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Abstract: Commercial microwave link (MWL) used by mobile telecom operators for data transmis-
sion can provide hydro-meteorologically valid rainfall estimates according to studies in the past
decade. For the first time, this study investigated a new method, the MSG technique, that uses
Meteosat Second Generation (MSG) satellite data to improve MWL rainfall estimates. The investiga-
tion, conducted during daytime, used MSG optical (VIS0.6) and near IR (NIR1.6) data to estimate
rain areas along a 15 GHz, 9.88 km MWL for classifying the MWL signal into wet–dry periods and
estimate the baseline level. Additionally, the MSG technique estimated a new parameter, wet path
length, representing the length of the MWL that was wet during wet periods. Finally, MWL rainfall
intensity estimates from this new MSG and conventional techniques were compared to rain gauge
estimates. The results show that the MSG technique is robust and can estimate gauge comparable
rainfall estimates. The evaluation scores every three hours of RMSD, relative bias, and r2 based
on the entire evaluation period results of the MSG technique were 2.61 mm h−1, 0.47, and 0.81,
compared to 2.09 mm h−1, 0.04, and 0.84 of the conventional technique, respectively. For convective
rain events with high intensity spatially varying rainfall, the results show that the MSG technique
may approximate the actual mean rainfall estimates better than the conventional technique.

Keywords: commercial microwave link; Meteosat Second Generation; rainfall intensity; rain area detection

1. Introduction

A commercial microwave link (MWL) is a communication between two antennas (i.e.,
transmitter and receiver antennas) usually installed on telephone towers or roofs of build-
ings by mobile telecom service providers for data transmission from radio, TV, internet,
and wireless communication between our cell phones [1–3]. MWL uses 10 GHz–80 GHz
frequency ranges for data transmission, which are attenuated mainly by rainfall such that
the more intense the rainfall, the stronger the MWL experiences attenuation. For this
reason, previous studies pioneered by [4,5] have investigated and converted the MWL
signal to hydro-meteorological valid rainfall estimates.

Indeed, the MWL signal data have been studied for estimating rainfall for many
applications, e.g., [6–11]. For example, Overeem, Leijnse, and Uijlenhoet [6] used the MWL
data for measuring urban rainfall, and [7] demonstrated the data’s potential application
for monitoring rainfall in dry climatic regions. In Africa, [8,9] investigated the MWL data’s
potential for providing valuable rainfall information for agricultural needs and [10,11]
tested its application for rainfall monitoring. Other studies have applied the data for
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country-wide rainfall monitoring [12,13] and complimenting gauge and radar rainfall
estimates [14].

Such extensive research of the MWL data for rainfall estimation is due to their specific
advantages for rainfall monitoring comparable to prevailing techniques. For instance, their
network on land is relatively dense and can estimate rainfall over vast areas comparable
to weather radars. Additionally, this naturally dense MWL network allows for spatially
redundant rainfall observing systems with potentially no single point of failure (i.e., unlike
radars; when one MWL fails, several other links are usually active). Moreover, line-average
rainfall estimated from the MWL is spatially representative of areal rainfall compared to
point estimates from rain gauges. Further, the potential costs of running and maintaining
the MWL network for rainfall estimation and monitoring are minimal, since the telecom
service providers have already established and continue to maintain the infrastructure.

Nonetheless, there are limitations to MWL rainfall estimation and monitoring. Access
to MWL data can be a challenge, and usually, there are no standard procedures [15], which is
why some studies e.g., [4,16] utilised self-made MWL data in their MWL rainfall estimation.
Additionally, the MWL network is designed for a purpose other than rainfall monitoring,
often arbitrary in space and mostly biased towards densely populated areas [17]. This
complicates rainfall mapping from the MWL and can affect the retrieval accuracies for low
MWL network density areas. Furthermore, the low sampling frequency (usually 15 min),
precision (often 1 dB), and the noisy nature of the MWL data present additional challenges
to accurate rainfall estimation from MWL data [15,18–20].

Currently, three primary steps are used to estimate rainfall from the MWL data. Firstly,
the MWL received signal levels (RSL) are classified into wet and dry periods, describing
periods when rain is present or absent on the MWL, respectively. This is essential because
MWL rainfall estimation is performed using data from only the wet periods. Prevailing
methods for this classification are centred on two concepts. One concept assumes rainfall
is naturally correlated in space and relies on mutual attenuation on neighbouring for the
wet–dry classification [21]. This concept favours high MWL network density areas but may
significantly challenge areas with low network density and high spatially varying rainfall.
The other concept classifies the MWL RSL data by analysing the statistical properties of
the time series of the individual MWL [22] and thus may not be affected by the network’s
density. However, gaps in the MWL RSL and low sampling frequency data may affect the
wet and dry classification accuracy.

Step two estimates the baseline level to represent the RSL behaviour during the dry
period. The accuracy of this baseline level estimate is affected by the classification accuracy
in the previous step and the fact that the MWL RSL fluctuate during the dry period due to
attenuation caused by other non-rainfall related sources [15]. Previous studies, e.g., [11,23],
estimated the baseline level as the median signal of all dry periods in the previous 24 hrs.
The final step computes rain-induced specific attenuation (i.e., the relative loss of signal
attributed to the MWL length) by subtracting the signal level from the baseline level and
dividing it by the length of the MWL. Before estimating the path average rainfall from, e.g.,
the power-law model from [24], attenuations due to antenna wetting are often corrected
using varying techniques (see, e.g., [25,26]). The wet antenna attenuation describes the
additional attenuation caused by wetting of the MWL antenna surfaces during and after
rainfall; this needs to be estimated and corrected to prevent the overestimation of the
MWL rainfall.

The conventional MWL rainfall estimation technique described above implies that
the rain-induced attenuation and rainfall retrieved from the MWL represent average
attenuation and rainfall over the entire MWL propagation path [23]. Nevertheless, rainfall,
in some cases, can vary spatiotemporally along the MWL propagation path, suggesting that
the conventional technique may not, at all times, accurately represent the actual average
rainfall intensity, e.g., as identified by rain gauges [27].

Due to the existing challenges in MWL rainfall estimation, this study advocates incor-
porating high-resolution information on cloud and rainfall from meteorological satellites,
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including Meteosat Second Generation (MSG), in the rainfall retrieval procedure. MSG rep-
resents a significant advancement in observation capabilities from previous geostationary
meteorological satellites. MSG’s radiometric sensor, the Spinning Enhanced Visible and
Infrared Imager (SEVIRI) has a wide spectral range and a frequent repeat cycle [28]. These
measurement characteristics permit a quasi-continuous observation of rainfall distribution,
making it possible to study spatiotemporally varying rainfall in near-real-time [29].

Surprisingly, only a few studies have combined the MWL and the satellite data for
rainfall detection and estimation [11,30]. To our knowledge, no study has used the MSG
satellite data to improve MWL rainfall estimations. Both data already exist at a comparable
spatial coverage (on land) and temporal resolution; while being used independently for
rainfall detection, estimation, and monitoring. Nevertheless, the MWL and MSG data
synergy could be valuable for areal rainfall estimation from the MWL. More precisely, a
combination of the MWL and MSG, in which the satellite estimates high spatiotemporal
resolution raining area information, could be valuable to the MWL rainfall estimation
procedure. For example, this study shows how MSG-based rain area information could
benefit the MWL’s wet–dry periods and baseline level estimation during the daytime.
Additionally, it is shown in this study that the spatially distributed raining areas identified
by the MSG could be the critical information for identifying the approximate wet path
of the MWL, particularly during spatially varying raining conditions such as convective
rainfall [31], and improve the MWL rainfall estimates thereof during the daytime.

Therefore, this study benefits from MSG’s high measurement (temporal, spatial, and
spectral) resolution for improving MWL rainfall intensity estimation during the daytime.
More precisely, it is investigated whether the high-resolution rain area detection provided
by MSG could achieve wet–dry and baseline level estimation for a successful MWL rainfall
estimation. Further, the rain area information from the satellite is used to investigate
a new parameter, wet path length (wpl in km), representing the approximate length of
the wet MWL (i.e., length of the MWL covered by the rainfall) during each wet interval.
This is particularly important under spatially varying raining conditions for improving
the retrieved MWL rainfall estimates. Ultimately, this new technique—herein, the MSG
technique—and the conventional technique are compared to the actual mean rainfall
intensities from rain gauges to evaluate the MSG-based rain areas’ effect on improving the
MWL rainfall estimates.

2. Study Area and Dataset

The data used in this study were MWL, rain gauges, and MSG SEVIRI from a to-
pographically complex area (−0.61◦S, 36.6◦E) close to the Aberdare mountain in Kenya
(0.02◦S, 37.90◦E). The evaluation period was between May–June 2018. Previous research
conducted in this region and the evaluation period demonstrated the data’s capability for
rainfall detection and estimation [11].

Rainfall data from nine aerodynamic ‘tipping buckets’ (ARG TB) rain gauges and two
rain gauges from Trans-African Hydro-Meteorological Observatory (TAHMO) [32] served
as ground truth in this study. The ARG TB were aligned under the MWL transect. In
contrast, the TAHMO gauges were placed close to its transmitting and receiving antennas.
The ARG TB logged data every minute using a Gemini Tinytag data logger, while the
TAHMO gauges recorded rainfall data every 5 min. One tip of the ARG TB equates to 0.198
to 0.202 mm rain.

A Kenyan telecom service provider, Safaricom, supplied the received signal level
(RSL) data for a 15 GHz, 9.88 km MWL. The RSL data were characterised by minimum,
maximum, and mean values at 15 min intervals and a resolution of 0.1 dBm. It is an Aviat
Eclipse MWL, vertically polarised, and has a constant transmitted signal level (TSL). The
data was accessed through Safaricom’s head office in Nairobi, Kenya.

The MSG SEVIRI data was obtained from the Meteosat at 41.5◦E, which corresponded
to Meteosat 8 [33] when the data was retrieved. The SEVIRI channels used were visible
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(VIS0.6 µm) and near-infrared (NIR1.6 µm), provided by https://www.eumetsat.int/archived-
meteosat-data (accessed on 16 June 2021) at 3km and 15 min spatiotemporal resolution.

3. Method
3.1. Rainfall Intensities Estimated from Rain Gauges

The rainfall for all gauges was used to estimate rainfall intensities (R mm h−1) at
15 min. For the ARG TB, this was computed from the per-minute rain rate in millimetres
estimated from the tipping count and the gauge specific tip equivalent of rain in mm
provided by the manufacturer. On the other hand, R (mm h−1) from the TAHMO data were
computed from their 5 min accumulated rain rates. In this study, a gauge was considered
raining if the R (mm h−1) was above 0.5 mm h−1; otherwise, it was non-raining. Table 1
provides a summary of the non-zero rainfall data for all the gauges. The differences in the
gauge rainfall data records are mainly due to spatial variability of rainfall in the area due
to topography and gauge malfunctions during the field campaign. For instance, gauge G1
was often non-operational during the field campaign, thus having the least days with data
records. Nonetheless, these gauge rainfall records depict high spatial variability of rainfall
over the MWL propagation path.

Table 1. Summary of non-zero rainfall intensities from all rain gauges.

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Mean 7.12 7.65 8.74 8.25 6.79 4.41 2.88 4.36 6.7 3.82 3.98

Maximum 43.46 23.64 72.36 49.53 27.72 43.63 5.54 27.47 19.3 12.86 28.02

Standard deviation 9.8 7.65 15.01 12.79 8.16 8.56 1.43 5.61 7.33 3.98 5.71

Fraction% 3.29 1.72 2.4 1.98 1.46 2.82 1.14 2.47 0.62 0.82 1.88

N 70 7 23 19 14 44 11 46 6 8 40

n days 53 12 26 26 26 39 26 46 26 26 53

N is the total number of 15 min of rainfall data assembled from n number of days during the daytime in the evaluation period. The Fraction
(%) represents the fraction of raining periods.

3.2. Rainfall Intensities Estimated from MWL

The rain-induced specific attenuation A (dB km−1) can be used to estimated R (mm h−1)
from, e.g., the power-law model in [24]:

A = aRb (1)

where the a ((dB km−1) (mm h−1)−b) coefficient and b (-) exponent depend on the MWL
frequency, polarisation, and local rainfall climatology [19,24], which can be acquired from
the literature, such as [34].

3.2.1. The Conventional Technique

The conventional technique used to estimate MWL rainfall intensities in this study is
described in detail [11]. Here, a summary of the steps used to estimate the path average
rainfall from the mean RSL data is provided. (1) The wet–dry classification of the MWL
signal was by the rolling window approach, which uses the time series of the individual
MWL signals separately. (2) Next, a reference or baseline level was estimated as the median
of the mean RSL of the previous 24 h labelled as dry periods by the preceding step. Before
computing A from Equation (2), a dynamic model [25] was used to correct the mean RSL
from attenuation due to antenna wetting.

A f p =
B − P

L f p
(2)

https://www.eumetsat.int/archived-meteosat-data
https://www.eumetsat.int/archived-meteosat-data
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where A f p (dB/km) is the rain-induced specific attenuation averaged over the entire MWL,
L f p is the MWL length, and B and P are the baseline and the mean RSL, corrected for the
effect of antenna wetting according to the dynamic model by [25]. Finally, Equation (3)
estimated the R (mm h−1) from A f p.

R f p =

(A f p

a

) 1
b

(3)

where R f p is the path average rainfall computed based on the entire MWL length, and
a (0.05008) and b (1.0440) were from [34].

3.2.2. The New MSG Technique

The MSG technique incorporates an MSG-based rain area detection and correction
method recently developed by [35] into the MWL rainfall estimation procedure. The
method detects rain areas at 3 km and 30 min spatiotemporal resolution. However, in this
study, it was implemented at MSG’s 15 min temporal resolution to match the temporal
resolution of the MWL RSL data. Additionally, the method is capable of daytime and
nighttime rain area detection, but this study focused on daytime detection due to its high
success rate of rain detection. Further details of the method and its accuracy can be found
in [35]; here, a summary and its application for MWL rainfall estimation are provided.

This rain area detection method is instantaneous, which means that, for each individ-
ual MSG scene, the method detects rain areas independent of the previous and subsequent
scenes. It employs a parametric threshold model developed from a conceptual framework
in which clouds characterised by top properties such as high top optical thickness and large
effective radius have high rainfall probabilities and intensities. The daytime model is from
MSG SEVIRI optical (VIS0.6) and near-infrared (NIR1.6) reflectance difference. Specifically,
the model application assumes that a cloud is raining if the reflectance difference is above
0.21; otherwise, it is non-raining. The method subsequently corrects the detected rain areas
by employing a gradient-based adaptive correction technique that uses rain area-specific
parameters to reduce the number and sizes of the detected rain areas.

The following steps describe how the MSG-based rain area information is incorporated
in the MSG technique for estimating rainfall intensities from the mean RSL data. (1) During
each 15 min interval in the MWL mean RSL data, the rain area detection method classified
the pixels over the link as raining or non-raining. When a pixel over the MWL was
classified as raining, the new parameter, wpl, was retrieved from the length (km) of the
MWL touching the raining pixel. Figure 1 displays the MSG pixels over and around the
neighbourhood of the MWL.

A 15 min interval in the mean RSL data was classified as wet if the wpl was larger than
15% of the MWL length; otherwise, the interval was classified as dry. This was to ensure
the retrieval of realistic path averaged specific attenuations values in the subsequent step.
Simultaneously, the rainfall intensities measured by the rain gauges situated in the wpl
were retrieved and averaged as the actual mean rainfall intensities. (2) After identifying
the wet and dry period in the RSL data, the baseline level was estimated from the mean
RSL. The latter is the median of the previous 24 h classified as dry by the MSG-based
rain area detection technique. (3) Finally, the wet antenna correction method by [25] was
implemented before estimating the rain-induced specific attenuation from:

Awp =
BMSG − P

Lwp
(4)

where:
Awp (dB km−1)—the rain-induced specific attenuation averaged over wpl
Lwp—the wpl (km) retrieved from the MSG-based rain area information
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BMSG—the baseline, retrieved from dry periods identified by the MSG-based rain area
information. The average R (mm h−1) was estimated from Awp using:

Rwp =

(
Awp

a

) 1
b

(5)

where Rwp (mm h−1) represents the average rainfall intensity over wpl.

Figure 1. The MWL and rain gauges displayed in MSG pixels.

3.2.2.1. Conditions and Uncertainties in Estimating the Rwp

Some conditions under which the Rwp may be uncertain and the approach used to
retrieve more accurate estimates are described. The first is when the wpl is between 1.5 (the
threshold MWL length used to make a wet–dry decision in the RSL data) and 3 km (i.e.,
the width of the MSG pixel). Figure 2a shows rain area detection over the MWL in binary
classification (1 is rain and 0 is no rain) where wpl is approximately 2 km. The Rwp for such
wpl are high and do not correlate with the gauge rainfall and MSG pixel intensity, such as
those from convective raining pixels, because the MWL attenuation is computed over a
short MWL length. For these cases, the Rwp from Equation (5) was multiplied by α = wpl

L ,
where α < 1 and L is the MWL length, to retrieve more accurate estimates. The second is
when wpl is estimated from rain areas defined by mixed pixels (i.e., raining MSG pixels of
varying reflectance difference intensities) from a convective rain cloud. A convective rain
cloud covered few rain gauges (see Figure 2b), had high gauge rain intensities, and, mostly,
lasted for less than an hour. The intensities of the raining area MSG pixels also varied
from a maximum reflectance difference to a relatively low difference. To capture the high
rain intensities for such raining cases requires determining the centre of the convective
rainstorm. This was determined as the raining pixels with reflectance difference greater
than mean reflectance difference of all raining pixels covering the MWL, and wpl was
estimated from the length of the MWL covered by these pixels.
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Figure 2. Rain area detection over the MWL and wpl for different wet periods. (a) Rain areas
covering approximately 20% of the MWL length (b) Rain areas covering approximately 50% of the
MWL length The Blue (1) areas show raining areas and the white (0) are dry areas detected by the
MSG-based rain area detection.

3.3. Error Metrics

The average rainfall intensities by the conventional and MSG technique were com-
pared to the rain gauges using the root mean squared deviation (RMSD), relative bias (RB),
and coefficient of determination (r2) to evaluate their performances against the actual mean
rainfall intensities. The actual mean rainfall intensities for the conventional technique were
computed from all gauges under the MWL; for the MSG technique, this was computed
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from gauges under wpl. Detailed descriptions for these metrics are in [36–38] and in
Equations (6) and (7), respectively.

RMSD =

√
∑N

i=1(RMi − RRGi)
2

N
(6)

RB =
1
N ∗ ∑N

i=1(RMi − RRGi)
1
N ∗ ∑N

i=1 RRGi
(7)

where RMi represents all possible MWL rainfall intensity estimates by the conventional
and MSG technique, RRGi represents all possible gauge mean rainfall estimates, and N is
the number of samples.

4. Results

This section compares the MWL rainfall intensity estimates by the conventional and
the new MSG technique to actual mean rainfall intensities from gauges to evaluate the new
technique’s accuracy for improving MWL rainfall intensity estimates. From the raw mean
RSL to the MWL rainfall intensity estimates, line plots for specific rainy periods were used
to compare MWL rainfall intensity estimates to rain gauge estimates. The selected periods,
due to their variable rain intensities observed, allowed for an effective visual comparison
of the new MSG and conventional techniques. Finally, performance metrics computed
based on all the 15 min intervals in the MWL RSL data evaluate the accuracy of the new
technique for MWL rainfall intensity estimation.

4.1. From Raw RSL to Rainfall Intensity Estimates: A Comparison of the Conventional and
MSG Technique

Figure 3 demonstrates the transformation of the mean RSL to rainfall intensities
and its comparison with the actual mean intensities from rain gauges according to the
conventional and MSG techniques. Figure 3a shows comparable baseline levels estimates
by the conventional and MSG techniques. Figure 3b compares wet–dry classification by
the conventional and MSG technique. The dashed pink line indicates a standard deviation
threshold value of 0.7 (dB), an empirically determined value by [11], that separates the wet
(above 0.7 dB) and dry (below 0.7 dB) in the conventional technique. Instead, the MSG
technique uses a binary classification of 0 and 1 to indicate when the MWL is wet (1) and
dry (0).

From Figure 3b, one can observe comparable wet–dry classification estimates by
the two techniques. For wet intervals above 0.7 (dB) in the conventional technique, the
MSG technique flagged those intervals as wet. These observations mostly coincide with
the decrease in mean RSL (dB) in Figure 3a, attributed to rainfall occurrences identified
by the rain gauges. Nonetheless, unlike the MSG technique, the conventional wet–dry
classification occasionally detects wet periods even when it has ceased, e.g., after 11:45,
which may be due to the effect of antenna wetting after a rain event.

According to the wpl in Figure 3c, the MWL was fully wet from the onset of the rain
event till 11:15 and then partially wet at 11:30. Thus, this suggests that the rain events
during the former periods occurred over the entire MWL length, whereas for the latter
period, the event occurred over approximately half the MWL length.

Following these observations, one can observe comparable rain-induced specific
attenuation estimates (Figure 3d) by the conventional and MSG techniques from the rain
event onset till 11:15 since their attenuation estimates were computed over the entire MWL
length. In contrast, the attenuation estimate at 11:30 was comparatively higher for the
MSG because, unlike the conventional technique, it was estimated over a shorter MWL
length (approximately 5 km). The MWL rainfall intensities by the conventional and MSG
techniques in Figure 3e,f, respectively, were comparable most of the time for this rain event.
Overall, they had a convincing agreement with the actual mean rainfall intensities from
the rain gauges according to the r2 values computed based on the entire rain event period.
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One observable feature in Figure 3e,f is that both the conventional and MSG techniques
overestimated the actual mean intensities at the onset of the rainfall event.

Figure 3. From MWL mean RSL to rainfall for 15 min interval rain events of 8 May 2018. (a) compares
the conventional (B) and MSG technique (BMSG) baseline level to the mean RSL (P), (b) compares
wet–dry classification by the conventional (wet–dry) and MSG technique (wet–dryMSG)—the stan-
dard deviation threshold (wet–dry_thr, dashed pink line) value (0.7 dB) separates the wet and dry
periods in the conventional technique; a binary class showing raining (1) and non-raining (0) peri-
ods separates the wet and dry periods in the MSG technique—(c) is the wpl over which the MSG
technique computed attenuation (Awp), (d) compares the conventional (A f p) and MSG technique
(Awp) attenuation, (e) compares the conventional MWL rainfall intensity (R f p) and the actual mean
rainfall intensity (RRG f p), and (f) compares the MSG technique MWL rainfall intensity (Rwp) and
actual mean rainfall intensity (RRGwp).

Figure 4, like Figure 3, demonstrates the transformation of the mean RSL to rainfall
intensities by the conventional and MSG techniques compared to the actual mean rainfall
intensities from rain gauges. The baseline level by both techniques in Figure 4a again
shows comparable estimates.

Their wet–dry classifications (Figure 4b) are also primarily comparable, especially for
wet periods between 11:00 and 12:00. As was observed in Figure 3, these observations
coincide with a decrease in mean RSL (dB) attributed to rainfall as observed by the rain
gauges. However, there are some differences in Figure 4b. The wet–dry classification by
the MSG technique seems to detect wet periods before the onset of the wet period, which
does not agree with the mean RSL and the no rainfall occurrence in the rain gauges, e.g.,
between 10:30 and 10:45. On the other hand, the conventional technique missed the onset
of the wet periods between 10:45 and 11:00. For the MSG technique, this may be due to the
raining cloud top properties available before the onset of the rain event, which resulted in
false rain detection by the rain detection method used by the MSG wet–dry classification
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technique. By contrast, the conventional wet–dry technique missing the beginning of the
wet period may be due to low rainfall intensities that resulted in a mean RSL that is not
entirely different from RSL in the preceding dry periods. Again, the conventional technique
continues to report wet periods even after it has ceased, likely due to the wet antenna effect.

Figure 4. (a–f) As in Figure 3 but for 15 min interval rain events of 2 June 2018.

Figure 4c suggests spatiotemporally distributed rainfall events occurred along the
MWL length, indicated by time-varying wpl, for the entire raining period. Such rainfall
events are often attributed to convective rainfall and are associated with subhourly high
rain intensities. In Figure 4d, the MSG technique estimated comparatively high attenuations
than the conventional technique because it was estimated over a portion of the MWL length
rather than the entire length (i.e., according to the conventional technique).

As shown in Figure 4e,f, the rainfall intensities by the MSG technique are also compar-
atively higher than the conventional technique due to its higher attenuation estimates. Its
rainfall intensity estimates better reflect the high rainfall intensities observed for that rainfall
event and compare better to its actual mean rainfall than the conventional technique according
to the error metrics shown in the figures. This can be attributed to determining the rainstorm’s
centre for a more accurate estimation of wpl to capture the high rainfall intensities.

Figure 5 is an analogous comparison of Figures 3 and 4, but for different date–time
periods. Again, Figure 5a shows comparable baseline levels estimates by the MSG and
conventional techniques. The wet–dry classification in Figure 5b shows that the MSG
technique captures the dynamics in the mean RSL and rainfall observation in the rain
gauges better than the conventional technique. It is clear from the figure that the technique
coincides nicely with the onset and end of the wet period and the dry periods preceding
and after the wet periods. On the other hand, the conventional technique missed the onset
of the wet period and continued to detect wet periods even after it has ceased.
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Figure 5. (a–f) As in Figure 3 but for 15 min interval rain events of 9 June 2018.

The wpl showed in Figure 5c suggests spatiotemporally varying rainfall events oc-
curred along the MWL length, as in the previous analysis (Figure 4c). Correspondingly,
Figure 5d shows comparatively higher attenuation estimates by the MSG than the conven-
tional technique. This is because it was estimated over varying portions of the MWL rather
than the entire length based on the conventional technique. According to their figures’ error
metrics, their rainfall estimates in Figure 5e,f show good agreement with the actual mean
rainfall estimates from the gauges, albeit better in the MSG than the conventional technique.

Albeit analogous to previous figures, Figure 6 is a unique comparison of the MSG and
conventional technique regarding frequent gaps in the MWL RSL data. The mean RSL in
Figure 6a shows that the MWL data was available for only a few minutes of this rainfall
event. For this reason, wet–dry classification, attenuation, and rainfall (Figure 6b,d,e, re-
spectively) were not successful in the conventional technique. However, the MSG technique
determines the wet–dry periods and wpl instantaneously from the rain areas information
(Figure 6b,c). Therefore, the technique could estimate attenuation and rainfall intensities
(Figure 6d,f, respectively) for the period when the MWL data was available. Note here that
the r2 values are not computed in Figure 6e,f because the MWL data gaps did not allow for
a fair comparison of MWL–gauge rainfall intensities.

Figure 7 demonstrates the effect of α in correcting the Rwp described in Section 3.2.2.1.
As shown in Figure 7b,d,e, the conventional technique missed this period’s rain event,
possibly due to the low rain rates (<5 mm h−1) observed based on the gauge rainfall data.
The MSG technique’s wet–dry classification detected the event (Figure 7b), which may
be attributed to the MSG-based rain area detection’s ability to detect low rain rates. The
wpl in Figure 7c shows the time-varying MWL length covered by the rain. For instance,
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at the beginning and end of the event, the estimated wpl was <3 km. Subsequently, the
attenuation and rainfall retrieved based on this MWL length were high and did not agree
with the gauge rainfall intensities, thus requiring correction. After correction using the α,
the MSG technique’s rainfall intensities Rwp−corrected, visually shows a better agreement
with the observed rainfall intensities by the rain gauges than its previous estimate based
on the wpl.

Figure 6. (a–f) As in Figure 3 but for 15 min interval rain events of 3 May 2018.

Overall, the results show that rainfall estimation from MWL is robust in approximating
the actual mean rainfall intensities over the MWL propagation path. Additionally, the MSG
technique was successful in estimating wet–dry and baseline level MSG techniques. This
can be attributed to the MSG-based rain area detection, which uses relevant information
content on cloud-top properties and rainfall available in the VIS 0.6 and NIR 1.6 reflectance
pair. In particular, the successful baseline level estimates by the MSG technique can be
attributed to the robustness of the MSG data in detecting dry areas [11]. Furthermore,
the new parameter, wpl, derived from the MSG-based rain area information, effectively
estimated attenuation and, subsequently, rainfall intensities comparable to the conventional
and actual gauge estimates, especially when the entire MWL length was wet. Based on the
results, it can also be stated that, when the rainfall is not spatially covering the entire length
of the MWL, the MSG technique provides a better estimate of the actual mean rainfall as
retrieved from, e.g., rain gauges.
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Figure 7. (a–f) As in Figure 3 but for 15 min interval rain events of 15 May 2018.

4.2. Appraisal of the MSG and Conventional Technique for MWL Rainfall Intensity Estimation

Table 2 presents the error metrics computed based on MWL and gauge rainfall in-
tensity pairs for evaluation timestamps at 15 min, 30 min, hourly, and every three hours
for both the MSG and conventional techniques. The RB suggest an overestimation of
rainfall intensities by the MWL relative to the actual gauge estimates, albeit comparatively
higher in the MSG than the conventional technique. This is reflected in the RMSD, which is
comparable for the two techniques, except for the scores every three hours. Nonetheless,
their r2 values were above 0.5 at 15 min, which increased due to aggregation [39] above 0.8
at evaluation timestamps every hour, and three hours, indicating that both techniques can
estimate gauge comparable rainfall intensities.

Table 2. Error metrics computed for varying evaluation timestamps.

Estimation
Technique

RMSD mm h−1 RB r2

15 min 30 min 1 h 3 h 15 min 30 min 1 h 3 h 15 min 30 min 1 h 3 h

MSG technique 0.63 0.84 1.32 2.61 0.47 0.47 0.47 0.47 0.70 0.78 0.83 0.81

Conventional
technique 0.60 0.80 1.23 2.09 0.02 0.02 0.03 0.04 0.63 0.73 0.80 0.84

The total number of MWL–gauge rainfall intensity pairs (including raining >0.5 mm h−1 and non-raining <0.5 mm h−1) that computed the
error metrics were 2088, 1380, 660, and 240 for the evaluation timestamps at 15, 30 min, one hour, and three hours, respectively, covering
the evaluation period. Note that these data and periods corresponded to when the MWL, MSG satellite, and rain gauges coincided.
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Various factors may account for the overestimation of rainfall intensities by the MWL
relative to the gauge estimates. The MWL rainfall intensities represent areal average
estimates derived from 15 min instantaneous mean RSL data, whereas the gauge computed
areal average rainfall estimates from point measurements recorded at per minute and 5 min
intervals. Additionally, spatial variability of rainfall in the study area and uncertainties in
the MWL rainfall estimation may contribute to the discrepancies between the MWL and
gauge estimates [11,40].

In particular, the comparatively high overestimation by the MSG, compared to the
conventional technique, is mainly attributed to uncertainties in the MSG-based rain area
detection [35]. For instance, false alarms in the rain area detection method could signifi-
cantly affect the wet–dry classification and baseline level estimation. A dry interval in the
MWL data, incorrectly identified by the MSG-based information as wet, could compute
rainfall for a dry period and impact the RMSD and RB scores. Furthermore, the MSG
technique estimated high attenuation and rainfall intensities for wpl less than the MWL
length (indicating spatial variability of rainfall over the MWL). Additionally, this wpl is
tied to the MSG rain area information’s accuracy and may further impact the computed
error metrics that evaluate the MSG technique’s accuracy.

5. Discussion

A new technique for MWL rainfall estimation is investigated and described using a
15 GHz, 9.88 km MWL, and MSG SEVIRI VIS0.6 µm and NIR1.6 µm satellite data. The
investigation, conducted during the daytime, used the MSG data for detecting rain areas,
according to the method by [35], over the MWL propagation path. This spatial information
on rain areas provided by the MSG data estimated three significant parameters: wet–dry
periods, baseline level, and wpl for estimating MWL rainfall intensities.

All three parameters were estimated instantaneously from the MSG satellite data. The
wet–dry periods indicate periods when the MWL was wet or dry, whereas the baseline level
represented the MWL’s behaviour in the dry period. The wpl is a property of the MWL’s
length, and it indicates the approximate length of the MWL during a wet period based
on which the rain-induced attenuation was estimated. Eventually, rainfall intensity was
estimated using all parameters, and the results were compared to intensities estimated by
a conventional method and rain gauges (where the gauge served as the actual estimates).

The results demonstrate an effective skill of the new MSG technique. The wet–dry
periods and baseline level estimates were comparable to those of the conventional tech-
nique. In addition, the wpl effectively estimated the MWL signal attenuations for wet
periods, and subsequently, the rainfall estimates agreed well with the conventional and
rain gauge estimates when the rainfall was spatially covering the entire length of the MWL
(i.e., when the wpl was equal to the MWL length). However, when the rainfall is convective
and spatially covered a portion of the MWL, determining the centre of the rainstorm is
required to estimate a more accurate wpl and capture the high rainfall intensities that
reflect the actual mean intensities better than the conventional technique. Moreover, unlike
the conventional technique, the MSG technique’s rainfall detection and estimation were
unaffected by periods with no MWL RSL measurement.

Furthermore, the current study’s results were better than the previous study’s re-
sults [11] for the same link, albeit with overestimation. The hourly RB and r2 values were
–0.18 and 0.58, respectively, estimated from daytime and nighttime rainfall combined. The
differences in performance may be due to the daytime rainfall and its high rainfall intensi-
ties measured by this current study, for which the influence of wet antenna and wet–dry
classification errors may be minimal [41]

The MSG technique showed high RB and RMSD scores compared to the conventional
technique. Generally, the differences can be attributed to factors such as the differences in
their measurement techniques and uncertainties in the MWL rainfall estimation procedure.
The differences resulting from the uncertainties in the rain area detection provided by the
MSG, such as false rain detections, could be interpreted in the MWL data as wet periods
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and be used to compute rainfall during dry periods, impacting the metric scores. It is
noteworthy that this study’s results were based on daytime MSG satellite reflectance data.
Additionally, convective clouds with cold cloud top temperatures are responsible for most
of the rainfall in the area. Therefore, our analysis did not consider the overall effect of warm
rainfall, i.e., rain from clouds with top temperatures warmer than 273 K [42,43]. However,
nighttime applications and applications with rain areas derived from thermal infrared
satellite data, e.g., [42], warm rains, may further impact the error metrics. For instance, the
MSG technique may underestimate the actual mean rainfall estimates for warm rains that
are not detected by the satellite-based rain area information.

The study’s results may have many implications. For instance, the successful wet–dry
classification and baseline level estimation by this MSG technique indicates that it may be
applied when the conventional technique is limited. In particular, since their estimation is
independent of the MWL RSL data and instantaneous from the satellite data, it may not
be affected by the MWL network density or sampling frequency of the MWL RSL data,
which are common to the conventional technique. Additionally, wpl could estimate mean
rainfall intensities more reflective of the actual mean rainfall intensities. This fact indicates
that spatial variability of rainfall along the MWL (as shown in Section 3.1) may be essential
information to consider in the MWL rainfall estimation. More detailed information on the
rainfall process and type (such as convective, stratiform) from the satellite, e.g., [43,44],
may also inform the a and b parameters in Section 3.2, because these parameters may differ
according to the rainfall type, e.g., convective rainfall [24], and may improve the MWL
rainfall estimates. An overall implication of the success of this MSG technique based on
this study’s results is that the MWL MSG synergy may be beneficial for large scale rainfall
estimation and monitoring or complement existing techniques.

Despite the new MSG technique’s robustness and accurate rainfall estimates, further
studies are needed, for instance, using multiple MWL. Additionally, wpl needs further
investigation, especially for wpl less than the width of the MSG pixel (i.e., ~3 km). Further-
more, from a scientific research perspective, it is necessary to estimate and validate wpl
using other remote sensing systems such as weather radars. In fact, radars may provide
better estimates since they can provide rainfall locations more accurate than those derived
using cloud-top information from geostationary satellites such as MSG. These questions
constitute our future research.

6. Conclusions

A new MSG technique for MWL rainfall estimation was presented, which incorporates
rain areas detections by MSG satellite for the MWL rainfall retrievals. Based on the presented
results, the technique is robust and is capable of wet–dry, baseline, and gauge comparable
rainfall intensity estimates to benefit many operational and research applications. Specifically,
the results confirm the capability of the MWL to estimate accurate mean rainfall estimates
that had occurred over the MWL propagation path, especially when the rainfall occurred over
the entire MWL path. However, when rainfall is spatially varying over the MWL (often the
case for high-intensity convective rainfall), the results suggest that the MSG technique may
approximate the actual mean rainfall better than the conventional technique.

Nevertheless, the technique is limited because its accuracy is linked to the spatial
information on rain areas provided by the MSG satellite data. Nonetheless, this limitation
may be prevented to some extent by using more accurate information from remote sensors
such as weather radars. The study’s results are from a single 15 GHz, 9.88 km MWL with
two months of gauge, MWL, and satellite data. Despite this limitation, the results improve
the MWL rainfall estimation specifically from the perspective of a spatially varying rainfall
occurrence. Additionally, we show that the satellite information is capable of wet–dry
and baseline level estimation, which may benefit large scale application of the MWL and
satellite for rainfall retrievals.

Overall, the new MSG technique may largely contribute to rainfall estimation and
monitoring in many ungauged areas where the MWL and satellite data are readily avail-
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able. In particular, its application for estimating high rainfall intensities from convective
systems may benefit many applications in flash flood warnings and the nowcasting of
hazardous storms.
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