and management.
This study attempts to understand the Wuhan development mode since the beginning of the 21st
century by profoundly investigating the spatio-temporal patterns of land use/land cover (LULC)
change under urbanization in Wuhan, China, from 2000 to 2019, based on continuous time series
mapping using Landsat observations with a support vector machine. The results indicated rapid
urbanization, with large LULC changes triggered. The built-up area increased by 982.66 km2 (228%)
at the expense of a reduction of 717.14 km2 (12%) for cropland, which threatens food security to
some degree. In addition, the natural habitat shrank to some extent, with reductions of 182.52 km2,
23.92 km2 and 64.95 km2 for water, forest and grassland, respectively. Generally, Wuhan experienced
a typical urbanization course that first sped up, then slowed down and then accelerated again, with
an obvious internal imbalance between the 13 administrative districts. Hanyang, Hongshan and
Dongxihu specifically presented more significant land dynamicity, with Hanyang being the active
center. Over the past 19 years, Wuhan mainly developed toward the east and south, with the urban
gravity center transferred from the northwest to the southeast of Jiang’an district. Lastly, based on
the predicted land allocation of Wuhan in 2029 by the patch-generating land use simulation (PLUS)
model, the future landscape dynamic pattern was further explored, and the result shows a rise in
the northern suburbs, which provides meaningful guidance for urban planners and managers to
promote urban sustainability.

Keywords: spatio-temporal pattern; land use/land cover change; remote sensing mapping; urban-
ization; land use simulation

1. Introduction

Land use/land cover (LULC) serves as a basic indicator for multiple interdependen-
cies between human society and natural environment, which has a profound sense for
human life and earth ecology [1–3]. Over the past decades, intensified anthropogenic
processes have greatly accelerated LULC changes, which has caused a series of problems
for the ecosystem, climate, biodiversity, food security and so forth [4–6]. A central focus is
on urbanization, which increasingly alters the global landscape, especially for developing
countries [7,8]. The changes from natural covers to artificial surfaces bring negative social
and ecological consequences and cause great concerns for ecology safety, human settle-
ments and public health in addition to numerous beneficial aspects. Hence, understanding
LULC dynamics is critical for promoting urban sustainability and ecological balance.

With the rapid development of Earth observation technology, remote sensing has
shown increasing superiority in LULC investigation and provides an effective and spatially
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explicit alternative to urbanization monitoring due to its advantages of wide coverage,
short revisit cycle and a strong view of the current situation, which is emphasized as the
“unique view” of urban dynamics [9]. A large number of studies concerning urbanization
have been carried out at various scales based on remote sensing techniques. For example,
Schneider et al. mapped the global urban extent with Moderate Resolution Imaging Spec-
troradiometer (MODIS) images [10]. Mertes et al. investigated the urban land dynamics
based on MODIS data at the continental scale [11]. Yu et al. monitored urban sprawl
at a regional scale by using Landsat images [12]. Additionally, many research studies
were committed to investigating the consequent effects of LULC change in the context of
urbanization, including environmental deterioration [13], climate change [14], urban heat
islands [15], food security [16] and so on.

Time series mappings have been reported to be helpful for exploring spatio-temporal
patterns of LULC change and urban evolution law due to its abundant information [17,18].
For instance, Seto et al. explored the landscape dynamics of four Chinese cities based on
time series LULC maps [19]. Li et al. investigated urban sprawl and LULC changes in Des
Moines and Ames from 1985 to 2015 by time series mapping [20]. Zheng et al. analyzed
the land dynamics of 30 megacities in the world in the period 2012–2019 by using time
series nightlight remote sensing data [21]. Therefore, it is conducive to take advantage of
time series data to characterize the LULC change pattern and urban development mode.

As the largest developing country in the world, China has experienced unprecedented
urbanization and significant landscape changes during the past decades of reform and
opening-up [17,22]. The urbanization rate of China increased sharply from 17.92% to
59.58% during the period 1978–2018 [23]. Furthermore, many Chinese cities have shown
accelerated urbanization pace because of the financial revenue reliance on real estate and
land transactions [24]. In recent years, based on time series LULC maps, extensive stud-
ies have focused on the urbanization in China and its related LULC changes at various
scales, including the whole country [25,26], typical regions such as Zhujiang Delta [27]
and Guangdong-Hong Kong-Macau Greater Bay Area [28] and typical mega cities, e.g.,
Beijing [29], Shanghai [30], Shijiazhuang [31], etc., which greatly improves the understand-
ing of the universality and regionality of urbanization in China and contributed to urban
sustainability and ecology protection.

Driven by the rise strategies of Central China, Wuhan has experienced rapid develop-
ment and urbanization, with frequent landscape changes as an accessory. A set of studies
has been carried out to explore the LULC changes in Wuhan and their consequent influences.
Kabba et al. simply analyzed the landscape changes in Wuhan and their ecological impacts
from 1987 to 2005 based on the classification results of two phases [32]. Li et al. investigated
the LULC changes in Wuhan and its underlying physical and socioeconomic driving fac-
tors in the period 1990–2010 on the basis of the LULC maps of five target years [33]. Liu
et al. explored the land use dynamics in Wuhan and the driving forces in the context of
urban-rural construction based on the land investigation results in 1996 and 2009 and found
a large difference between the inner city and outer city [34]. Ji et al. analyzed the LULC
changes in Wuhan from 2006 to 2012 and evaluated the subsequent ecological security
effects [35]. Liang et al. tried to understand the drivers of urban sprawl in Wuhan with the
land patch-generating land use simulation (PLUS) model [36]. However, most of these past
studies focused on the macro change trends of different land uses, with the evolvement
pattern exploration being temporally or spatially coarse-grained. Undoubtedly, this hinders
a more conceptual and complete understanding of the development mode of Wuhan, and
certain uncertainties and challenges remain for urban land management and planning.

In view of this, in order to better understand the Wuhan development mode, this
research study investigates the spatio-temporal patterns of LULC change in Wuhan in
detail during the past 19 years in the context of urbanization. The main objectives and
contributions of this paper are four-fold. Firstly, the continuous time series LULC maps
at a spatial resolution of 30 m in the period 2000–2019 are produced, based on Landsat
observations and machine learning with the support vector machine (SVM). Secondly, a
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detailed temporal change analysis is conducted by a land use theme to find out the change
characteristics of major land uses. Thirdly, based on five typical years (2000, 2004, 2009,
2014 and 2019), we comprehensively explore the landscape dynamic pattern of Wuhan
from multiple perspectives, including single land use dynamicity, landscape activity and
the urbanization mode. Lastly, the future land use structure of Wuhan in 2029 is predicted
by the PLUS model [36] in order to identify the landscape dynamic pattern over the next
10 years, which provides a reference for urban planning and policy making.

2. Study Area and Data Resources
2.1. Study Area

Wuhan (29◦58′–31◦22′N, 113◦41′–115◦05′E) is located in the east of Hubei, China, and is
the capital of the Hubei Province, as shown in Figure 1. It lies in the middle reaches of the
Yangtze River, at the intersection of the Yangtze River and its largest tributary, i.e., the Han
River. It belongs to the Jianghan Plain, with the plain area accounting for more than 80% of
the total area of the city. There are a few mountains distributed in the northeast, northwest
and central parts of Wuhan. In addition, Wuhan is known as “the city of hundreds of lakes”,
with the Yangtze River and Han River meeting in the center of the city and hundreds of lakes
crisscrossing on both sides, forming a complex water network. It belongs to the subtropical
monsoon climate, characterized by abundant rainfall, a hot summer and a cold winter, with
an annual average temperature of 15.8–17.5 ◦C and annual precipitation of 1150–1450 mm.
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Figure 1. Location and topography of the study area.

Wuhan has 13 administrative districts in total, including seven metropolitans, i.e.,
Jiang’an, Jianghan, Qiaokou, Hanyang, Wuchang, Qingshan and Hongshan, and six sub-
urbs, i.e., Caidian, Jiangxia, Huangpi, Xinzhou, Dongxihu and Hannan, with a total area
of 8569.15 km2. As the economic and geographical center of central China and the core
of the “1 + 8” city circle and Yangtze River economic belt, Wuhan has the honor of “the
thoroughfare of nine provinces”. Meanwhile, it is also one of the three major intelligence in-
tensive areas in China. Wuhan has developed industry, commerce, technology and tertiary
industry and possesses an innovation and entrepreneurship center with global influence,
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i.e., China Optics Valley. It had a permanent resident population of 12.3265 million and a
GDP of 1.56 trillion yuan in 2020.

2.2. Data Resources

In this study, the Landsat observations, which has served for over 40 years and provides
wall-to-wall coverage of most areas of Earth with considerable spatial resolution of 30 m
and a revisit cycle of 16 days [37], were utilized to produce the continuous time series LULC
maps for Wuhan, according to the path/row geographies of Landsat Worldwide Reference.
Specifically, the level-1 products at path/row of 122/39, 123/38 and 123/39 were downloaded
for each year in the period of 2000–2019 from the United States Geological Survey (USGS)
Resources Observation and Science Data Center (https://earthexplorer.usgs.gov/) (accessed
on 3 August 2020) under the principle of cloud-free or low-cloud coverage, which has been
systematically corrected by the providers to exclude the systematic errors of sensors. There
were 60 images collected in total, with detailed information listed in Table 1. In addition, the
administrative area shape file of Wuhan City is also collected for LULC mapping.

Table 1. Description of Landsat images utilized in this study.

Year Sensor Acquisition Date (/Month-Day/)
(Path/Row: 122/39, 123/38, 123/39) Utilized Bands

2000 Landsat 5 TM 9-22/9-13/9-13 B/G/R/NIR/SWIR-
I/SWIR-II

2001 Landsat5 TM 7-10/9-3/9-3 B/G/R/NIR/SWIR-
I/SWIR-II

2002 Landsat5 TM 5-26/5-1/5-1 B/G/R/NIR/SWIR-
I/SWIR-II

2003 Landsat5 TM 9-17/9-24/9-24 B/G/R/NIR/SWIR-
I/SWIR-II

2004 Landsat 5 TM 7-18/9-11/9-11 B/G/R/NIR/SWIR-
I/SWIR-II

2005 Landsat5 TM 6-19/4-7/4-7 B/G/R/NIR/SWIR-
I/SWIR-II

2006 Landsat5 TM 7-8/7-31/7-31 B/G/R/NIR/SWIR-
I/SWIR-II

2007 Landsat5 TM 3-4/4-28/4-28 B/G/R/NIR/SWIR-
I/SWIR-II

2008 Landsat5 TM 7-13/9-6/9-6 B/G/R/NIR/SWIR-
I/SWIR-II

2009 Landsat5 TM 11-5/11-12/11-12 B/G/R/NIR/SWIR-
I/SWIR-II

2010 Landsat5 TM 8-20/6-8/6-8 B/G/R/NIR/SWIR-
I/SWIR-II

2011 Landsat5 TM 5-10/5-17/5-17 B/G/R/NIR/SWIR-
I/SWIR-II

2012 Landsat7 ETM+ 8-9/9-17/9-17 B/G/R/NIR/SWIR-
I/SWIR-II

2013 Landsat8 OLI 10-15/10-6/10-6 C/B/G/R/NIR/SWIR-
I/SWIR-II

2014 Landsat8 OLI 9-22/9-13/9-13 C/B/G/R/NIR/SWIR-
I/SWIR-II

2015 Landsat8 OLI 10-18/10-25/10-25 C/B/G/R/NIR/SWIR-
I/SWIR-II

2016 Landsat8 OLI 8-1/7-23/7-23 C/B/G/R/NIR/SWIR-
I/SWIR-II

2017 Landsat8 OLI 4-30/7-26/8-27 C/B/G/R/NIR/SWIR-
I/SWIR-II

2018 Landsat8 OLI 4-17/4-8/4-8 C/B/G/R/NIR/SWIR-
I/SWIR-II

2019 Landsat5 TM 8-18/8-25/8-25 C/B/G/R/NIR/SWIR-
I/SWIR-II

Note: C (Coastal); B (Blue); G (Green); R (Red); NIR (Near Infrared); SWIR-I (Shortwave Infrared-I); SWIR-II
(Shortwave Infrared-II).

Furthermore, 15 natural and socioeconomic driving factors were collected as the auxil-
iary data for land use simulation of Wuhan. These driving factors involve point data, line

https://earthexplorer.usgs.gov/
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data and area data, which contribute to the simulation from different aspects. Specifically,
the driving factors include population, GDP, soil, DEM, annual mean temperature, annual
precipitation, the distance from highway, railway, trunk/primary/second road, high-speed
railway stations, towns, provincial centers and prefectural centers. In practice, the distance
can be extracted by Euclidean distance analysis. Due to the similarity of the study area,
most factors were same with Reference [36]. Meanwhile, the distances from the administra-
tive centers were refined in this research study, with some factors with less influences in
Reference [36] removed. The detailed information of driving factors is provided in Table 2.

Table 2. The introduction of the driving factors.

Category Data Original Resolution Data Resource

Socioeconomic driving factors

Population
1000 m

http://www.geodoi.ac.cn/WebCn/
Default.aspx

(accessed on 3 March 2021)
GDP

The distance from highway

30 m
OpenStreetMap

(https://www.openstreetmap.org/)
(accessed on 3 March 2021)

The distance from railway
The distance from trunk road

The distance from primary road
The distance from second road
The distance from high-speed

railway stations
The distance from provincial centers
The distance from prefectural centers

The distance from towns

Natural driving factors

Soil 1000 m

HWSD v1.2
(http://westdc.westgis.ac.cn/data/8440

10ba-d359-4020-bf76-2b58806f9205)
(accessed on 4 March 2021)

DEM 30 m NASA SRTM1 v3.0
Annual mean temperature

1000 m
WorldClim v2.0

(http://www.worldclim.org/)
(accessed on 4 March 2021)Annual precipitation

3. Method

In this study, the continuous time series LULC maps for Wuhan during the period
2000–2019 were firstly produced with Landsat images, followed by a detailed analysis to
learn the spatio-temporal patterns of LULC change and the Wuhan development mode.
Meanwhile, the land use structure in 2029 was predicted by the PLUS model, with the
future landscape dynamic patterns further explored. In summary, the workflow of our
study can be depicted in Figure 2.

3.1. Data Pre-Processing

Systematic pre-processing was conducted before LULC mapping, and change analysis
was conducted to eliminate errors and establish direct connections between different data.
Firstly, the projection systems of all Landsat images and the administrative area shape file
were geographically unified to the Universal Transverse Mercator (UTM) project system
with the 1984 World Geodetic System (WGS) datum. Due to atmospheric influences, the
digital numbers generally deviated from the real spectral responses of ground objects,
which hinders the fine information extraction. Hence, an atmosphere correction was
conducted for each image by using the FLAASH module of ENVI 5.3. Then, the overall
study area was generated by mosaicking three adjacent images (Path/Row: 122/39, 123/38,
123/39) and masking the result with the administrative division.

Although the images were selected under the principle of cloud-free or low-cloud
coverage, cloud contamination was still inevitable for some special years, which blocks the
underlying surface information and degrades the mapping quality to a large degree. In or-
der to relieve this problem, the potential clouds contained in the image were firstly masked
by the general cloud index [38]. It takes full advantages of cloud reflection properties to
construct the following two indices:

http://www.geodoi.ac.cn/WebCn/Default.aspx
http://www.geodoi.ac.cn/WebCn/Default.aspx
https://www.openstreetmap.org/
http://westdc.westgis.ac.cn/data/844010ba-d359-4020-bf76-2b58806f9205
http://westdc.westgis.ac.cn/data/844010ba-d359-4020-bf76-2b58806f9205
http://www.worldclim.org/
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CI1 =
BNIR + 2× BSWIR−1

BB + BG + BR
, CI2 = (BB + BG + BR + BNIR + BSWIR−1 + BSWIR−2)/6 (1)

where BB, BG, BR, BNIR, BSWIR-1 and BSWIR-2 denote the blue, green, red, near infrared, short
wave infrared-I and short wave infrared-II band, respectively. Then, with the recommended
thresholds for CI1 and CI2 [38], the potential cloud pixels can be effectively identified. Then,
based on the cloud detection results, the cloud pixels were filled with the corresponding
clear-sky pixels obtained from time series observations, according to the time proximity.
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Figure 2. The workflow of this study.

Furthermore, due to different sources, the 15 driving factors have various geographical
systems and spatial resolutions and the cloud is not directly utilized for land use simulation.
Hence, they were geographically unified with the Landsat images in order to possess the
same geographical system and projection system, i.e., WGS84 and UTM, with the spatial
resolution uniformly resampled to 30 m.

3.2. LULC Mapping
3.2.1. Feature Extraction and Classification

A six-type land system was adopted for this study, including built-up land, cropland,
water, forest, grassland and unused land, according to the first classification standard
of the Chinese Academy of Sciences. The spectral signatures of pixels were utilized as
basic features. Specifically, six multispectral bands were utilized for Landsat TM/ETM+
images, with seven bands utilized for OLI images, as listed in Table 1. Moreover, three
typical spectral indices, i.e., normalized difference vegetation index (NDVI), normalized
difference water index (NDWI) and normalized difference built-up index (NDBI), were also
extracted to enhance the separability between different classes, which have been verified
to have strong indications for special land types, i.e., vegetation, water and impervious
surfaces [39,40].

Supervised classification was employed to perform a pixelwise classification for each
year over the study period. A famous machine learning algorithm, i.e., support vector
machine (SVM) [41,42], was utilized for this study. It performs classification by searching an
optimal hyperplane between two classes with a maximum margin, as shown in Figure 3a.
The hyperplane is generally determined by only a few support vectors, which results in
outstanding performance in the case of limited training samples. As a result, SVM has
been a powerful tool in remote sensing classification and applications [43,44]. Due to the
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complexity of imaging environment, remote sensing pixels are commonly nonlinearly
separable. Hence, the nonlinear SVM model with a soft margin and kernel is utilized.
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Figure 3. The working mechanism of support vector machine (SVM): (a) the linear model; (b) the non-linear model.

Specifically, take the binary classification problem as an example. The SVM learns an
optimal hyperplane as a decision boundary as follows:

min
w,b

‖w‖2

2
+ C

n

∑
i=1

ξi s.t. yi

[
wT ϕ(xi) + b

]
≥ 1− ξi, ξi ≥ 0 (2)

where xi ∈ RD and yi ∈ {+1,−1} denote to the i-th sample of D dimension and its corre-
sponding class label; w and b are hyperplane parameters; ξi is a slack variable, measuring
the distance of misclassified samples to the hyperplane; C is a penalty parameter; n is the
number of training samples; and φ is a kernel function, defined as φ : κ

(
xi, xj

)
= φ(xi)

Tφ
(
xj
)
,

which maps features from the original space into a much higher space in order to obtain
an approximately linearly separable problem, as shown in Figure 3b. This study utilized the
radial basis function (RBF) as the kernel function, i.e., e−δ‖x1−x2‖2

, where δ is the kernel width.
Based on the binary classification model above, SVM can be extended to the multi-class
version through “one-against-all” or “one-against-one” strategies [45].

In this study, the sample database for classification was firstly constructed through
visual interpretation by experienced professionals using the region of interest (ROI) tool
to label adequate representative samples for each class, with the high-resolution images
and public LULC products, e.g., land use/cover data [46], as references. Then, 20% of the
labeled samples were randomly selected for training, with the rest utilized for testing. With
the help of SVM, a primary LULC result cloud was obtained for each year over the study
period 2000–2019.

Then, two common quantitative metrics, i.e., overall accuracy (OA) and Kappa statis-
tic, were utilized in order to assess mapping accuracy. The OA describes the proportion
of correctly classified pixels in the result, and Kappa statistic considers the bias of differ-
ent categories in classification and provides the consistency evaluation which can better
measure the classification quality. Both these two metrics are based on the classification
confusion matrix and can be calculated according to the following rules:

OA =
pc

n
, kappa =

p0 − pe

1− pe
(3)

where pc denotes the number of correctly classified samples, n is the total number of
samples, p0 is the sum of the number of correctly classified samples for each category
divided by the total number of samples and pe = (a1 × b1 + a2 × b2 + · · · ak × bk)/(n× n),
where ai and bi are the number of real samples and the number of predicted samples for
each category and k is number of classes.
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3.2.2. Post-Processing

The SVM classification results were then post-processed to correct misclassifications in
order to obtain the refined LULC maps before change analysis. The post-processing mainly
involved temporal consistency analysis and spatial coherence analysis. Firstly, based on
the time-series maps, the LULC conversion logic was verified for each pixel to correct the
irrational labels. As we know, a continuous closed-loop change is generally unreasonable.
For example, a cropland pixel is not permitted to change into built-up land but then it
changed back to cropland in the next year; this is most likely to be a misclassification.
Based on this fact, the irrational labels were corrected according to the following rule:

if yt−1 = i and yt = j and yt+1 = i, then yt = i s.t. i, j ∈ {1, 2, 3, 4, 5, 6} (4)

where yt denotes the label of the target pixel in the t-th year, with 1, 2, 3, 4, 5 and 6 standing
for built-up land, water, forest, cropland, unused land and grassland, respectively. Due to
the inconsistency of image size, two time series were constructed for temporal consistency
analysis in this study, i.e., {2000–2009, 2013–2015, 2017} and {2010, 2011, 2018, 2019}. In
addition, considering the peculiarity in 2016 when a serious flood broke out, the LULC
result of 2016 was reserved separately.

Then, the spatial coherence check was conducted for each LULC map. According
to the first law of geography, land use should gradually change in the space. That is to
say that the pixels in a small neighborhood belong to the same land use type in a large
probability. It means that the isolated heterogeneous pixels are commonly caused by
misclassifications. Specifically, majority voting was employed to eliminate such pixels and
to enhance the homogeneity of the LULC results, which is a common strategy in remote
sensing applications [47,48]. Specifically, it opened a small spatial window for each pixel
and took the land use type with the highest frequency as the final class label of the central
pixel. Considering the relatively low spatial resolution of Landsat images, i.e., 30 m, a local
window at a size of 3 × 3 was selected as the unit for majority voting.

3.3. LULC Change Analysis and Modeling

Based on the produced continuous time series LULC maps, we comprehensively
explored the spatio-temporal patterns of LULC change in Wuhan both qualitatively and
quantitatively, with several typical metrics utilized to model the landscape dynamics,
including single land use dynamicity, landscape activity, urban gravity center and transi-
tion distance.

Specifically, the single land use dynamicity describes the change extent and speed of
certain land use over a given period [34], which is widely used in LULC change analysis. It
can be calculated according to the following formulation:

K =
Aj − Ai

Ai
× 1

T
× 100% (5)

where K denotes the change velocity of the target land use with a positive value representing
an increasing rate and a negative value representing a decreasing rate; T is the time interval;
and Ai and Aj stand for the area of the target land use in the i-th and j-th year, respectively. In
this study, this index was calculated on the scale of the whole city and the scale of the inner
administrative district to comprehensively uncover the landscape dynamic characteristics
of Wuhan.

A landscape activity index was defined to explore the internal imbalance and regional
difference between the 13 administrative districts. It describes the total dynamicity of a
certain region over all land uses, i.e., the ratio of the changed area to the total area of a
given district, which can be formulated as follows:

Di =
Ac

Ap,i
× 100% (6)
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where Di denotes the landscape activity of the i-th district, with a larger value indicating
a more active state; and Ac and Ap,i stand for the changed area and the total area of the
i-th district in the p-th period, respectively. Compared with single land use dynamicity,
this index removes the influence of base area of different land uses and comprehensively
describes the landscape activity and vitality of each district.

The urban gravity center describes the equilibrium point of the spatial distribution of
built-up land, which is an important index for urban evolution analysis [49]. Generally, it
is defined as the weighted average of coordinates of urban block geometric centers and can
be calculated as follows:

Xt =
∑N

i−1(Ati × Xi)

∑N
i−1 Ati

, Yt =
∑N

i−1(Ati ×Yi)

∑N
i−1 Ati

(7)

where Xt and Yt denote to the coordinates of urban gravity center in the t-th year; Xi
and Yi stand for the coordinates of geometric center of the i-th urban block; and Ati is the
area of the i-th urban block, with N being the number of urban blocks. With the help of
urban gravity centers, the urban sprawl direction and historical evolution track can be
effectively inferred. Moreover, the transition distance of urban gravity center was also
calculated to quantitatively analyze the urbanization intensity in a given period, which can
be formulated as follows:

d =

√
(Xt2 − Xt1)

2 + (Yt2 −Yt1)
2 (8)

where d denotes to the transition distance of urban gravity center in period t1–t2; Xt1,
Yt1 and Xt2, Yt2 represent the coordinates of urban gravity centers in the t1-th and t2-th
year, respectively.

3.4. LULC Dynamic Simulation

In order to better understand the land dynamic system of Wuhan and explore its
future dynamic pattern, the recently developed advanced PLUS model [36] was employed
to predict the land allocation in 2029. It is derived from the well-known cellular automata
(CA) model. As is well known, CA is a dynamic model focusing on the spatio-temporal in-
teractions and potential rules. With bottom-up modeling, powerful parallel computing and
prominent spatio-temporal dynamic expression abilities, CA is very suitable for simulating
the complex geographical evolution process and has been an important and mature tool in
land use simulation studies [50,51]. The PLUS model enhances the prediction ability of CA
by better integrating the impacts of various spatial factors with the dynamics of geographi-
cal cells. It introduces a new rule-mining strategy and a patch-generating mechanism to
better learn the nonlinearity in LULC changes. Consequently, it generally results in higher
accuracy than other state-of-the-art models [36]. Specifically, the mechanism of the PLUS
model fits the task in this research well to simulate the land use dynamics by integrating
multiple spatial driving factors based on multi-temporal LULC results. Therefore, the
PLUS model was employed to predict the land use pattern of Wuhan in 2029.

The PLUS model involves two basic modules, i.e., a land expansion analysis strategy
(LEAS)-based rule-mining module and a multi-type random patch seeds-based CA (CARS)
module. The LEAS module excavates the impact of each driving factor on the expansion of
geographical units based on random forest and derives the final development potential of
each land use in the space. The CARS module is a special CA model, which combines the
influences of “top-down” and “bottom-up” mechanisms on the land system. It simulates
the local micro land use competition to drive the total land use to meet the macro future
demand under the comprehensive action of adaptive coefficient, neighborhood effect and
development probability. The neighborhood effect of a land use unit is determined by the
proportion of the number of units in its own category and the priori diffusion coefficient.
The adaptive coefficient is influenced by the difference between the number of units in
its own category and the future demand, while the development probability is derived
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from the mining results of LEAS. For detailed information, please refer to [36]. Generally
speaking, the PLUS model takes advantage of transition analysis and pattern analysis to
provide consideration to effectiveness and efficiency, and the software can be obtained
from http://www.urbancomp.net/2020/07/25/plus/ (accessed on 11 March 2021).

Specifically, the PLUS model needs two LULC maps as basic input for land use
simulation, together with multiple concerning driving factors to learn the land change
rules. In this study, 15 different factors were collected to assist LULC simulation, as
described in Sub-Section 2.2. The simulation accuracy was firstly tested over a past time
interval, i.e., 2009–2019, with 2009 and 2014 as basic dates for an equal interval prediction.
Then, the LULC in 2029 was predicted for future land use dynamic analysis.

4. Results
4.1. LULC Maps and Accuracy Assessment

The continuous time series LULC maps of Wuhan in the period of 2000–2019 are given
in Figure 4. The LULC results depicted rapid urbanization in Wuhan over the past 19 years,
with large landscape changes taking place. The urban area expanded rapidly similar to a
large flatbread, with a large account of cropland occupied, which greatly changed the land
use structure of Wuhan. In addition, the forest and grassland also showed some changes,
especially for the northwestern and central parts of Wuhan. The change in the area covered
by water was relatively small over the study period, except for 2016.
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(r) 2017; (s) 2018; and (t) 2019.

Table 3 gave the quantitative evaluations of the LULC mapping results. For all years,
the OA and Kappa exceeded 84% and 0.80, with most of them being larger than 88% and
0.84, which meets the requirements of the subsequent analysis according to the 80% rule
of OA in remote sensing applications [52]. In addition, it can be found that the mapping
accuracy was improved by temporal consistency analysis for most years, i.e., 2001–2009,
2013 and 2014, and was improved by spatial coherence analysis for all years, which
demonstrates the effectiveness of the post-processing operators adopted in this study.

Moreover, Figure 5 intuitively shows the function of post-processing with two typical
scenes. From the figure, it can be observed that misclassifications caused by imaging
environment and seasonal changes, e.g., illumination change and agricultural fallow, were
effectively corrected to a large extent by using temporal consistency analysis, and the
scattered heterogeneous pixels were smoothed out to obtain a more homogeneous result
through spatial coherence analysis. Accordingly, more reasonable LULC results were
obtained after post-processing.

4.2. Temporal Change Analysis by Land Use Theme

Based on the continuous time series LULC maps, yearly change of each land use was
firstly analyzed to discover the change trend and characteristics. For convenient analysis,
the highly correlated land uses were explored together.
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Table 3. Accuracy assessment of the LULC maps of Wuhan during the period 2000–2019.

Year
Original Classification Temporal Consistency Spatial Coherence
OA (%) Kappa OA (%) Kappa OA (%) Kappa

2000 86.17% 0.8218 86.17% 0.8218 88.31% 0.8490
2001 79.94% 0.7415 82.97% 0.7789 84.86% 0.8032
2002 86.96% 0.8318 88.19% 0.8469 89.54% 0.8641
2003 85.25% 0.8142 86.19% 0.8250 87.86% 0.8459
2004 84.31% 0.7938 86.85% 0.8250 89.04% 0.8539
2005 90.36% 0.8687 91.27% 0.8806 92.87% 0.9022
2006 87.61% 0.8368 89.89% 0.8663 91.58% 0.8885
2007 89.11% 0.8561 90.46% 0.8731 91.91% 0.8923
2008 87.44% 0.8354 88.76% 0.8520 90.49% 0.8744
2009 87.66% 0.8369 88.23% 0.8438 89.66% 0.8626
2010 82.88% 0.7763 82.88% 0.7763 85.52% 0.8098
2011 84.09% 0.7943 83.61% 0.7877 85.77% 0.8153
2012 88.56% 0.8530 88.56% 0.8530 89.44% 0.8638
2013 85.58% 0.8122 86.50% 0.8229 88.04% 0.8427
2014 89.27% 0.8611 90.21% 0.8727 91.66% 0.8913
2015 88.40% 0.8510 87.54% 0.8384 89.27% 0.8606
2016 87.02% 0.8261 87.02% 0.8261 88.46% 0.8449
2017 84.67% 0.8001 84.67% 0.8001 86.56% 0.8244
2018 87.09% 0.8247 86.73% 0.8194 88.45% 0.8425
2019 89.60% 0.8632 89.60% 0.8632 91.09% 0.8826

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 32 
 

 

2015 88.40% 0.8510 87.54% 0.8384 89.27% 0.8606 

2016 87.02% 0.8261 87.02% 0.8261 88.46% 0.8449 

2017 84.67% 0.8001 84.67% 0.8001 86.56% 0.8244 

2018 87.09% 0.8247 86.73% 0.8194 88.45% 0.8425 

2019 89.60% 0.8632 89.60% 0.8632 91.09% 0.8826 

 

    
(a) (b) (c) (d) 

   

 

(e) (f) (g)  

Figure 5. The post-processing on two typical scenes: (a) the false color image of scene 1 in 2006; (b) the false color image 

of scene 1 in 2007; (c) the LULC result before temporal consistency analysis; (d) the LULC result after temporal consistency 

analysis; (e) the false color image of scene 2 in 2009; (f) the LULC result before spatial coherence analysis; (g) the LULC 

result after spatial coherence analysis. 

4.2. Temporal Change Analysis by Land Use Theme 

Based on the continuous time series LULC maps, yearly change of each land use was 

firstly analyzed to discover the change trend and characteristics. For convenient analysis, 

the highly correlated land uses were explored together. 

4.2.1. Built-Up Land Expansion and Cropland Consumption 

Over the past 19 years, the built-up land and cropland have both greatly changed 

under the background of urbanization. Figure 6 provides the detailed changes in areas of 

built-up land and cropland from which an obvious growth trend can be observed for built-

up land, with a declining trend for cropland. 
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analysis; (e) the false color image of scene 2 in 2009; (f) the LULC result before spatial coherence analysis; (g) the LULC
result after spatial coherence analysis.

4.2.1. Built-Up Land Expansion and Cropland Consumption

Over the past 19 years, the built-up land and cropland have both greatly changed
under the background of urbanization. Figure 6 provides the detailed changes in areas
of built-up land and cropland from which an obvious growth trend can be observed for
built-up land, with a declining trend for cropland.
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Figure 6. Built-up land and cropland changes.

Specifically, the built-up area grew year by year, increasing from 430.62 km2 in 2000 to
1413.28 km2 in 2019, with an increment of 982.66 km2 (228%). That is to say, the urban scope
tripled during the past 19 years, which indicates significant urbanization. In addition to the
advantages, the large-scale growth of impervious surface was bound to exacerbate urban
heat island and imposes pressure on public health. As the most direct consumption of
urban sprawl, the cultivated land area decreased from 6078.85 km2 in 2000 to 5361.71 km2

in 2019, with a reduction of 717.14 km2 (12%). Undoubtedly, this results in a certain decline
of the local land productivity and threatens food security to some degree.

In addition, an obvious abnormal phenomenon could be noted for cropland in 2016.
The plunge was caused by the serious flood caused by the concentrated heavy rainfall in
summer. The breakwater of Tangxun Lake and many other lakes resulted in the inundation
of large areas of farmland, which can be obviously observed from Figure 4. With the cast
off of flood, the farmland area rose rapidly in 2017.

4.2.2. Natural Habitat Dynamics

The natural habitat is an important component of ecological system and has a critical
impact on local climate and environment. In this study, the natural habitat involves water,
forest and grassland, with yearly changes depicted in Figure 7.
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Figure 7. Natural habitat change.

From the figure, it can be observed that the natural habitats were also affected by
urbanization to some extent. Different from built-up land and cropland, there is no
monotonous change trend for any kind natural habitat, instead, it alternately increases
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and decreases. Generally speaking, the natural habitats shrank to some extent over the
study period. Specifically, the water area reduced from 1052.98 km2 in 2000 to 870.46 km2

in 2019, with 182.52 km2 (17.33%) occupied by other land uses. There was an obvious
anomaly in 2016 where the water area reached an unprecedented high value because
of the flood disaster. The forest area decreased from 678.43 km2 to 654.51 km2 over the
past 19 years, with the grassland area decreasing from 226.01 km2 to 161.06 km2. All
these reductions created a threat to the local ecological environment and hindered urban
sustainable development to some degree.

4.2.3. Land Use Conversions

In order to further explore the interactions among different land types and to quanti-
tatively analyze their conversions induced by urbanization over the past 19 years, the land
use conversion matrix in period 2000–2019 is provided in Table 4.

Table 4. Land use conversion matrix of Wuhan in period 2000–2019.

2000
2019 Built-Up

Land
Water Forest Cropland Unused

Land Grassland

Built-up land 305.08 7.73 5.46 99.05 4.83 8.40
Water 55.13 707.46 20.92 248.92 1.92 17.94
Forest 42.13 42.75 229.46 348.52 4.61 10.74

Cropland 947.37 103.45 349.69 4463.39 100.04 113.86
Unused land 34.77 7.64 4.24 61.10 5.42 2.54

Grassland 28.72 0.97 44.57 139.74 4.82 7.14

From Table 4, it can be observed that certain conversions have taken place under the
background of urbanization during the past 19 years. There were 947.37 km2 cropland
changing to built-up land as the consumption of urban sprawl. By comparison, the
conversion area of other land use to built-up land was relatively small. Specifically, the
areas of water, forest, unused land and grassland converted to built-up land were 55.13 km2,
42.13 km2, 34.77 km2 and 28.72 km2, respectively. In addition, it can be observed that the
conversions between forest and cropland were also significant. Generally speaking, all
these conversions resulted in a large change of land use pattern in Wuhan.

4.3. Spatio-Temporal Pattern Analysis of LULC Change

Five typical years (2000, 2004, 2009, 2014 and 2019) with representative LULCs were se-
lected as time nodes to generate four typical periods, i.e., 2000–2004, 2004–2009, 2009–2014
and 2014–2019, at approximately five-year intervals. Based on this, we explored the spatio-
temporal patterns of LULC change in Wuhan from multiple views.

4.3.1. Single Land Use Dynamicity

Firstly, the single land use dynamicity of Wuhan City was explored to characterize the
overall dynamic characteristics of the landscape during the past 19 years, with the results
provided in Table 5.

From Table 5, it can be observed that different land uses presented distinct dynamic
patterns. Specifically, the built-up land area was constantly increasing, with an average
annual growth rate of 12.01%, which resulted in a typical urbanization course that sped
up first, then slowed down and then accelerated again. The cropland area continuously
declined with an aggravated velocity. However, due to the large base area, its dynamicity
stuck at a low level. Generally, the cropland was consumed at an average annual rate of
0.62%. For natural habitats, i.e., water, forest and grassland, the area presented a fluctuating
state but reflected a decreasing trend in general, with annual declining rates of 0.91%, 0.19%
and 1.51%, respectively.

Then, the single land use dynamicity was explored at the administrative district level
to uncover the regional differences of LULC changes in Wuhan, with the results provided
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in Figure 8. For convenient analysis, the forest and grassland, which have similar ecological
functions, were merged into one class, i.e., vegetation. Affected by the base area, the
dynamicity was small for cropland while it was large for vegetation.

Table 5. Single land use dynamicity of Wuhan City in different periods.

Land Use
Dynamicity (%) 2000–2004 2004–2009 2009–2014 2014–2019 2000–2019

Built-up land 7.01 5.15 9.09 8.03 12.01
Cropland −0.28 −0.71 −0.66 −0.87 −0.62

Water 0.34 0.44 −2.12 −2.16 −0.91
Forest 4.03 0.66 −1.70 −2.42 −0.19

Grassland −13.20 5.84 0.81 2.45 −1.51
Unused land −12.12 −2.83 21.29 3.02 0.27
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Figure 8. The spatial pattern of single land use dynamicity of different districts in various periods:
single land use dynamicity pattern during the period (a) 2000–2004; (b) 2004–2009; (c) 2009–2014; (d)
2014–2019; and (e) 2000–2019.

Generally, the built-up land dynamicity occupied the dominant position for most dis-
tricts over the whole study period, i.e., 2000–2019, in the context of urbanization, as shown
in Figure 8e. However, the land use dynamic pattern varied at different stages. Specifically,
Hongshan, Hanyang, Jiangxia and Dongxihu showed a larger built-up land dynamicity
at most stages (the early, middle-to-late and late stages), i.e., 2000–2004, 2009–2014 and
2014–2019. Especially for Hongshan, owing to the preferential policies, abundant resources
and extensive space, this district developed rapidly, with the built-up land dynamicity
maintaining at a high level at all stages over the study period. Additionally, Huangpi,
Xinzhou, Caidian and Hannan showed a relatively high dynamicity for built-up land as
well at certain stages, but it was more due to the smaller base area. In particular, Huangpi,
Caidian and Hannan showed a high built-up land dynamicity at the middle-to-late and
late stages, i.e., 2009–2014 and 2014–2019, while Xinzhou showed a high built-up land
dynamicity at the early and middle-to-late stages, i.e., 2000–2004 and 2009–2014. However,
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for most old metropolitan districts, such as Wuchang, Jiang’an, Jianghan, Qiaokou and
Qingshan, the built-up land dynamicity was not significant because of the greater base
area. By comparison, the dynamicity of cropland and natural habitats was more obvious.

4.3.2. Comprehensive Landscape Activity

The landscape activity index was utilized to further evaluate the dynamic pattern
of the 13 administrative districts in order to better understand the development mode of
Wuhan, with the results provided in Figure 9.
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Figure 9. The spatial pattern of landscape activity of different districts in Wuhan in various peri-
ods: the landscape activity pattern during the period (a) 2000–2004; (b) 2004–2009; (c) 2009–2014;
(d) 2014–2019; and (e) 2000–2019.

From Figure 9, it can be clearly observed that there exists an obvious internal imbalance
and regional difference between the 13 administrative districts in the development process
of Wuhan. From the whole research stage, Hanyang, Hongshan, Jiang’an and Dongxihu
presented a more active landscape, with Hanyang being the active center. Among them,
most are metropolitans. By comparison, the suburbs, such as Huangpi, Xinzhou and
Hannan, lacked vitality and had a less active landscape.

On the other hand, it can be observed that the active pattern varied a lot at different
stages, with the active districts frequently changing. Specifically, at the early stage, i.e.,
2000–2004, Jiang’an, Qingshan and Dongxihu owned the largest activity, followed by
Hanyang, Hongshan, Caidian, Huangpi and Xinzhou. At the middle stage, i.e., 2004–2009,
Hanyang started to be the active center, with the landscape of Jiang’an, Qingshan and
Dongxihu still being very active, while the landscape activity of Huangpi and Xinzhou
obviously declined. At the middle-to-late stage, i.e., 2009–2014, the landscape of Hanyang,
Dongxihu and Caidian was still very active, followed by that of Wuchang and Hongshan.
At the late stage, i.e., 2014–2019, the large activity remained in these three districts, while
the landscape of Hannan and Jiangxia started to be active.
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4.3.3. Land Dynamics of Typical Districts

In this section, four representative districts with different characteristics were selected,
i.e., Jianghan, Hongshan, Jiangxia and Huangpi, in order to further uncover the landscape
dynamic difference between metropolitans and suburbs, with an old metropolitan, a new
metropolitan, an urban fringe suburb and a suburb included. The LULC results of these
four districts at five typical time nodes (2000, 2004, 2009, 2014 and 2019) are provided
in Figure 10.

From the figure, it can be observed that the land use structure and major land dynamics
were quite different for metropolitans and suburbs. For metropolitans, i.e., Jianghan
and Hongshan, the built-up land area accounted for a considerable proportion, and its
dynamicity was significant and dominant over the study period. Especially for the rising
metropolitan, i.e., Hongshan, the built-up land dynamicity was conspicuous, with its
proportion increased from 5.75% in 2000 to 32.91% in 2019. On the other hand, for suburbs,
i.e., Jiangxia and Huangpi, most of the area was covered by the arable land and natural
habitats, with built-up land change submerged into other changes. By contrast, as an
urban fringe area and the natural extension of urbanization, Jiangxia showed a larger
development potential than Huangpi, with the built-up area proportion increased from
1.25% to 9.71% (nearly eightfold) over the past 19 years.

In addition, the urbanization pattern was quite different for metropolitans and suburbs.
For metropolitans, urbanization presented a rapid multi-directional expansion in the form
of a big pie at anywhere that was available. While for the suburbs, in addition to the slow
sprawl of original towns, urbanization mainly took place close to the metropolitans, such
as the south of Huangpi and the northwest of Jiangxia.

4.3.4. Urbanization Mode and Land Consumption

In order to discover the land consumption of urbanization in Wuhan, we explored the
situation of urban land crowding out other land uses in different periods, with the results
provided in Figure 11.
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(a) 2000–2004; (b) 2004–2009; (c) 2009–2014; (d) 2014–2019; and (e) 2000–2019.

From the figure, it can be observed that the main consumption of urban expansion
is the cultivated land, accounting for the vast majority in each period. For the other land
uses, the consumed land types were different in various periods. For example, there was
a relatively obvious consumption for water during the period 2000–2014, while it was
obvious for unused land during the period 2014–2019. For the natural habitats, i.e., forest,
grassland and water, the consumed part mainly concentrated in the regions nearer to the
city, which suggested that their growth was greatly affected by human activities.

In order to better learn the urbanization mode of Wuhan, we comprehensively ex-
plored the urban sprawl pattern, gravity center transition and development direction, with
the results given in Table 6 and Figures 12 and 13.
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Table 6. Urban gravity center transition distance during different periods.

Period 2000–2004 2004–2009 2009–2014 2014–2019

Transition
distance (km) 4.10 0.38 1.73 4.46
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From Figure 12 and Table 6, it can be clearly observed that the urban sprawl pattern
and gravity center transfer route varied in different periods. Specifically, during the period
2000–2004, the urban sprawl in the east and south was obvious. As a result, the gravity
center transferred towards the southeast, with a large transition distance of 4.10 km. During
period 2004–2009, the urbanization course was not significant. Consequently, the gravity
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center only slightly moved. During period 2009–2014, urban expansion began to accelerate,
with the gravity center shifted to the east at a relatively large step, i.e., 1.73 km, while
during period 2014–2019, the urbanization in the southwest was prominent. Accordingly,
the gravity center transferred in a quite different direction, i.e., the southwest, with a large
transition distance of 4.46 km.

From Figure 13, it can be observed that the principal development direction varied at
different stages, but with similar trends as above. Specifically, during period 2000–2004, the
principal direction was the southeast. During period 2004–2009, the development direction
was not obvious, with the southeast slightly dominant. During period 2009–2014, the
principal direction was the northeast, while in 2014–2019, the principal direction changed
to the southwest. On the whole, Wuhan mainly developed towards the east and south.

4.4. Simulated LULC Results

Figure 14 provides the land use simulation results of the PLUS model. From the figure,
it can be observed that the simulation result in 2019 (Figure 14b) was basically consistent
with the reference map (Figure 14a), which demonstrates the effectiveness of the PLUS
model. The composition and distribution of various land uses approximately coincide with
the reality. As a result, an OA of 74.69% and a figure of merit (FOM) of 0.18 were obtained,
which reaches a good simulation standard and can guarantee the subsequent analysis [36].
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From the predicted LULC result in 2029 (Figure 14c), it can be observed that a large
landscape change will occur in the next 10 years. The land use dynamics will still be
significantly induced by urbanization. Specifically, the built-up land obviously expands
outside, while the cropland has a large proportion of reduction as the consumption of
urbanization, especially for the regions close to the metropolitan, further exacerbates the
threat to food security. The unused land has no obvious change, and the forest, grassland
and water seem to have some incremental change. For instance, there is an obvious growth
of forest in the northeastern part of Wuhan.

Figure 15 provided the importance analysis of the 15 driving factors utilized in this
research study for urban expansion. From the figure, it can be observed that DEM con-
tributed most to built-up land expansion. This is because topographic factors determined
the difficulty and cost of urban construction. Generally, urban sprawl will avoid moun-
tainous areas with large topographic fluctuations. From Figure 15a, it can be observed that
the expanded built-up areas were mostly distributed in the relatively flat part of Wuhan,
which is in line with the general law of urban development. In addition, it can be observed
that the distance from prefectural centers and the distance from primary/second roads
were also dominant driving factors in the growth of built-up land. The reasons could be
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that the distribution of administrative centers was generally an important factor in urban
planning. Therefore, the distance from prefectural centers will naturally affect the direction
and extent of urban expansion, while road is an important part of traffic and is an important
prerequisite for urban development. Thus, the distance from primary/second roads had a
large impact on the growth of built-up land.
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Figures 16 and 17 provided future land use dynamics and urbanization mode based
on the predicted LULC result in 2029. From the figures, it can be observed that the urban
sprawl will continue in the next 10 years, with the “converted into” area much larger than
the “converted from” area. The built-up land continues to rapidly expand outward along
the two rivers, especially for Hongshan, Hanyang, Jiangxia and Caidian. Unlike before, the
urban area will mainly develop toward the northeast in the future, with more significant
urbanization in Huangpi and Xinzhou. Accordingly, the urban gravity center will transfer
to the northeast, with a relatively large transition distance of 2.62 km. As a result of
urbanization, a large quantity of farmland will continue to be occupied. Unlike the past
19 years, the natural habitats, i.e., forest, grassland and water tend to increase in the future,
which is a good signal for ecological environment improvement and urban sustainability.
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5. Discussion
5.1. Land Use Structure and Dynamicity Analysis
5.1.1. Land Use Structure Characteristics

The land use structure of Wuhan is very distinct. Specifically, the urban area is mainly
distributed along the two rivers, i.e., the Yangtze River and Han River, forming a typical
pattern of three towns (Wuchang, Hankou and Hanyang) across the rivers. The built-up
lands are mainly concentrated in the seven metropolitan districts in central Wuhan, with a
scattered distribution in the outer suburbs. Over the past 19 years, the urban area constantly
spread to the periphery, similar to a pie. As a result, great changes took place in the urban
scope and form, from concentration in the hinterland of the Yangtze River during the initial
stage to all-around development along the two rivers to four banks during the current
stage. However, as a central city, the dominant land use of Wuhan is still arable land,
accounting for nearly 60%, which is mainly distributed in the six suburban districts, such as
the south of Huangpi, most of Xinzhou, Dongxihu and Hannan, the northwest of Caidian
and the west of Jiangxia, and occupied the vast majority of their area.

On the other hand, Wuhan enjoys a good reputation of “the city of hundreds of lakes”.
Water occupies a considerable area, with large amounts of rivers, lakes, ponds and ditches
in different sizes in addition to the Yangtze River and Han River, which is embedded in the
separated area of the two rivers and forms a developed water network. For the other two
natural habitats, forest and grassland had a relatively concentrated distribution, mainly
in the north of Hangpi, the east of Xinzhou and the middle of Hongshan, Jiangxia and
Caidian, and were less affected by human activities.

5.1.2. Land Dynamic Characteristics

Driven by a series of national strategic measures, such as the rise of central China,
Wuhan experienced unprecedented urbanization over past 19 years, which can be char-
acterized by a distinct process that sped up first, then slowed down and then accelerated
again (Table 5). Consequently, great landscape changes were triggered. The urban area
constantly increased at an annual rate of 12%, with an increment of 228%. The immediate
consequence of the rapid urban sprawl was a great reduction in cultivated land, i.e., 12%,
which poses a threat to local land productivity and food security. Meanwhile, certain fluc-
tuations and reductions have took place in natural habitats, which brings some negative
effects to urban sustainability.

On the other hand, there was an obvious internal imbalance and regional difference be-
tween the 13 administrative districts in the development process of Wuhan (Figures 8 and 9).
On the whole, Hanyang, Hongshan and Dongxihu owned a more active landscape than
others, with Hanyang being the active center. Meanwhile, the built-up land dynamicity was
significant and dominant for most districts over the study period.

Specifically, for most old metropolitan districts, such as Wuchang, Jianghan, Qiaokou
and Qingshan, the built-up land dynamicity was not obvious and the landscape lacked
activity. This was because the urban construction had already been basically completed
at the end of last century, with limited preparation space for urban development. The
land dynamics mainly came from land structure upgrading, urban greening, infrastructure
renewal and old city reconstruction. By comparison, the dynamicity of natural habitats and
cropland was more obvious. However, as an old metropolitan, Hanyang was an exception.
It was because of the backward foundation and large development space. Driven by a
series of preferential policies and the real estate, Hanyang had joined in the main battlefield
of urban construction over the past 19 years and became the active center of Wuhan.
In addition, as an emerging metropolitan, Hongshan demonstrated large potential and
stamina owing to the advantages of policy, resources and space. Since 2000, with a series
of policies enacted, such as the planning of China Optical Valley and the construction of
high-tech industrial bases in the Donghu new technology development zone, Hongshan
ushered in an era of rapid development. The landscape has been very active, with the
built-up area risen by nearly six-fold.
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For the suburb districts, i.e., Huangpi, Xinzhou, Dongxihu, Jiangxia, Caidian and
Hannan, due to the small base area, their built-up land dynamicity was obvious. This was
especially true for the urban fringe districts, such as Dongxihu, Caidian and Jiangxia, which
were natural extensions of urban development. Frequent conversions happened between
built-up land and farmland or other land uses. As a result, the landscape of Dongxihu and
Caidian was very active in most stages over the study period.

5.2. Urbanization Mode Analysis
5.2.1. Analysis of Urban Land Crowding out Other Land Uses

Under the background of urbanization, great landscape changes have taken place
in Wuhan over the past 19 years, which brought about frequent land use conversions.
Here, we focused on the land expenditure of urbanization, i.e., the situation of urban land
crowding out other land uses (Figure 11).

Overall, the cropland to built-up land conversion dominated during various periods,
with a small amount of natural habitat to built-up land conversions. In particular, the
arable land around the city accounted for the land expenditure of urbanization to the
greatest extent, which is in line with the general law of China. Specifically, the resulting
consumption of arable land reached as high as 200.10 km2, 234.34 km2, 360.45 km2 and
569.17 km2 during the periods 2000–2004, 2004–2009, 2009–2014 and 2014–2019, respectively,
with a total expenditure of 947.37 km2 over the study period, which indicates the cultivated
land occupation development mode for Wuhan. In addition, there was also a small number
of natural habitats crowded by urban land, especially for the places that are close to
human activities.

5.2.2. Urban Sprawl Pattern and Gravity Center Transition

The urban scope and outline changed a lot over the past 19 years in the context of
urbanization, resulting in a distinct urban sprawl pattern and gravity center transfer route
for Wuhan (Figure 12 and Table 6). Generally, the urban are constantly expanded along
the rivers and roads, with various velocities and patterns at different stages. Specifically,
during the early stage, i.e., 2000–2004, the urban area rapidly expanded to the periphery,
especially towards the east and south, such as Hongshan and Jiangxia. In the next stage,
i.e., 2004–2009, the urban area only showed a slight sprawl in small pieces in the periphery.
Relative to the urban scope in 2009, many new urban areas appeared in the fringe areas in
2014, which suggests an acceleration of urbanization, while in the late stage, i.e., 2014–2019,
the urban scope had large-scale growth along the two rivers to four banks. All of these
results demonstrated the typical urbanization course of Wuhan once more.

On the other hand, the urban gravity center ceaselessly shifted throughout the whole
study period. Generally speaking, it mainly appeared in the central zone of Wuhan near
the Yangtze River. Specifically, during the period 2000–2004, the gravity center transferred
towards the southeast as a result of the rapid urbanization. It transferred from the northwest
of Jiang’an to the junction of Wuchang and Jiang’an, with a very large transition distance of
4.10 km. During the period 2004–2009, the gravity center further moved to the junction of
these two districts, but with a small transition distance of only 0.38 km. During the period
2009–2014, the gravity center mainly shifted to the east and transferred to the junction of
Wuchang and Qingshan, with a relatively large transition distance of 1.73 km. During the
period 2014–2019, the gravity center moved in a quite different direction, i.e., the southwest,
and back to the interior part of Jiang’an, with a large transition distance of 4.46 km. The
above transfer route illustrated that Wuhan mainly developed towards the east and the
south over the past 19 years.

5.2.3. Urban Development Direction

The urban development direction (Figure 13) indicated the development priorities of
Wuhan at different stages, which is an important component of the urbanization mode.
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Generally speaking, the principal development direction of Wuhan varied at different
stages, but with similar trends as above. Specifically, during the early stage, i.e., 2000–2004,
the urban development in the southeast was particularly prominent, with much weaker
urbanization in the north and west, which resulted in an obvious principal direction. In the
middle stage, i.e., 2004–2009, the urbanization slowed down, with the principal direction
being not obvious. By contrast, the development in the southeast seemed more prominent.
During the middle-to-late stage, i.e., 2009–2014, the development in the east showed a
certain advantage, especially for the northeast. During the late stage, i.e., 2014–2019, a
vastly different trend could be observed: the principal direction changed into the southwest.
On the whole, over the entire study period, the urban development principal direction of
Wuhan was the east and the south, especially for the southeast.

5.3. Future Land Use Dynamic Pattern Analysis
5.3.1. Future Land Use Dynamics

In order to explore the relationship between future land use conversions and past
trends, the future dynamic characteristics and conversion trajectories of major land uses
was further analyzed (Figure 16).

The results suggested that the “converted into” area was much larger than the “con-
verted from” area for built-up land, which demonstrates a further urban sprawl over the
next 10 years. The built-up area will reach 1794.27 km2 in 2029, with an increment of
380.99 km2 (26.96%) compared with that of 2019. On the other hand, it can be observed
that the urbanization will still mainly take place in agricultural regions, at an expense
of a reduction of 378.49 km2 (7.06%) for cropland. The continuous farmland occupation
sounds an alarm for the red line of cultivated land protection and food security. On the
plus side, for all natural habitats, i.e., water, forest and grassland, the “converted into” area
is larger than the “converted from” area, which heralds an improvement of the ecological
environment in the future. It may attributed to the related national strategic measures,
such as “green water and mountain”, “beautiful China”, etc., and suggests that the future
development mode of Wuhan tends to be eco-friendly.

5.3.2. Future Urbanization Mode

In order to explore the continuity of Wuhan development mode in the future, the
urbanization sprawl pattern, gravity center transition, development direction and the
situation of urban land crowding out other land uses in the next 10 years were further
analyzed (Figure 17).

The results indicate a very different development direction of Wuhan in the next
10 years, i.e., the northeast. In addition to the urbanization in the periphery of the metropoli-
tans, a large number of new built-up areas appeared in the northern suburbs, i.e., Huangpi
and Xinzhou, and mainly distributed along the main traffic lines, including expressways,
national/provincial roads and other trunk roads, where convenient transportation is pro-
vided for urban construction. Accordingly, the urban gravity center transferred towards
the northeast but is still inside the Jiang’an district, with a large transition distance of
2.62 km. On the other hand, it can be observed that farmland will still be the major land
expenditure of urbanization, which further threatens food security and hinders urban
sustainable development. This should arouse the specific attention of urban planners
and managers.

6. Conclusions

This paper carried out an in-depth study on spatio-temporal patterns of LULC change
in Wuhan under the background of urbanization over the past 19 years, i.e., 2000–2019, on
the basis of the continuous time series LULC maps produced by SVM by using Landsat
observations. The results indicated a typical urbanization course that sped up first, then
slowed down and then accelerated again, with the land use structure changing significantly.
The built-up area tripled, with an increment of 982.66 km2 (228%). Consequently, a large
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amount of cropland was occupied, with a reduction of 717.14 km2 (12%), which poses
a threat to food security. Meanwhile, the water, forest and grassland area had certain
reductions of 182.52 km2, 23.92 km2 and 64.95 km2, respectively. On the other hand,
an obvious internal imbalance was found between the 13 administrative districts, with
Hanyang, Hongshan and Dongxihu owing a more active landscape relative to others and
Hanyang being the active center. Accordingly, the urban gravity center constantly changed,
transferring from the northwest to southeast of Jiang’an district, with different principal
development directions at various stages. Generally, Wuhan mainly developed toward the
east and the south. Lastly, based on the simulated LULC result in 2029 by the PLUS model,
the future landscape dynamic pattern was further explored, and the results illustrated a
quite different urbanization mode in the next 10 years, mainly toward the northeast, which
is meaningful for urban planning and management.

The large change of the underlying surface, especially for the rapid increase in the
impermeable layer, will result in certain impacts on the local climate of Wuhan. For
example, the rapid urbanization broke the balance of the original heat flow mode and
further intensified the urban heat island effect of Wuhan. In addition, the large number of
natural covers transforming into artificial surface in Caidian may account for the tornado
that broke out in May 2021 in this area to some degree. Furthermore, the rapid urbanization
in the northern suburbs, i.e., Huangpi and Xinzhou, in the next 10 years, may increase the
risk of natural disasters. In the next work, we will explore the climate changes, ecological
impacts and urban heat island effect under different development scenarios in Wuhan to
promote urban sustainable development.
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