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Abstract: Machine learning, particularly deep learning (DL), has become a central and state-of-the-
art method for several computer vision applications and remote sensing (RS) image processing.
Researchers are continually trying to improve the performance of the DL methods by developing
new architectural designs of the networks and/or developing new techniques, such as attention
mechanisms. Since the attention mechanism has been proposed, regardless of its type, it has been
increasingly used for diverse RS applications to improve the performances of the existing DL methods.
However, these methods are scattered over different studies impeding the selection and application
of the feasible approaches. This study provides an overview of the developed attention mechanisms
and how to integrate them with different deep learning neural network architectures. In addition, it
aims to investigate the effect of the attention mechanism on deep learning-based RS image processing.
We identified and analyzed the advances in the corresponding attention mechanism-based deep
learning (At-DL) methods. A systematic literature review was performed to identify the trends
in publications, publishers, improved DL methods, data types used, attention types used, overall
accuracies achieved using At-DL methods, and extracted the current research directions, weaknesses,
and open problems to provide insights and recommendations for future studies. For this, five main
research questions were formulated to extract the required data and information from the literature.
Furthermore, we categorized the papers regarding the addressed RS image processing tasks (e.g.,
image classification, object detection, and change detection) and discussed the results within each
group. In total, 270 papers were retrieved, of which 176 papers were selected according to the defined
exclusion criteria for further analysis and detailed review. The results reveal that most of the papers
reported an increase in overall accuracy when using the attention mechanism within the DL methods
for image classification, image segmentation, change detection, and object detection using remote
sensing images.

Keywords: remote sensing; image processing; attention mechanism; spatial attention; channel

attention; deep learning; CNN

1. Introduction

Remotely sensed images have been employed as the main data sources in many fields
such as agriculture [1-4], urban planning [5-7] and disaster risk management [8-10], and
have been shown as an effective and critical tool to provide information. Accordingly,
processing remote sensing (RS) images is crucial to extract the useful information from
them for such applications. RS image processing tasks include image classification, object
detection, change detection, and image fusion [11]. Different processing methods were
developed to address them, and they aimed to improve the performance and accuracy of
the methods to address RS image processing. Machine learning methods such as support
vector machines and ensemble classifiers (e.g., random forest and gradient boosting)
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obtained fairly high accuracies for different RS processing tasks [12,13]. In particular,
deep learning (DL) methods have recently become state-of-the-art methods in RS image
processing and automatically extracting the required information from RS images [14,15].
Since DL has entered this field, researchers try to improve the performance and increase its
accuracy by developing new techniques and different architectural designs, e.g., various
convolutional neural networks (CNN) [16,17], generative adversarial networks (GAN) [18],
graph neural networks (GNN) [19]. Recently, the attention mechanism was proposed by
Bahdanau, et al. [20] initially for machine translation application, which aims to guide deep
neural network methods by providing focus points and highlighting the important features
while minimizing the others. Thereafter, it was used in different applications, including
computer vision [21] and RS image processing [22-24]. Accordingly, most of the studies
reported an increase in the performance of the DL methods when guided with attention
mechanism [25-27].

In recent years, researchers reviewed the developed/used DL methods in RS literature
mostly from a general perspective [11,28] or focusing on one application, e.g., image
classification [15]. Zhang, et al. [14] reviewed the DL methods in RS big data processing
and provided a technical tutorial on the state-of-the-art methods. Zhu, et al. [28] reviewed
the DL methods applied to RS data analysis and investigated the challenges of DL in
RS applications. They also provided a comprehensive list of resources for DL-RS data
analysis. Li, et al. [15] conducted a survey study on the developed DL methods for RS
image classification. They also analyzed and compared the performance of the different
DL methods. In addition, the recent advances in DL for pixel-level image fusion were
reviewed by Li, et al. [29]. Ma, et al. [11] conducted a systematic literature review on
applications of the DL on RS and they comprehensively reviewed and categorized DL
methods. In addition, Niu, et al. [21] reviewed the different architectural designs of
the attention mechanism used in conjunction with DL from a general perspective and
provided some application domains. However, the effect of such a mechanism for DL
methods in RS image processing has not yet been reviewed and investigated. Accordingly,
a systematic literature review is conducted in this study by following a structured review
on the DL methods with an embedded attention mechanism for RS image processing
applications. Thus, the literature is reviewed systematically to respond to the predefined
research questions rather than summarizing the papers. The main objective of this study is
to extract the effect of attention mechanism in the performance of deep learning-based RS
(DL-RS) image processing. In addition, the current trends, achievements and applications
in publications, using attention mechanism-based DL (At-DL) methods and RS image
processing applications are extracted to provide insights and guidelines for future studies.

The rest of the paper is organized as follows. Background information regarding the
attention mechanism, its different types, and how it is being used in DL methods are pro-
vided in Section 2. Section 3 presents and describes the integration of attention mechanisms
with different deep neural network architectures to address RS image processing tasks.
The steps of the executed systematic literature review are explained in Section 4. Then,
Section 5 presents and visualizes the quantitative results and discusses them according
to the defined research questions, and reveals the effect of attention mechanism in the
performance of the DL-RS image processing. Finally, Section 6 concludes the paper.

2. Attention Mechanism in Deep Learning

The attention mechanism, like other neural network-based methods, tries to mimic
the human brain/vision to process data. Human vision does not process the entire image
at once; however, it only focuses on the specific parts. With this, the focused parts of
the human view space are perceived in “high-resolution” while the surroundings are
in “low-resolution”. In other words, it gives higher weight to the relevant parts while
minimizing the irrelevant ones, giving them lower weights. This allows the brain to process
and focus on the most important parts precisely and efficiently, rather than processing the
entire view space. This characteristic of human vision inspired researchers to develop the
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attention mechanism. It was initially developed in 2014 for natural language processing
applications [20], since then it has been widely used for different applications [30], in
particular, computer vision tasks [21,31]. Its potential to enhance mostly CNN-based
methods has been reported [32]. In addition, it has been used in conjunction with recurrent
neural network models [33-36], and graph neural networks [37,38]. The main idea behind
the attention mechanism is to give different weights to different information. Thus, giving
higher weights to relevant information attracts the attention of the DL model to them [39].
Attention mechanism approaches can be grouped based on four criteria (Figure 1) [21]:
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Figure 1. An overview of typical attention mechanism approaches [21].

(i)
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(iif)

The softness of attention: the initial attention mechanism proposed by [20] is a soft
version, which is also known as deterministic attention. This network considers all
input elements (computes the average for each weight) to compute the final context
vector. The context vector is the high-dimensional vector representation of the input
elements or sequences of the input elements and in general the attention mechanism
aims to add more contextual information to compute the final context vector. How-
ever, hard attention, which is also known as stochastic attention, randomly selects
from the sample elements to compute the final context vector [40]. This, therefore,
reduces the computational time. Furthermore, there is another categorization that is
frequently used in computer vision tasks and RS image processing, i.e., global and
local attentions [41,42]. Global attention is similar to soft attention since it also consid-
ers all input elements. However, global attention simplifies soft attention by using
the output of the current time step rather than the prior one, while local attention is a
combination of soft and hard attentions. This approach considers a subset of input
elements at a time, and thus, overcomes the limitation of hard attention, i.e., being
nondifferentiable, and in the meantime is less computationally expensive.

Forms of input features: attention mechanisms can be grouped based on their input
requirements: item-wise and location-wise. Item-wise attention requires inputs that
are known to the model explicitly or produced with a preprocess [43—45]. However,
location-wise attention does not necessarily require known inputs, in this case, the
model needs to deal with input items that are difficult to distinguish. Due to the char-
acteristics and features of the RS images and targeted tasks, location-wise attention is
commonly used for RS image processing [42,46—48].

Input representations: there are single-input and multi-input attention models [49,50].
In addition, the general processing procedure of the inputs also varies between the
developed models. Most of the current attention networks work with single-input,
and the model processes them in two independent sequences (i.e., distinctive model).
The co-attention model is a multi-input attention network that parallelly implements
the attention mechanism on two different sources but finally merges them [50]. This
makes it suitable for change detection from RS images [51]. A self-attention network
computes attentions only based on the model inputs, and thus, it decreases the
dependence on external information [52-54]. This allows the model to perform
better in images with complex background by focusing more on targeted areas [55].
Hierarchical attention mechanism computes weights from the original input and
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different levels/scales of the inputs [56]. This attention mechanism is also known as
fine-grained attention for image classification [57].

(iv) Output representations: single-output is the commonly used output representation in
attention mechanisms. It processes a single feature at a time and computes weight
scores. There are also two other multidimensional and multi-head attention mech-
anisms [21]. Multi-head attention processes the inputs linearly in multiple subsets,
and finally merges them to compute the final attention weights [58], and is espe-
cially useful when employing the attention mechanism in conjunction with CNN
methods [59-61]. Multidimensional attention, which is mostly employed for natural
language processing, computes weights based on matrix representation of the features
instead of vectors [62,63].

The above-explained attention mechanisms are the same in principle and are devel-
oped by researchers to adopt or improve the basic attention mechanism for their tasks. In
addition, not all of them have been used for computer vision, and thus, RS image process-
ing. In DL-based image processing, this mechanism is usually used to focus on specific
features (feature layers) or a certain location or aspect of an image [64—67]. Accordingly, it
can be classified into two major types: channel and spatial attentions.

Figure 2 illustrates simple channel and spatial attention types: (a) The channel atten-
tion network aims to boost the feature layers (channel) in the feature map that convey
more important information and silence the other feature layers (channels); (b) the spatial
attention network highlights regions of interest in the feature space and covers up the
background regions. These two attention mechanisms can be used solely or combined
within DL methods to provide attention to both important feature layers and the location
of the region of interest. Papers in this review were classified according to these two types.

Channel attention network

W /7 7
|| |:> 2D CNN usually with an average pooling |:> |||
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B Spatial attention network
N

n N \ N

N NN ..
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N !

v

Original feature maps Attentive feature maps

Figure 2. A simple illustration of the channel and spatial attention types/networks, and their effects
on the feature maps.

3. Deep Neural Network Architectures with Attention for RS Image Processing

In this section, we describe and provide examples of the four different deep neural
network architectures (i.e., CNN, GAN, RNN, and GNN) that are improved using the
attention mechanism to address RS image processing. CNN is the main method that has
been used for image processing in general, as well as RS applications. Both spatial and
channel attentions are embedded in CNN with different attention network designs. For
CNNs the channel attention is typically implemented after each convolution but the spatial
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attention is mostly added to the end of the network [68-71]. However, in UNet-based
networks, spatial attention is usually added to each layer of a decoding/upsampling
section [72-74]. Figure 3 shows an example of using spatial and channel attentions, in par-
ticular co-attention network, in a Siamese model for building-based change detection [51].
The proposed co-attention network is based on an initial correlation process with a final
attention module. For GAN networks which are based on encoding and decoding modules,
the process of adding attention networks is the same as of CNNs that can be used in
both adversarial and/or discrimination networks depending on the targeted tasks [75]
(Figure 4).
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Figure 3. An example of adding attention network (i.e., co-attention) to a CNN module (i.e., Siamese network) for

building-based change detection [51]. CoA—co-attention module, At—attention network, CR—change residual module.

RNN is the first deep learning network that is improved by attention mechanism [20]
for natural language processing tasks. RNNs are not as popular as CNNs for image
processing due to the inherent characteristics of the images. However, RNN has been
frequently used in conjunction with CNN for RS image processing [34,76—78]. This also
allows the integration of the attention mechanism with RNN for RS applications. For
example, Ref. [79] developed a bidirectional RNN module to provide channel attention
and add the outcome weights to the CNN-based module which is supported with a spatial
attention network for hyperspectral image classification (Figure 5).
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Figure 4. An example of adding spatial and channel attentions to a GAN module for building detection from aerial
images [75]. A—max pooling layer; B—convolutional + batch normalization + rectified linear unit (ReLU) layers;
C—upsampling layer; D—concatenation operation; SA—spatial attention mechanism; CA—channel attention mechanism;
RS—reshape operation.
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Figure 5. An example of adding attention networks (i.e., spatial and channel attentions) to a RNN + CNN module for
hyperspectral image classification [79]. PCA—principal component analysis.

GNN is another network architecture that has been employed in conjunction with
CNN for RS image processing. Hence, this mechanism is used to focus on the most
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important graph nodes of the network. A typical integration of GNN with CNN is to
implement a GNN after a CNN-based image segmentation to produce the final RS image
classification results [80,81]. Accordingly, the attention network adjusts the weight for each
graph node through the graph convolutional layers (Figure 6) [82].

Learning CNN

Remote sensing Multi-label
image scene

J

he Deep feature maps
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image scene

Regions and feature

representations ERencipraph

il
S

=
Learn il‘lp, (NN  Graph attention convolution layers Graph pooling layer Multi-label

Figure 6. An example of adding an attention network to a GNN module for multi-label RS image
classification [82].

4. Methodology

We followed the guidelines provided by Kitchenham, et al. [83] to systematically
review the literature and report the results. Accordingly, we developed a review protocol at
the start of the study and before conducting the review to reduce the biases. As the first step
of the developed protocol, a set of research questions was defined (Section 4.1) according
to the objective of this review study (i.e., reviewing and investigating attention-based
deep learning methods for remote-sensing image-processing applications). Thereafter, the
search strategy including search databases, strings, and a time-period was formulated
to automatically find the relevant publications (Section 4.2). The final set of papers for
the systematic review were selected by manually screening the papers according to the
predefined exclusion criteria (Section 4.3). Then, a data extractions strategy (Section 4.4)
and a form (Appendix A—Table A1) were developed to extract the required information
from the papers. The extracted data and information were synthesized and the associated
results are presented and discussed to answer the research questions.

4.1. Research Questions

A total of five main research questions (RQs) were defined to address the objective
of this study. The RQs were specifically selected to extract state-of-the-art and interesting
aspects of the developed DL methods with attention mechanism applied to RS image
processing, including the effect of such mechanisms in their performance. The review and
further structured analysis were built on these RQs.

RQ1. What are the specific objectives in remote sensing image processing that were addressed
with attention-based deep learning?
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RQ2. What are the deep learning algorithms that were improved with attention mechanism
for remote sensing image processing?

RQ3. Which types of attention mechanisms were used in deep learning methods for remote
sensing image processing?

RQ4. What are the used data sets/types in attention-based deep learning methods for remote
sensing image processing?

RQ4.1. What kind of remote sensing images are used?

RQ4.2. What is the spatial resolution of the used remote sensing images?

RQ5. What are the effects of the attention mechanism in the performance of the deep learning
methods in remote sensing image processing?

RQ5.1. What is the level of accuracy achieved with attention-based deep learning methods?

RQ5.2. What is the effect of the attention mechanism on the accuracy level of the deep
learning methods?

4.2. Search Strategy

Two main attributes are usually employed to define the search scope of a systemic
literature review: publication date and platform. We executed the search with no limit
for the published data on the well-known and widely accepted platforms, i.e., ISI Web of
Knowledge and Scopus. We formulated the following search string and executed it on the
search engine of the selected publication platforms automatically to search in title, abstract,
and keywords of the papers.

Search string;:

((“attention mechanism” OR “attention guid*” OR “attention embed*” OR “attention con-
tain*” OR “attention based” OR “with attention” OR “attention aid*” OR “attention net*” OR
“attentive”) AND (“remote sensing” OR “satellite image*” OR “UAV image*” OR “hyperspectral
image*” OR “aerial image*” OR “SAR”) AND (“CNN” OR “deep learning”))

The defined search query consisted of three main parts that were separated by the
term “AND”. The first part aimed to find the publications that used attention mechanisms
(e.g., attentive). The second part aimed to find the relevant publications concerning their
used remote sensing images (e.g., satellite images) and the third part aimed to find the
papers that used deep learning methods (e.g., CNN).

4.3. Study Selection Criteria

After automated extraction of the publications from the selected platforms using the
defined search query, we manually filtered the papers to select the final list of the most
suitable ones. For this, we screened the publications mainly by reading their abstract and
introduction sections and based on a set of exclusion criteria (Table 1) that were particularly
defined according to the objectives of this review.

Table 1. Exclusion criteria.

ID Criterion
EC1. Papers in which the full text is unavailable
EC2. Papers are not written in English
EC3. Papers are not aiming to directly contribute to remote sensing image processing
EC4. Papers do not directly use attention mechanism within DL methods
EC5. Papers do not validate the proposed study
ECe. Papers that provide a general summary without a clear contribution

EC7. Review, conference, and editorial papers
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4.4. Data Extraction

To properly answer the defined research questions, first, we needed to extract the
necessary data and information from the retrieved papers. For this, a data extraction form
was designed and created (Appendix A—Table A1). This form consists of a set of attributes
to extract general information from the papers (e.g., publication year and publisher), as well
as detailed ones including the study target of the papers, developed DL methods, attention
mechanism type used, and the accuracy rates of the employed/developed DL methods
with and without attention mechanism. Here, we used only the papers that did this analysis
as explained above or compared their produced At-DL results with state-of-the-art DL
methods in which no attention mechanism was used. In addition, only the overall accuracy
metric was used to compare the papers since this was the only performance measurement
used in most of the papers. The general data were extracted with the initial screening of
the papers while the more detailed ones were extracted by carefully reading and reviewing
of the papers.

4.5. Data Synthesis

The data synthesizing step is to answer the research questions, synthesize the extracted
data and present the results. Thus, it is the most important step of a systematic literature re-
view. In this step, the papers were grouped based on the extracted data into defined groups
to answer corresponding research questions, and accordingly, the results were summarized
and visualized. The detailed discussions over the presented results are provided to elicit
and highlight the important points for each research question. Furthermore, the main find-
ings such as current research directions, achievements on the use of attention mechanism
to increase the performance of the DL methods for RS image processing applications, open
problems, and recommendations for future studies are provided.

5. Results and Discussion

A final number of 176 papers were selected for the detailed review. The main statistics
and an overview of the papers are provided in the following subsection. In addition,
the detailed results are presented and corresponding discussions are provided for each
research question in the next subsections.

5.1. Overview of the Reviewed Papers

At-DL methods entered RS image processing in 2018, while attention mechanism was
developed in 2014 [20]. However, only since 2020, have most studies (i.e., 141 papers)
employed this technique for different RS image processing applications, which reveals a
significant interest in the technique in recent years (Figure 7). Just in 2021, 47 papers were
published, knowing that the searches from the online databases were conducted in March 2021.

100
90
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50 47
40
30
20
10

0

94

31

Number of publications

a

2018 2019 2020 2021

Spatial ®Channel mCombined Cumulative (Total)

Figure 7. Year-wise classification of the papers and classified based on the attention mechanism type used.



Remote Sens. 2021, 13, 2965

10 of 22

Table 2 shows the journal names with at least two papers, and the rest with only one pa-
per are aggregated in the “other” category. The papers are published in 30 different journals,
which shows the usefulness of the At-DL for a wide range of RS image processing applica-
tions from water management [84,85] to urban studies [86]. The most popular journal is
the “Remote Sensing” journal with 44 papers, and the second one is “IEEE Transactions on
Geoscience and Remote Sensing” journal with 33 papers (Table 2). Furthermore, 17 journals
only have one paper (“other” category in Table 2). These statistics show that most of the
papers are published in technical RS journals rather than subject-specific journals.

Table 2. Journal names and their corresponding number of papers in attention mechanism-based DL
for RSIP.

Journal Name Number of Papers
Remote Sensing 44
IEEE Transactions on Geoscience and Remote Sensing 33
IEEE Access 27

IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing 17

—_
S

IEEE Geoscience and Remote Sensing Letters

Sensors

ISPRS Journal of Photogrammetry and Remote Sensing

International Journal of Remote Sensing

IET Image Processing

ISPRS International Journal of Geo-Information

Journal of Applied Remote Sensing

Remote Sensing of Environment

NININNIDNINW|O |

Symmetry
Other

[y
]

5.2. RQ1. What Are the Specific Objectives in Remote Sensing Image Processing That Are
Addressed with Attention-Based Deep Learning?

The papers are grouped with regard to their study target similar to the classes used
in [11]: image classification, image segmentation, image fusion, object detection, change
detection, and other (Figure 8).

(i) Image classification: refers to labeling a group of pixels (objects or patches) in the
RS images using training samples (e.g., land cover and land use classification). This
is one of the most frequently used RS image processing tasks in various application
domains as the starting point of the process [87-89]. Image classification is also called
scene classification [88] or land cover and land use classifications [90] in the literature,
depending on the aim and the data used in the studies. About half of the papers in At-
DL addressed the image classification tasks for images acquired from different sensors
such as multispectral satellites [67,91,92], hyperspectral [71,93], and unmanned aerial
vehicles (UAV) [34,94] images. The large amount of the freely available benchmark
data sets and organized competitions in this regard attracts researchers to develop
DL methods in this subject area.

(ii) Object detection: refers to the detection of different objects in an image. It is the second
most popular task that is addressed using At-DL including general object/target
detection from RS images [46,60,95] or detection of the specific objects and features
such as buildings [74,96], ships [97,98], landslides [99], clouds [53,100], airports [101],
roads [72] and trees [102].



Remote Sens. 2021, 13, 2965

11 of 22

(iii) Image segmentation: also known as semantic segmentation refers to labeling each
pixel in the image, usually using end-to-end At-DL methods. From the At-DL papers,
17 papers addressed image segmentation [103-105].

(iv) Image fusion: is mostly known as a fundamental preprocess in the RS field, and aims
to produce higher spectral and spatial resolutions. There are two main image fusion
tasks that were addressed using At-DL in 13 papers. One is pan-sharpening that aims
to fuse a coarse resolution multispectral image with a correspondingly high-resolution
panchromatic image to produce a high-resolution multispectral image [106-108]. An-
other one is image super-resolution which refers to enhancing the resolution of the
original image using At-DL methods [106,107,109].

(v) Change detection: refers to detecting and quantifying the changes in multi-temporal
RS images. This is one of the challenging tasks and with the increasing amount of
multi-temporal RS images has become more popular. At-DL was used in 7 papers to
detect changes in general [110,111], in buildings [51], or any other objects [81,112].

(vi) Other tasks, such as image dehazing [113], digital elevation model (DEM) void
filling [114], and SAR image despeckling [115] were addressed with At-DL in 9 papers.

5.3. RQ2. What Are the Deep Learning Algorithms That Are Improved with Attention Mechanism
for Remote Sensing Image Processing?

Figure 9 shows the number of papers that employed the attention mechanism for each
DL algorithm. Accordingly, the convolutional neural networks (CNN) algorithm is the
predominant DL method that was enhanced with an attention mechanism to address RS
image processing, which applied in 154 out of 176 reviewed papers [69,116-120]. This is an
expected result since CNN is the most frequently used DL method in general computer
vision and image processing. Recurrent neural networks (RNN), such as long-short term
memories (LSTM) methods, were the second most frequently used DL method supported
by attention mechanism for RS image processing with 18 papers [121-123], this algorithm
is also the first DL method that was improved with attention mechanism [20]. In addition,
it was observed that most of the RNN methods were used in combination with CNN
methods [76,78,124]. Generative adversarial networks (GAN) [53,125,126], Graph Neu-
ral Network (GNN) [80,82], and other DL methods including capsule network [72] and
autoencoders [61] were the other DL algorithms used in 12, 5, and 4 papers, respectively.
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Figure 8. The number of publications for different study targets.
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Figure 9. The improved DL algorithms with attention mechanism in the papers.

5.4. RQ3. Which Types of Attention Mechanisms Were Used in Deep Learning Methods for
Remote Sensing Image Processing?

At-DL methods can be classified based on the used attention types (i.e., channel and
spatial attention networks) as explained in Section 2 (Figure 10). The combined use of
the channel and spatial attention mechanisms were the most frequently used types in the
papers [59,127,128]. In addition, the channel type, which is mostly used in hyperspectral
image processing [129-131], and the spatial type [47,132,133] were also solely used in 41
and 33 papers, respectively. Depending on the aim of the study, the attention type can be
selected; however, because in RS images, the features/channels and spatial location of the
objects/features are both important, using a combined type was the predominant choice of
the researchers in the papers.

100
80 1

60

Number of publications

Spatial Channel Combined
Attention mechanism type

Figure 10. The attention mechanism type used in the papers.

5.5. RQ4. What Are the Used Data Sets/Types in Attention-Based Deep Learning Methods for
Remote Sensing Image Processing?

Multispectral satellite images are the most popular images that are processed with At-
DL methods (81 papers) [91,92,134] (Figure 11). This is mostly due to the free availability of
some MS satellite images and their wide range of applications. Aerial images [54,135,136],
hyperspectral images [137-139], and SAR images [97,140,141] were also processed with
At-DL methods in 55, 43, and 24 papers, respectively. However, UAV images were used in
only three papers [34,94,142]. This is a surprisingly low number; however, due to the very
high resolution of the UAV images, the attention mechanism could significantly increase
the performance of the DL methods.
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Figure 11. The data sets used in the papers.

The processed RS images were also grouped based on the spatial resolution of the
processed images (Figure 12). High- and medium-resolution images were the main pro-
cessed RS images in 157, and 58 papers, respectively. Low-resolution images (with spatial
resolution over 30 m) were only used in four papers.
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Figure 12. The spatial resolution of the used RS images in the papers.
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5.6. RQ5. What Are the Effects of the Attention Mechanism in the Performance of the Deep
Learning Methods in Remote Sensing Image Processing?

We investigated the performance of attention mechanism in DL methods for RS
image processing in two manners; (i) by extracting the overall accuracies of the used
At-DL methods for RS image processing tasks (Figure 13), and (ii) comparing the overall
accuracies of the produced results with and without attention mechanism in the papers
(Figure 14).
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Figure 13. The produced accuracy of the developed At-DL methods for different tasks in the papers.
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Figure 14. The effect of the use of the attention mechanism within the DL algorithms in terms of accuracy rate for different

tasks in the papers.
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Figure 13 illustrates a box plot graph of the overall accuracies of the produced results in
the papers for change detection, image classification, image segmentation, object detection,
and other tasks. Image classification and change detection had the highest median accuracies
(~97%). One of the reasons is the availability of the benchmark datasets for such applications
that encourage researchers to test their proposed methods on such datasets and tasks. Never-
theless, image classification is one of the fundamental and valuable applications in RS image
processing that can be used as the basis in other science fields including agriculture, natural
hazards, and thus, the already reached high accuracy levels is a good sign of using At-DL.
Change detection with the increasing availability of multi-temporal RS images has become
important in different fields [143-145]. Although the results revealed a high performance of
At-DL in conducting change detection, only seven papers is not a robust number of papers to
conclude a general statement that the At-DL produces above 95% accuracy rate, and thus,
more work is needed on this. Image segmentation and object detection had a median accuracy
value of about 91%, which is about 5% less than the first two image processing tasks. In
addition, other tasks such as digital elevation model (DEM) void filling with At-DL papers
had the median of below 90% accuracy values. Providing benchmark RS images and training
samples for applications such as object detection would help to attract the attention of the
researchers and develop more advanced methods. However, most of the used At-DL methods
in image classification can be adopted for other tasks, including object detection.

Figure 14 shows a box plot graph of the effect of the attention mechanism in overall
accuracies of the produced results in the papers for change detection, image classification
image segmentation, object detection, and other tasks. Most of the papers reported an
increase when using the attention mechanism within the DL methods. Only one paper
stated that using the attention mechanism did not positively impact the performance of
the DL method [146]. The median of the increase rates for all the classes was less than 5%.
This increased rate was a remarkable enhancement of overall accuracies, given that the
overall accuracy rates for most of the classes were already above 90%. The highest median
rate which also showed the highest accuracy increase belonged to the object detection class
with ~5%. One of the reasons for the highest increase rate by using attention mechanism
in DL methods for object detection class when compared with the others is the inherent
characteristics of these methods which need to localize the objects and attention mechanism,
in particular, the spatial type, has the same aim by providing a focus on the spatial location
of the important features. Image classification, image segmentation, and change detection
classes had almost the same increase rate of overall accuracies with ~3-4%. The “other”
class with ~1% increase had the lowest increase.

5.7. Threats to Validity of This Review

Every systematic literature review may be biased due to some limitations such as
publication bias, data extraction, and classification. The main threats to the validity of our
review are discussed as follows:

Construct validity: This study aimed to examine the effect of the attention mechanism
on deep learning algorithms for RS image processing through the review of the existing
literature that used At-DL methods for RS image processing and accordingly provide
insights and recommendations for future studies. We employed automated search queries
applied to the ISI Web of Knowledge [147] and Scopus websites. As a result, using
these databases as the only sources of publications may lead to missing other relevant
publications that are not included in this study. However, this study aimed to provide an
overview of high-quality publications. Hence, indexing in ISI and Scopus is an accepted
and widely used way to find the corresponding high-quality papers. In addition, there
might be missing terms that may affect the final results. However, we tried to keep the
search broad (the initial number of papers was 270) and revised the search query several
times to reduce such impacts on our results.

Internal validity: In a systematic literature review, systematic errors may occur in the
data extraction phase and lead to an incomplete relationship between the extracted data and
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findings. In the current study, we precisely defined the research questions to investigate
and extract all the required data and necessary information from At-DL studies. Hence, the
findings of this study are properly explained and linked to the extracted and presented results.
External validity: This study reviewed the publications which employed At-DL methods
for RS image processing applications. However, all of the existing DL methods have not
been improved with attention mechanism or have not yet been used for RS image processing
applications, and all the possible RS image processing applications were not addressed with
At-DL and thus not included or discussed in this study. In addition, we only reviewed the
publications that used At-DL for RS image processing applications, and thus, we cannot make
judgments about the use and the effect of the At-DL in a broader scope or other applications.
Conclusion validity: We conducted the review based on the accepted structure and protocol
for systematic literature review studies [83]. In addition, the steps of the structure review process
are comprehensively explained in Section 4 of the paper, and the used search string, data
extraction form (Appendix A) and the extracted papers as supplementary materials are provided
in the paper. Therefore, the results of this study are reproducible using the given information.

6. Conclusions

This study reviewed the remote sensing (RS) literature that used attention mechanism-
based deep learning (At-DL) methods for processing RS imagery. We investigated the
advances in the use of At-DL methods and also the effect of the attention mechanism con-
sidering its different types on the performance of the DL methods in RS image processing.
Accordingly, the current research directions and challenges are presented, and insights and
recommendations for future studies are provided. Using a systematic literature review,
which is not a well-known and used strategy in RS review papers, led us to a comprehen-
sive review and to precisely answering the predefined research questions and contributing
to the objective of this study. The results clearly demonstrate the positive impact of the
attention mechanism on the performance of the DL methods in RS image processing,
therefore, it is one of the powerful approaches that can be used to improve DL methods
for such applications. In addition, the review results show an increasing trend in the use
of At-DL methods in RS image processing. However, while image classification attracted
most of the attention, other RS image processing tasks, such as object detection and change
detection still need more studies to fully understand the effect of the attention mechanism
on the performance of the DL methods. There are even important tasks that have not yet
been addressed using this mechanism, including object-oriented image analysis. Results
also revealed that the CNN methods are the algorithms that are the most frequently im-
proved by the attention mechanism, which is largely due to its general usefulness; and
it is a popular method for different computer vision tasks, in general. However, recently
generative adversarial networks (GANs) have become state-of-the-art methods in different
computer vision tasks when combined with attention mechanisms such as StarGAN [148]
and AttentionGAN [149]. Hence, they can be adopted for RS image processing applications
in future studies. Moreover, we investigated the performance of the At-DL methods based
on the overall accuracy metric, which is widely used for RS applications and provided in
the papers. However, the accuracy of the DL methods depends on the dataset used and the
aimed tasks. In addition, the performance of the At-DL methods should be studied using
other important metrics (e.g., computational time).
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Appendix A. Data Extraction Form

Table A1l. Data extraction form.

# Extraction element Contents
General information
1 ID Unique ID for the study
2 | Title Full title of the article
3 | Authors The authors of the article
4 | Year The publication year
5 | Journal name The journal name (e.g., Journal of Dairy Science)
Study description
6 | Study target OImage classification [Image segmentation [Object detection
OImage fusion OChange detection OOther
7 | Details about the study E.g., any interesting findings or problems
8 | Directly address RS image pro- OYes [ONo
cessing
9 | Deep learning algorithm OCNN ORNN OGAN OGNN  OOther
10 | Attention type OSpatial  OChannel [OCombined
11 | Remote sensing image type OMS Satellite  [JAerial OHyperspectral OSAR
OUAV OOther
12 | Remote sensing image spatial OHigh (<10 m) OMedium (10-30 m) OLow (>30m)
resolution
13 | Overall accuracy (%) The overall accuracy of the produced results using At-DL method
14 | Effect of attention mechanism The increased rate of the overall accuracy when used attention mech-
(%) anism.
15 | Additional notes E.g., the opinions of the reviewer about the study
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