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Abstract: In recent decades, lithological mapping techniques using hyperspectral remotely sensed
imagery have developed rapidly. The processing chains using visible-near infrared (VNIR) and
shortwave infrared (SWIR) hyperspectral data are proven to be available in practice. The thermal
infrared (TIR) portion of the electromagnetic spectrum has considerable potential for mineral and
lithology mapping. In particular, the abovementioned rocks at wavelengths of 8–12 µm were
found to be discriminative, which can be seen as a characteristic to apply to lithology classification.
Moreover, it was found that most of the lithology mapping and classification for hyperspectral
thermal infrared data are still carried out by traditional spectral matching methods, which are not
very reliable due to the complex diversity of geological lithology. In recent years, deep learning
has made great achievements in hyperspectral imagery classification feature extraction. It usually
captures abstract features through a multilayer network, especially convolutional neural networks
(CNNs), which have received more attention due to their unique advantages. Hence, in this paper,
lithology classification with CNNs was tested on thermal infrared hyperspectral data using a Thermal
Airborne Spectrographic Imager (TASI) at three small sites in Liuyuan, Gansu Province, China. Three
different CNN algorithms, including one-dimensional CNN (1-D CNN), two-dimensional CNN (2-D
CNN) and three-dimensional CNN (3-D CNN), were implemented and compared to the six relevant
state-of-the-art methods. At the three sites, the maximum overall accuracy (OA) based on CNNs was
94.70%, 96.47% and 98.56%, representing improvements of 22.58%, 25.93% and 16.88% over the worst
OA. Meanwhile, the average accuracy of all classes (AA) and kappa coefficient (kappa) value were
consistent with the OA, which confirmed that the focal method effectively improved accuracy and
outperformed other methods.

Keywords: hyperspectral; thermal infrared remote sensing; convolutional neural networks; TASI

1. Introduction

Hyperspectral remote sensing imagery has an extremely high spectral resolution
and has been widely applied in lithological geological exploration, classification and
mapping [1,2]. Therefore, it is very beneficial to mine physicochemical characteristics or
subtle recognition of minerals and rocks by using hyperspectral remote sensing technology.
In general, the spectra at visible and near-infrared (VNIR; 0.4–1.1 µm) and shortwave
infrared (SWIR; 1.1–2.5 µm) [3] wavelengths are successfully utilized for mineral mapping
and rock classification [4]. Different types of minerals and rocks have different chemical
compositions and crystalline structures that control the shape of the spectral curve and the
presence and positions of specific absorption bands [5]. For example, in the ferrous and
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ferric minerals spectrum, the strong absorption in the VNIR range is caused by ferric iron;
hydroxyl minerals show significant absorption features in the SWIR spectral properties [6,7].
In contrast to these examples, orthoclase, a dominant mineral in granite, shows almost no
significant absorption features in the VNIR to SWIR spectral range. Simultaneously, studies
show that no more than 50% of the minerals can be identified within the VNIR/SWIR
range, which leads to inaccuracy in lithology mapping and classification [8]. Attention has
shifted to the thermal infrared (TIR; 8–12 µm) spectrum. TIR can show some advantages
over other spectral bands in the classification of rock-forming minerals due to its distinctive
characteristics. In this spectrum, features are dominated by their radiant energy for some
minerals, reflecting their characteristic properties. Some typical minerals have their spectral
characteristics in the thermal infrared spectrum. For example, olivines, pyroxenes and
quartz [1,9,10] have typical absorption features at TIR wavelengths, which can be seen
as exclusive characteristics to be applied [3,7]; silicate minerals are responsible for the
absorption bands near 10 µm due to fundamental Si-O stretching vibrations; in the spectrum
of carbonates, the strong features at 11.4 and 14.3 µm are caused by C-O bending [11].
Therefore, characterizing, modeling and analyzing the lithology and minerals from the TIR
remotely sensed images is very meaningful.

In addition, remote sensing sensors can play a big role in lithology classification. The
majority of geological studies based on TIR remote sensing data have focused on multi-
spectral data. Some typical sensors, such as the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) [12–14] and Thermal Infrared Multispectral Scanner
(TIMS) [9,11], have been successfully used to identify lithologic units based on spectral
indices of quartz, carbonate and so on [12,14]. With the development of technology, thermal
infrared hyperspectral data can be obtained from airborne platforms, especially Thermal
Airborne Spectrographic Imagery (TASI). Cui et al., using airborne hyperspectral TASI data,
illustrated the exceptional potential for mapping quartz, calcite, diopside, hornblende and
microcline [9]. Black et al. applied the traditional hyperspectral remote sensing lithology
mapping process to TASI remote sensing images in the Antarctic region and successfully
extracted three lithologies of granite, granodiorite and diabase [11]. Great progress has
been made in the past several years, and the superiority of TASI has been proven.

The methods of classifying rocks and minerals with TASI images are currently focused
on traditional methods, which can have some drawbacks. Traditional lithology classifica-
tion algorithms are mainly aimed at the spectra, and they can be grouped into two aspects:
based on spectral similarity and spectral characteristics [15–17]. To the former, the main
idea of the spectral comparison is to construct a spectral similarity measure to accomplish
the lithology classification. For example, spectral angle mapping (SAM) [18,19] and spectral
information divergence (SID) [20] are both effective in similarity measurement when the
spectral vector is used for direct retrieval. However, this type of method tends to focus on
the overall waveform features of the spectrum and ignores some of the detailed features,
which makes it difficult to classify similar rock types. For the latter, several common
absorption characteristics, including absorption depth, absorption width, absorption area,
absorption position, absorption symmetry and spectral absorption index, can be defined to
identify rocks and minerals [21,22]. However, the spectral absorption position features are
easily affected due to the complex chemical composition of different minerals. In addition,
a spectrum may be a collection of multiple substances due to the mixed pixel problem.
Fully constrained linear spectral unmixing (FCLSU) is proposed to resolve this problem,
working on the inversion of mineral abundances [23]. However, it is usually challenging to
obtain the accuracy of the mineral type of rocks, which makes adequate capture of detail in
the resulting lithology classification map challenging. In general, these algorithms perform
classification or recognition by extracting the shallow features of each pixel, i.e., spectral
features, without considering the deeper features.

With improved technology, machine learning algorithms (MLAs) have also been ap-
plied to mineral classification in hyperspectral remote sensing to achieve good results [23].
Similar to human brains, classifiers such as support vector machine (SVM) [24,25], random
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forest (RF) [23] and neural network (NN) [26] all have multiple layers to perform well
in tasks. Deep learning has recently emerged as the state-of-the-art machine learning
technique with great potential for hyperspectral image classification [27]. Deep learning
techniques can automatically learn hierarchical features (from low to high levels) from
input data rather than relying on shallow and artificially engineered features [28]. There
are a few deep learning models in the literature, including deep belief network (DBN) [29],
stacked autoencoder (SAE) [30] and convolutional neural networks (CNNs) [31,32]. Com-
pared to other deep learning models, CNNs were found to be a good alternative to other
deep learning models in classification and detection [33]. The network architecture of
one-dimensional CNN (1-D CNN) is designed to use the pixel vector along the radiometric
dimension as a training sample to extract deep features [34]. Furthermore, two-dimensional
CNN (2-D CNN) and three-dimensional CNN (3-D CNN) are both proposed based on
the original 1-D CNN to further improve the performance. The 2-D CNN extracts the
local spatial features of each pixel [33]. The 3-D CNN can extract spatial features and
spectral features simultaneously. The use of explicit spatial and spectral information allows
accurate predictions to be made [35].

Based on the above considerations, CNNs are introduced into the lithology classifica-
tion with TIR hyperspectral data in this paper. Our work focused on applying typical CNN
models to finish the lithology classification map with TASI collected at three small sites in
Liuyuan, Gansu Province, China. Liuyuan is a mining town with rich mineral resources.
The bedrock on the land surface is bare without vegetation cover, which is suitable for
lithology classification work. Six state-of-the-art methods, including SAM, SID, FCLSU,
SVM, RF and NN, were implemented to make comparisons with the performance of the
CNNs in three images. Experiments have proven that CNNs significantly improve the
overall classification accuracy compared with other methods, which shows that CNNs
have great advantages.

The sections in this article are organized as follows. The data are described in Section 2.
The classification methodology is described in Section 3. The classification analysis for
these data are provided in Section 4. The discussion is described in Section 5. Finally, the
conclusions are given in Section 6.

2. Data Description
2.1. Study Area

The study area is located near Huaniu Mountains, Liuyuan Town, Guazhou County,
Jiuquan City, Gansu Province in Figure 1. Liuyuan is a mining town with rich mineral
resources and a typical continental climate. The land surface of the study area is an arid
bare stone desert [9]. The study area is in the Yujingzi and Liuyuan intracontinental rift
zones on the southern margin of the Beishan active epicontinental belt, which is between
the Tarim and SinoKorean plates [36]. The geological map of the study area is shown
in Figure 2. The strata developed in the area include the Ordovician Huaniu Mountains
Group and the Sinian Xichangjing Group. The lithology of the middle formation of the
Ordovician Huaniu Mountains group is dominated by basalt, with slate and marble. The
lithology of the second rock group of the Sinian Xichangjing Group is sericite phyllite. The
lithology of the fourth rock group of the Sinian Xichangjing Group is slate and hornfels. In
addition, due to the frequent magmatic activities and strong intrusive activities in the area,
the intrusive rocks of Variscan that are granodiorite and Indosinian that are syenogranite
are exposed.
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Figure 2. Geological map of the study area.

Airborne hyperspectral TIR imagery was acquired in September 2010 between 17:00–18:00
by the TASI sensor with a height of 2 km. TASI was developed by ITRES Canada, which
sets 32 channels in the 8–11.5 µm band range, with a band interval of 0.1095 µm and
a half-height width of 0.0548 µm. The sensor’s total field of view angle is 40◦, and the
spatial resolution is 2.25 m. The data have the advantages of mobility and flexibility and
high spatial and spectral resolution. TASI ensures that each pixel of the image is a clear
and independent spatial sample, which has a broader application in mineral mapping.
Three small sites of Liuyuan are chosen, and the false-color composite (R: 11.449 µm, G:
10.354 µm, B: 9.914 µm) TIR images are shown in Figure 1. The imagery of the three study
areas is named Liuyuan 1, Liuyuan 2 and Liuyuan 3. The sizes of the three images are
270 × 407, 240 × 495, 300 × 700, respectively. The lithological boundaries in this study
area are obvious, and the lithological types are easily identified. The main types are slate,
syenogranite and diorite, according to the historical geological map.

2.2. Data Preprocessing

The pretreatment of TASI data can be divided into three parts: 1. radiometric cal-
ibration; 2. atmospheric correction; and 3. separation of temperature and emissivity.
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Radiometric calibration was performed automatically by TASI data processing software.
Atmospheric correction and separation of temperature and emissivity are described in the
following sections.

2.2.1. Atmospheric Correction

For TASI airborne thermal infrared hyperspectral data, atmospheric correction, i.e.,
elimination of atmospheric absorption and atmospheric upwelling radiation effects, is
the first requirement. The simultaneous atmospheric temperature and humidity profile
acquisition experiment was not planned on the day of the aerial photograph; therefore,
atmospheric reanalysis data were used. Atmospheric reanalysis data assimilate a large
amount of satellite information and conventional observations such as ground and upper
air with the advantages of long time series and high spatial resolution, which can be
used not only for diagnostic analysis of weather and climate but also as a driving field
for weather and climate models. This study used data from the fifth generation of the
reanalysis product (ERA5) in November 2016, which can be downloaded free of charge
from the European Centre for Medium-Range Weather Forecasts (ECMWF) official website
(https://cds.climate.copernicus.eu, accessed on 17 July 2021). The spatial resolution of
ERA5 is 25 km, and the temporal resolution is 1 h. The ERA5 products were resampled to
the same spatial scale as TASI. The atmospheric reanalysis data were acquired only every
hour on the hour, so the simultaneous atmospheric parameters were acquired according
to the specific temporal and spatial coordinates of the TASI images taken. The raw ERA5
atmospheric profile data obtained were different in time and space, and the interpolated
profiles were entered as parameters. Finally, the atmospheric parameters were simulated
by a moderate spectral resolution atmospheric radiative transfer model (MODTRAN) to
extract the atmospheric transmittance, atmospheric upward radiation Lup and atmospheric
downward radiation Ldown.

2.2.2. Temperature Emissivity Separation

The TASI thermal infrared hyperspectral sensor has a total of 32 thermal infrared
channels. Considering that some channels are located in the non-atmospheric window and
are greatly affected by the atmosphere, some channels have a large signal-to-noise ratio.
To ensure the inversion accuracy, the wavelength range was used to select the channels,
and channels with wavelengths less than 8.5 µm and wavelengths greater than 11 µm
were eliminated. Finally, 22 channels from channel 6 to 27 were selected. The separation
of land surface temperature and emissivity was mainly divided into three steps, which
are realized by three different modules: normalized emissivity module (NEM), emissivity
ratio module (RATIO) and average/maximum–minimum difference module (MMD) [37].
The NEM module is a preliminary estimate of the target surface temperature and removes
the reflected atmospheric radiation from the surface radiance observations. The equations
used in this model are as follows:

Tb = B−1
b (Rb/εmax) =

c2

λb
(ln(

c1εmax

πRbλ5
b
+ 1))−1 (1)

TNEM = max(Tb) (2)

εb =
Rb

Bb(TNEM)
(3)

where Tb is the estimated surface temperature of channel b (b = 10, 14), Bb is the Planck
function, c1 and c2 are constants in the Planck function, λb is the central wavelength of
channel b, and Rb is the ground object emission radiation after the second channel removes
the reflected atmospheric down radiation. TNEM is the maximum surface temperature
estimated by the NEM module. The RATIO module calculates the emissivity ratio βb using

https://cds.climate.copernicus.eu
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the emissivity estimated by the NEM module, which was first proposed by Watson [38]. βb
is calculated using Equation (4).

βb =
εb

1
N ∑ εb

(4)

The MMD module further estimates surface emissivity and temperature and reveals
that there is a certain statistical relationship between the maximum and minimum emissiv-
ity. The MMD index can be estimated from the emissivity ratio βb:

MMD = max(βb)−min(βb) b = 6, . . . . . . ., 27 (5)

After the temperature emissivity separation, three emissivity images of the study area
are shown in Figure 3a–c.
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2.3. Reference Map Generation

The study utilized the TASI hyperspectral datasets for lithological identification using
CNNs. The proposed methods were designed in a supervised way and, thus, are dependent
on the availability of prior knowledge and manual assistance in real applications. During
the process, a high spatial resolution reference map was critical for better training data
sampling for CNN modeling. In general, conventional geological maps can be regarded
as references [23,39,40]. However, they are usually prepared at a large scale and may
not be suitable in this study due to the high spatial resolution of TASI. Therefore, the
field surveying data, historical geological map and spectral comparison were all used to
prepare a reference map. In addition, the minimum noise fraction (MNF) transformation is
applied to the emissivity data to demarcate the lithological boundary and help to confirm
the type of lithological unit. The process of reference map generation is discussed in the
following subsections.

2.3.1. MNF Transformation

MNF can be seen as a character transformation method used in remote sensing
images. It is used to determine the intrinsic dimensionality (i.e., number of bands) of the
image data and to separate the noise from the data. The MNF transform can arrange the
principal components after the transformation according to the image quality. The band
combinations of MNF (R: MNF1, G: MNF2, B: MNF3) are shown in Figure 4. It is worth
noting that the MNF image shows higher spectral contrast, which effectively discriminates
various lithological units of the area. The image pixels of the same color can be grouped
together according to the results of MNF transformation, and then the corresponding
boundaries can be effectively drawn. Therefore, the MNF transformation confirms the
boundaries of the lithology.
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(a) Liuyuan 1; (b) Liuyuan 2; (c) Liuyuan 3.

2.3.2. Field Surveying Data

The lithological unit types of different colors can be determined by the field data
and geological map. The field surveying locations are displayed in the three study areas.
There are 15 positions, which are labeled 1 to 8, 1 to 4 and 1 to 3 for Liuyuan 1, Liuyuan 2
and Liuyuan 3 in Figure 5a–c, respectively. Ground TIR emissivity spectra were acquired
using a 102F portable Fourier transform infrared spectrometer (FTIR) under cloud-free
conditions at the end of August 2020. The spectrum range is 8–12 µm with a sampling
interval of 1 nm. Moreover, the samples were collected and brought to the laboratory for
indoor spectroscopic measurements. After the measurement, the lithological types of the
positions are determined. In Figure 5, red is the slate, green is the syenogranite and blue
is the diorite. The primary contents of the 15 measured positions are described in Table 1.
Some of the measured locations were not subjected to spectrum field measurements,
and only indoor spectra of the corresponding samples were analyzed. In contrast, some
samples were subjected to field spectroscopic measurements, and indoor spectroscopic
measurements were not carried out, as the measured lithological samples were more
difficult to obtain. For Liuyuan 1, the field measurement spectra were encoded according
to different positions, such as LY1_1~LY1_7. Due to the absence of position 6, there are
7 encoded spectra. Moreover, the indoor measuring spectra were also encoded in the
same way, such as LY1_YP_1~LY1_YP_6. Due to the absence of positions 2 and 5, there
are 6 encoded spectra. For Liuyuan 2 and 3, there is only 1 encoded spectrum of the field
measurement at positions 1 and 3, respectively. All of the spectra can be collected and
encoded by indoor measurements. Some mineral compositions were determined by X-ray
diffraction (XRD) analyses.
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Table 1. Information of measured positions.

Emissivity
Image

Measured
Positions Lithologic Types Compositions Field Measured

Spectrum
Indoor Measured

Spectrum

Liuyuan 1

1 Slate detritus — LY1_1 LY1_YP_1
2 Syenogranite — LY1_2 —

3 Syenogranite
detritus

Orthoclase (38.7%) +
quartz (27.1%) + biotite

(18.9%) + monoclinic
pyroxene (15.3%)

LY1_3 LY1_YP_2

4 Syenogranite
detritus — LY1_4 LY1_YP_3

5 Syenogranite — LY1_5 —
6 Diorite — — LY1_YP_4

7 Diorite

Albite (32.1%) +
hornblende (17.0%) +

diopside (17%) + quartz
(15.3%) +

montmorillonite (10.5%)
+ biotite (8.1%)

LY1_6 LY1_YP_5

8 Diorite

Chlorite (41.6%) + albite
(30.1%) + quartz (13.2%)

+ biotite (7.6%)+
diopside (7.4%)

LY1_7 LY1_YP_6

Liuyuan 2

1 Slate
Quartz (49.7%) +

anorthite (36.9%) +
seraphinite (14.7%)

LY2_1 LY2_YP_1

2 Slate — — LY2_YP_2
3 Diorite — — LY2_YP_3

4 Diorite Albite (51.3%) + quartz
(24.6%) + biotite (24.1%) — LY2_YP_4

Liuyuan 3

1 Diorite

Orthoclase (51.9%) +
magnesia hornblende

(39.3%) + albite (14.7%) +
biotite (13.9%) +

pyroxene (13.1%) +
quartz (9.1%)

— LY3_YP_1

2 Diorite — — LY3_YP_2

3 Diorite

Magnesia hornblende
(48%) + albite (40.2%) +
bixbyite (6.0%) + quartz

(5.8%)

LY3_1 LY3_YP_3

The spectra measured by field and indoor measurements according to different lithol-
ogy types are shown in Figure 6. The spectra for slate, syenogranite and diorite all have
different spectral features. In Figure 6a, the spectra of slate have a distinct emission valley
between 8.5 and 9.5 µm. Figure 6b has a continuous broad emission valley between 8.5 and
10 µm. As shown in Figure 6c, the spectra form a weak emission valley near 9.5 µm. There
is likely a difference in the chemical composition of these samples to lead to the different
spectra. For example, LY1_YP_6 and LY3_YP_3 are the spectra of diorite, but their spectral
curves are very different.
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2.3.3. Confirmation of Lithology Type

Combining the information of the field positions and the geological map, the main
lithology of the study areas can be determined. There is slate, granite and diorite in
Liuyuan 1 and slate, diorite and sericite phyllite in Liuyuan 2. For Liuyuan 3, there is
much slate according to the geologic map. Even so, there are multiple colors on the MNF
transformed image of Liuyuan 3, indicating that the lithology is not unique at the site. This
means that there are other lithological unit types in addition to slate. To discriminate the
unknown lithologic types in Liuyuan 3, a spectrum analysis model, such as the SAM, was
implemented to compare and analyze the known spectrum and unidentified spectrum.
The unidentified regions of interest (ROIs) spectra were selected for comparison with the
known field-measured spectra. The lithology types were confirmed using the highest
score with the measured spectrum. ROIs chosen in red, green and blue are shown as ROI
#1, ROI #2 and ROI #3, respectively, in Figure 7. The comparison of lithologic spectral
curves between the measured known spectrum and unidentified ROI spectrum is shown in
Figure 8. Through spectral comparison analysis, it is determined that ROI #1 is slate, ROI
#2 is syenogranite, and ROI #3 is diorite. In addition, there were many alluvial sediments in
Figure 4a–c, representing Quaternary sediments, which can be determined by the Google
Earth map.
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Based on the above information, the classification reference maps for Liuyuan 1, 2
and 3 are drawn in Table 2. Slate is red. Syenogranite is green. Diorite is blue. Quaternary
sediment is yellow, and sericite phyllite is cyan. Meanwhile, there is some uncertainty
labelled black in the reference map.

Table 2. Composition of lithologic categories.

Emissivity Image Lithologic Types Classification
Reference Map Category Label

Liuyuan 1

Slate
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3. Convolutional Neural Networks

In recent times, CNNs have achieved outstanding achievements in the analysis of
hyperspectral remote sensing images [41]. As shown in Figure 9, the fundamental structure
of a CNN is constructed as a set of layers, consisting of a convolutional layer, pooling
layer and fully connected layer. The main task of hyperspectral image processing of
CNN architecture is handling spatial and spectral information via adjacent layers [34].
The convolutional layer is used to process data by a convolutional operation, aiming to
extract features of different dimensions of the input data. A nonlinear mapping layer
such as ReLU uses a nonlinear function to map the results of the convolution layer to
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increase the nonlinear characteristics of the system and usually follows a convolution
layer. The pooling operation follows the convolution layer to streamline the convolution
information. The pooling operation reduces the probability of overfitting by reducing
the dimensionality of the target features by calculating the mean or extreme value of
some regions [42]. A commonly used pooling operation is the max-pooling operation that
calculates the maximum of a local patch of units into a single feature map. The last few
layers of a convolutional neural network are usually fully connected layers, which helps to
better aggregate the information conveyed at lower levels and make final decisions [43].
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3.1. One-Dimensional CNN

Let the hyperspectral data cube be denoted by I ∈ RM×N×D, where I is the original
input, M is the height, N is the width, and D is the number of spectral bands. Every HSI
pixel in I contains D spectral measures and forms a one-hot label vector Y = (y1, y2 . . . , yC)
∈ R1×1×C, where C represents the categories [44]. However, the convolution of hundreds of
spectral bands of hyperspectral images leads to overfitting due to the increase in operation
cost. To address this problem, the input data were processed by principal component
analysis (PCA) in the spectral dimension, which greatly reduced the redundancy within
hyperspectral data [45]. PCA reduces the number of spectral bands from D to B while
maintaining the same spatial dimensions. The PCA reduced data cube is denoted by
X ∈ RM×N×B, where X is the modified input after PCA. The labeled pixels are selected
from X and are fed into input layers as training samples and then convoluted by kernels in
convolutional layers [44].

The convolutional layer is introduced first. The value of a neuron vx
ij at position x of

the jth feature map in the ith layer is denoted as follows [33]:

vx
ij = g

(
bij + ∑

m

Pi−1

∑
p=0

wp
ijmvx+p

(i−1)m

)
(6)

where m indexes the feature map in the previous layer ((i − 1) th layer) connected to the
current feature map, wp

ijm is the weight of position p connected to the mth feature map, Pi
is the width of the kernel towards the spectral dimension, and bij is the bias of jth feature
map in the ith layer.

Each pooling layer corresponds to the previous convolutional layer. The neuron in the
pooling layer combines a small N × 1 patch of the convolution layer. The most common
pooling operation is max pooling, which is used throughout this paper. The max-pooling
is as follows:

aj = max
N×1

(
an×1

i u(n, 1)
)

(7)

where u (n, 1) is a window function to the patch of the convolution layer, and aj is the
maximum in the neighborhood.

After a series of convolutions, deep features were extracted and flattened into a column
of neurons, which served as the input layer for subsequent FC layers [43]. The output of
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the fully connected layers is fed to a classifier to generate the required classification result.
The input of the 1-D CNN is a pixel vector, and the output of the system is the label of the
pixel vector. It consists of several convolutional and pooling layers, as shown in Hu’s 1-D
CNN (Figure 10) [46].
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3.2. Two-Dimensional CNN

The 2-D convolutional layer is obtained by the extension of (6). The value of a neuron
vij

xy at position (x, y) of the jth feature map in the ith layer is denoted as follows [33]:

vxy
ij = g

(
bij + ∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

wpq
ijmv(x+p)(y+q)

(i−1)m

)
(8)

where m indexes the feature map in the (i− 1) th layer connected to the current (jth) feature
map, wpq

ijm is the weight of position (p, q) connected to the mth feature map, Pi and Qi are
the height and width of the spatial convolution kernel, and bij is the bias of the jth feature
map in the ith layer. Pooling is carried out in a similar way to the 1-D CNN.

Based on the theory described previously, a variety of CNN architectures can be
developed. The architecture is shown in Figure 11. The 11 × 11 neighborhoods of a current
pixel are selected as the input to the 2-D CNN model. The 2-D CNN model includes two
convolution layers and two pooling layers. Each layer of CNN contains 2D convolution
and pooling. A 3 × 3 kernel can be selected to run convolution, and a 2 × 2 kernel can be
selected for pooling. After several layers of convolution and pooling, the input image can
be represented by some feature vectors, which capture the spatial information contained in
the 11 × 11 neighborhood region of the input pixel. Then, the learned features are fed to
the fully connected layer for classification.
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3.3. Three-Dimensional CNN

As can be seen in Sections 3.1 and 3.2, the 1-D CNN extracts spectral features and the
2-D CNN extracts the local spatial features of each pixel. Furthermore, the 3-D CNN can
learn both spatial and spectral features. The value of a neuron vxyz

ij at position (x, y, z) of
the jth feature map in the ith layer is given by [33]:
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∑
m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
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where m indexes the feature map in the (i − 1)th layer connected to the current (jth) feature
map, and Pi and Qi are the height and width of the spatial convolution kernel, respectively.
Ri is the size of the kernel along the spectral dimension, wpqr

ijm is the value of position (p, q, r)
connected to the mth feature map, and bij is the bias of the jth feature map in the ith layer.

The structure diagram of the 3-D CNN classification framework is shown in Figure 12.
The 11 × 11 neighborhoods of a current pixel are selected as the input to the 3-D CNN
model. The 3-D CNN model includes three convolution layers. The spatial size of the
first 3D convolution kernel is set to 5 × 3 × 3. The spatial sizes of the second and third
convolution kernels are set to 3 × 3 × 3. Here, the pooling operations are not applied,
which are known for reducing the spatial resolution [27]. After a series of convolutions,
deep features were extracted and flattened into a column of neurons, which served as the
input layer for subsequent FC layers. The output of the fully connected layers is fed to a
classifier to generate the required classification result.
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Figure 12. Illustration of the three-dimensional convolutional neural network (3-D CNN) framework.

4. Experimental Results and Analysis
4.1. Classification Results

To prove the feasibility of the methods, the CNNs were tested and compared with six
different typical methods, including SAM, SID, FCLSU, SVM, RF and NN. The hardware
and software parameters were as follows: Lenovo Desktops, Intel(R) Core (TM) i7-10700K
CPU @3.80 GHz 3.79 GHz, 16 GB RAM, NVIDIA GeForce RTX 2080 SUPER 8 GB GPU,
Windows 10, python3.8. For SAM, SID and FCLSU, the final classification results were
obtained through comparison with the reference spectral curves. For SVM, RF, NN and
CNNs, 10% of the number of pixels from each class were extracted as training samples,
and the rest were test samples. Then, the trained model was used to predict the images and
obtain the final classification results. The CNN models were implemented based on the
PyTorch deep learning framework for the training and testing models. All the experiments
were repeated several times. Under the same parameters, there are very small variations
according to their results. The OA, AA and kappa denote the overall accuracy (OA), the
average accuracy of all classes (AA) and the kappa coefficient (kappa), which are calculated
to evaluate and test the precision. OA represents the number of correctly classified samples
in all categories divided by the total sample size by the model. AA stands for the average
precision of all classes. Kappa is an accuracy measure based on the confusion matrix, which
represents the percentage of errors reduced by classification versus a completely random
classification. The classification maps of the three images are shown in Figures 13–15. The
classification accuracies over different classification methods are reported in Tables 3–5.
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Figure 13. Classification results of all the methods for Liuyuan 1. (a) Spectral angle mapping (SAM); (b) spectral information
divergence (SID); (c) fully constrained linear spectral unmixing (FCLSU); (d) support vector machine (SVM); (e) random
forest (RF); (f) neural network (NN); (g) 1-D CNN; (h) 2-D CNN; (i) 3-D CNN.
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Figure 15. Classification results of all the methods for Liuyuan 3. (a) SAM; (b) SID; (c) FCLSU; (d) SVM; (e) RF; (f) NN; (g) 
1-D CNN; (h) 2-D CNN; (i) 3-D CNN. 
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13a–i. It shows that the 3-D CNN algorithm achieved the best classification results for 
most land cover classes. As shown in Figure 13a–c, the classification results based on the 
traditional methods SAM, SID and FCLSU appear to be wrongly misclassified, and a part 
of the diorite is misclassified as quaternary sediment. In Figure 13d–i, almost nothing di-
orite is misclassified as Quaternary sediment. In particular, the 3-D CNN method com-
pared with the other methods is largely free of misclassification for each lithology class 
due to its powerful learning capabilities. The 3-D CNN offers better classification perfor-
mance, greater noise immunity and more accurate boundary classification. Additionally, 
as shown in Table 3, the evaluation results of different algorithms for Liuyuan 1 are 

Figure 14. Classification results of all the methods for Liuyuan 2. (a) SAM; (b) SID; (c) FCLSU; (d) SVM; (e) RF; (f) NN;
(g) 1-D CNN; (h) 2-D CNN; (i) 3-D CNN.
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Table 3. Accuracy of classification results of Liuyuan 1.

Lithology SAM SID FCLSU SVM RF NN 1-D CNN 2-D CNN 3-D CNN

Slate 69.43 93.59 86.26 82.91 84.02 83.90 85.27 93.00 93.97
Syenogranite 87.83 84.91 64.61 90.57 90.67 87.59 89.36 94.72 95.55

Diorite 52.48 50.82 75.53 89.96 90.74 88.91 90.10 98.40 98.32
Quaternary

sediment 75.60 48.16 84.89 65.33 70.48 64.67 65.11 89.02 89.12

OA (%) 75.87 72.12 73.42 84.68 86.01 81.27 84.38 94.18 94.70
AA (%) 71.34 69.37 77.82 82.19 83.98 80.48 82.46 93.78 94.24
Kappa 0.6393 0.5869 0.6314 0.7707 0.7915 0.7757 0.7673 0.9142 0.9217

Table 4. Accuracy of classification results of Liuyuan 2.

Lithology SAM SID FCLSU SVM RF NN 1-D CNN 2-D CNN 3-D CNN

Slate 87.50 97.60 94.03 96.59 96.77 95.52 96.59 98.22 98.29
Diorite 69.66 60.09 70.79 53.07 59.37 52.48 56.24 82.97 83.97

Quaternary
sediment 75.47 57.42 60.00 59.70 64.58 59.32 57.24 87.32 88.94

Sericite phyllite 68.92 36.52 76.52 87.41 87.80 84.71 87.44 97.73 98.02

OA (%) 79.06 70.54 82.45 86.93 88.03 85.39 86.61 96.07 96.47
AA (%) 75.39 62.91 75.34 74.19 77.13 73.01 74.38 91.56 93.11
Kappa 0.6794 0.5237 0.7228 0.7879 0.8063 0.7641 0.7825 0.9367 0.9432

Table 5. Accuracy of classification results of Liuyuan 3.

Lithology SAM SID FCLSU SVM RF NN 1-D CNN 2-D CNN 3-D CNN

Slate 85.46 84.32 84.76 94.39 94.89 91.76 93.72 97.04 96.18
Syenogranite 31.63 63.27 25.88 91.45 91.03 91.32 91.19 97.46 97.49

Diorite 93.71 96.55 87.77 99.13 99.32 99.26 98.93 99.53 99.61
Quaternary
sediment 85.60 22.28 85.06 59.57 61.91 60.60 64.36 87.55 89.36

OA (%) 86.60 86.89 81.68 96.22 96.49 96.01 96.16 98.53 98.56
AA (%) 74.1 66.61 70.86 86.13 86.79 85.73 87.05 95.39 95.66
Kappa 0.7107 0.7549 0.6285 0.9117 0.9177 0.9062 0.9105 0.9659 0.9664
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4.1.1. Liuyuan 1

The thematic maps of Liuyuan 1 by different methods are visually shown in Figure 13a–i.
It shows that the 3-D CNN algorithm achieved the best classification results for most land
cover classes. As shown in Figure 13a–c, the classification results based on the traditional
methods SAM, SID and FCLSU appear to be wrongly misclassified, and a part of the
diorite is misclassified as quaternary sediment. In Figure 13d–i, almost nothing diorite
is misclassified as Quaternary sediment. In particular, the 3-D CNN method compared
with the other methods is largely free of misclassification for each lithology class due to
its powerful learning capabilities. The 3-D CNN offers better classification performance,
greater noise immunity and more accurate boundary classification. Additionally, as shown
in Table 3, the evaluation results of different algorithms for Liuyuan 1 are shown. The
accuracy of diorite is only 52.48%, 50.82% and 75.53% based on SAM, SID and FCLSU,
respectively. The classification effects of traditional methods, including the SAM, SID and
FCLSU methods, are the worst. MALs, such as SVM, RF and NN, show a good advantage,
and the RF model obtains the best result. The 2-D CNN and 3-D CNN models obtained the
best result, with overall accuracies of 94.18% and 94.70%, respectively. The 3D-CNN model
is 0.52% higher than 2D-CNN, indicating that the inclusion of spectral features in 3D-CNN
improves the classification accuracy. Particularly for slate, 3D-CNN effectively improves
the classification accuracy, 0.97% higher than 2D-CNN. However, the overall accuracy
of the 1-D CNN is only 84.38%, which is lower than that of SVM and RF. The 1-D CNN
input is a single pixel, and the 1-D network used in this case has only one convolutional
layer and one pooling layer, which may lead to poorer classification results. Therefore,
CNN algorithms are conducive to improving the classification of high-resolution and
hyperspectral TIR remote sensing images.

4.1.2. Liuyuan 2

The thematic maps of Liuyuan 2 are visually shown in Figure 14a–i. The image
of Liuyuan 2 has a complex lithology distribution, and it is very difficult to distinguish
between sericite phyllite and quaternary sediments in the spectral domain because sericite
phyllite is produced by metamorphism of sedimentary rocks, and Quaternary sediments
are also clastic sedimentary rocks. SAM, SID and FCLSU have a serious misclassification of
quaternary sediments and sericite phyllite in Figure 14a–c. The sericite phyllite is wrongly
misclassified as quaternary sediments. The classification area is smaller than the real area.
The boundary of classification is fuzzy, and the noise level is high. The sericite phyllite
classification results of SVM, RF, NN and 1-D CNN are slightly better than SAM, SID and
FCLSU. Compared with other algorithms, the 2-D CNN and 3-D CNN algorithms have a
stronger classification capability at the corresponding location, such as the classification
of sericite phyllite and quaternary sediments in Figure 14h,i. In addition, as shown in
Table 4, the 3D-CNN achieved the best result with an overall accuracy of 96.47%, which
is 0.4% higher than obtained by 2D-CNN. Particularly for diorite, 3D-CNN effectively
improves the classification accuracy, 1% higher than 2D-CNN. Meanwhile, the average
precision obtained by the 3-D CNN and 2-D CNN is significantly higher than that of the
other six methods by approximately 20%, which significantly improves the classification
precision of per class. The 3-D CNN achieved the best result with an average accuracy,
which is 1.55% higher than 2-D CNN. The 3-D CNN is significantly better than 2-D CNN.
Other evaluation indexes also have some potential advantages. Therefore, the 3-D CNN
algorithm can effectively improve the classification of complex remote sensing images.

4.1.3. Liuyuan 3

Figure 15a–f shows the thematic maps of Liuyuan 3. For SAM and FCLSU, the
syenogranite classification ability is very poor in Figure 15a–c because a part of the
syenogranite is misclassified as quaternary sediment. For SID, the classification result
of syenogranite in Figure 15b is slightly better than SAM and FCLSU. A portion of the
syenogranite is also misclassified as quaternary deposits. Among these three methods,
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slate and diorite classification results are significantly better than those of syenogranite
and quaternary sediments because the spectral diagnostic features of slate and diorite are
more pronounced. SVM, RF, NN and 1-D CNN obtain higher partition precision and more
accurate partition boundaries than SAM, SID and FCLSU in Figure 15d–g. The classifi-
cation results of slate, syenogranite and diorite are correct, but there is still some noise.
However, the classification accuracy of Quaternary sediments is lower than that of SAM,
SID and FCLSU. Because of the spectral similarity between syenogranite and quaternary
sediments, it led to a better classification of quaternary sediments than syenogranite by
SAM, SID and FCLSU. For MALs and 1-D CNN, the number of training samples depends
on the classification results. There are fewer training samples of quaternary sediments,
and the calculations of these algorithms are relatively simple, leading to the worst classi-
fication results for this class. For 2-D CNN and 3-D CNN, their results have a noticeable
improvement in Figure 15h,i and the boundary partition is very satisfactory. Additionally,
as shown in Table 5, the evaluation results of different algorithms for Liuyuan 1 are shown.
The 3-D CNN model obtained the best result, with a 98.56% overall accuracy, which is
0.03% higher than 2D-CNN. MALs such as SVM, RF and NN also show a good advantage
with an overall classification accuracy that is even closer to 3-D CNN and 2-D CNN. The
classification effects of the SAM, SID and FCLSU methods are the worst. Their overall
classification accuracy is only approximately 85%. Compared with Liuyuan 1 and Liuyuan
2, this scene has more explicit lithological units. In general, all classification methods have
high accuracy. The 2-D CNN has already achieved such a high overall accuracy of 98.53%,
so 3-D CNN has a smaller performance improvement of 0.03% on top of that.

5. Discussion

According to the experimental results presented above, CNNs achieve better overall
classification results than SAM, SID, FCLSU, SVM, RF and NN. Therefore, CNN methods
are conducive to promoting rock classification using hyperspectral TIR imagery. In addition,
further discussion and analysis of the effect of MLA and CNN parameter settings, i.e.,
number of training samples, on the recognition results are presented below.

The classification accuracies of Liuyuan 1, 2 and 3, including the OA, AA and kappa, of
all comparison methodologies for three datasets with different numbers of training samples
are shown in Figures 16–18. In the figure, the two horizontal axes represent the number of
training samples and the different supervised methods. The vertical axis represents the
classification accuracy of the mentioned algorithm. For each of the six methods, the figure
indicates the algorithm’s performance within given training samples. The numbers of
training samples per class of all the comparison methods were set up to 5%, 10% and 15%
of the total sample number per class. When the number of samples increases proportionally,
the overall classification accuracy of 3-D CNN and 2-D CNN is improved by approximately
0.4–3.7%. The overall classification accuracy of SVM, RF, NN and 1-D CNN under different
sample sizes has small differences, and the overall accuracy fluctuates within 1%. For
instance, in terms of the difference in classification overall accuracy, NN was greater when
the number of samples was 10% per class than when the number of samples was 15%
per class, as shown in Figure 16a. For the average accuracy of each category in the three
datasets, compared to 5% of the total sample number per class, 2-D CNN and 3-D CNN
have the highest average accuracy when the sample size is 15%. The average accuracy of
10% of the total sample number per class is increased by 5.17% and 5.95%, especially using
the 3-D CNN and 2-D CNN, compared with the average accuracy of 5% of the total sample
number per class in Figure 17b. The average accuracy of SVM, RF, NN and 1-D CNN under
different sample sizes has small differences, and the accuracy fluctuates within 1%. When
the number of samples increases proportionally, the variation in kappa coefficient values
is consistent with the variation in the average accuracy and overall accuracy values. It
can also be found in Figures 16–18 that the difference is approximately 1% in terms of the
overall accuracy, the average accuracy and the kappa coefficient when the sample size is
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10% and 15%. Therefore, when the sample size of each class is 10%, good classification
results can be achieved.
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6. Conclusions

The application of CNNs to complete lithology classification using thermal infrared
hyperspectral TASI data is the main contribution of this paper. Because the methods
are designed in a supervised way, it is also important to provide prior knowledge and
manual assistance in determining the label of the image elements in practical applications.
The field measurement data coupled with MNF transformation using TASI emissivity
images were able to obtain better pixel spectra and training samples. Six state-of-the-art
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algorithms, including SAM, SID, FCLSU, SVM, RF and NN, were implemented to make
comparisons with the performance of the CNNs. Compared with other algorithms, the
classification accuracy of CNNs, especially 2-D CNN and 3-D CNN, are approximately
2.5–12% higher SVM, RF and NN and are approximately 12–25% higher SAM, SID and
FCLSU. The classification result of the 1-D CNN is inferior to the other two CNNs, and
its classification accuracy is roughly comparable to that of MALs. The numerical results
also verify the effective classification of CNNs, which shows that the algorithm can obtain
satisfactory classification results. It is demonstrated that the 2-D CNN and 3-D CNN
algorithms improve the classification of hyperspectral TIR remote sensing images.
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