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Abstract: Tassel counts provide valuable information related to flowering and yield prediction in
maize, but are expensive and time-consuming to acquire via traditional manual approaches. High-
resolution RGB imagery acquired by unmanned aerial vehicles (UAVs), coupled with advanced
machine learning approaches, including deep learning (DL), provides a new capability for monitoring
flowering. In this article, three state-of-the-art DL techniques, CenterNet based on point annotation,
task-aware spatial disentanglement (TSD), and detecting objects with recursive feature pyramids
and switchable atrous convolution (DetectoRS) based on bounding box annotation, are modified
to improve their performance for this application and evaluated for tassel detection relative to
Tasselnetv2+. The dataset for the experiments is comprised of RGB images of maize tassels from
plant breeding experiments, which vary in size, complexity, and overlap. Results show that the
point annotations are more accurate and simpler to acquire than the bounding boxes, and bounding
box-based approaches are more sensitive to the size of the bounding boxes and background than
point-based approaches. Overall, CenterNet has high accuracy in comparison to the other techniques,
but DetectoRS can better detect early-stage tassels. The results for these experiments were more
robust than Tasselnetv2+, which is sensitive to the number of tassels in the image.

Keywords: maize; tassel detection; deep learning; annotation

1. Introduction

Maize is a major crop for food consumption and a source of material for a wide
range of products. Increasing maize yield is important, especially under the pressure of
global climate change, which is often associated with increased temperatures and extreme
droughts [1,2]. Plant breeders focused on developing improved varieties of crops seek to
understand the joint impact of genetics, environment, and management practices on yield.
A key component of their programs involves measuring various physical, chemical, and
biological attributes of the plants, referred to as phenotypes, throughout the growing sea-
son. For maize and many other grains crops, flowering is one of the most important stages
as it initiates the stage of reproduction. Any external stress, physical or biological, can
cause plant damage and result in production losses. Traditional approaches for field-based
monitoring of tasseling are manual and thus time-consuming, labor-intensive, expensive,
and potentially error-prone, especially in large fields. Alternatively, image-based tech-
niques that automatically detect and count the tassels to predict the flowering date can
mitigate these problems. However, varying illumination and shape, shadows, occlusions,
and complex backgrounds impact the accuracy of these approaches [3,4].

Recently, remote sensing (RS) imagery acquired by UAVs has been investigated for
counting objects such as plants, because high temporal and spatial resolution data can be
acquired over large fields [5]. In this study, data acquired by an RGB camera mounted on a
UAV are investigated for tassel detection and counting. Manual tassel counting in the large
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orthophotos is similar to field-based manual counting in the sense of being a subjective,
tedious task and should be performed by experts because of the highly overlapped and
complex shape of tassels as they develop. Various machine learning (ML) approaches have
been introduced to address these problems, with some achieving high accuracy, along with
a cost reduction [6]. These approaches are mainly categorized as classic and DL methods.
Classic approaches, such as support vector machines (SVMs) and morphological operators,
are very sensitive to the background, illumination, soil color, shadow, shape, and size of
tassels [1,7-9]. For example, the tassel image-based phenotyping system (TIPS) is a platform
for extracting tassels from plants. TIPS removes the background noise from RGB images,
then creates binary images and smooths and skeletonizes the tassel [7]. A combination
of the histogram of oriented gradients and SVM is used to detect the tassels. Ye et al. [8]
consider spatiotemporal saliency mapping to decrease the background effect and increase
the tassel detection accuracy. In [9], an algorithm based on color transformation, SVM,
and morphological operators is used for maize tassel counting. An Itti saliency-based
visual attention system is applied to detect the potential pixels of maize tassels, and a
color attenuation prior is applied to remove image saturation and decrease the effects of
sunlight [1]. DL models have also demonstrated excellent performance for many precision
agriculture applications [10] such as plant counting [11,12], wheat spike detection [13],
sorghum head detection [14], and leaf segmentation [15]. Recently, two well-known DL
strategies have been investigated for tassel counting [16]:

(1) Regression-based techniques: These methods can only count, as they regress the
local count calculated from the density map, usually estimating non-integer counts. More
information about the tassel’s location and number—for example, the number of true
positives (TP), false positives (FP), and false negatives (FN)—cannot be determined. How-
ever, these techniques are faster than detection-based approaches. TasselNetv2+, which
was introduced to count tassels based on regression CNN [17], has undergone multiple
improvements through subsequent implementations. Visual context was added to the local
patches in the CNN in TasselNetv2 [18], and the first layer of the CNN was modified with
global average pooling and implemented using PyTorch in TasselNetv2+ [19]. All three
implementations use point annotation.

(2) Detection-based techniques: These approaches are categorized as anchor-based and
anchor-free. Anchor-based approaches include one- and two-stage detectors and are based
on bounding box annotation. Single-stage detectors consider object detection as a dense
classification and localization problem [20-23]. They are faster and simpler, but detection
accuracy is usually lower than two- or multi-stage detectors. Two-stage detectors first
generate the object proposals, and then, in the second stage, the features are extracted from
the candidate proposals [24-27]. These detectors have high localization and object detection
accuracy. Anchor-based approaches that have been used for maize tassel detection include
Faster R-CNN [24,28], Yolov3 [29], RetinaNet [4,20], and FaceBoxes [30]. Of these, Faster
R-CNN obtained the highest accuracy [16,28,31]. Anchor-free detectors do not generate the
anchors; therefore, the computational complexity is typically decreased. These approaches
are mainly anchor-point methods (e.g., Grid R-CNN [32] and FoveaBox [33]) and key-point
detectors (e.g., CornerNet [34], ExtremeNet [35], and CenterNet [36]). These techniques,
which have been successfully demonstrated for other applications with similar complexity,
could potentially yield higher accuracy tassel detection and counting than previously
published approaches without the excessive computational overhead. To the best of our
knowledge, these approaches have not been investigated for this application.

The performance of DL approaches is highly dependent on the quality of the annotated
dataset which is used for training and validation. Tassels shown in imagery are highly over-
lapped and complex in shape and differ in size. DL architectures are typically implemented
with specific forms of annotation. In this study, two common types of annotation, point
and bounding boxes, were investigated in conjunction with three DL architectures. We
also modified all three approaches to potentially improve their performance for the tassel
detection and counting problem. The anchor-free CenterNet architecture in [5,36] uses the
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center point of each tassel for detection, which is simpler to implement than bounding box
annotation. The size and dimension of the objects are directly calculated without any prior
anchor. The CenterNet Hourglass network was modified and implemented with few-shot
learning for this study. Two anchor-based, multi-stage detectors based on the bounding
box annotations [25,27], which obtained high accuracy on the COCO dataset, were also
modified and implemented for tassel detection. Specifically, the loss function for TSD was
modified during the training process, and the classification and regression problems were
considered separately, which increased the tassel detection accuracy [25]. In DetectoRS, the
existing feature pyramid networks (FPN) were modified, and extra feedback connections
were added to the backbone. The convolution layers of ResNext were also replaced with
the atrus convolutions and deformable convolutional networks (DCNs) [27].

The remainder of this paper is organized as follows. In Section 2, the study area and
details of point and box annotations are described. The three state-of-the-art DL-based
algorithms are also introduced, and the specific modifications are described for improved
tassel detection using multiple evaluation metrics. Experimental results for the multiple
aspects of the study are presented and discussed in Section 3. Section 4 provides a critical
evaluation of the approaches and discusses directions for future research.

2. Materials and Methods
2.1. Field Experiment and Image Acquisition

The experiment was carried out at the Agronomy Center for Research and Education
(ACRE) of Purdue University (40°28'43"” N, 86°59'23" W, 4540 US-52, West Lafayette, IN,
USA) during the 2020 growing season (see Figure 1). The field experiment was planted in a
modified randomized complete block design (RCBD), using varieties of maize from the
Genomes to Fields (G2F) initiative for High-Intensity Phenotype Sites (G2F-HIPS). Two
replications of 22 entries for hybrids (G2F-HIPS) and 22 entries for inbreds (G2F-HIPS)
were planted on 12 May in a two-row segment plot layout with a plant population of
30,000 plants per acre.

A total of 88 plots were imaged on 20 July using a Sony Alpha 7R-III RGB camera
mounted on a UAV DJI Matrice M600 Pro, with a Trimble APX-15v3 GNSS/INS unit for
direct georeferencing. The UAV was flown at 20 m altitude, and the RGB imagery was
processed to a 0.25 cm pixel resolution orthophoto using the method of [37] to eliminate
inaccuracies due to lens distortion and double mapping associated with significant height
changes over short distances. In-field manual phenotyping data were recorded throughout
the season as stipulated by the G2F-HIPS standard operating procedures [38], including
stand count and anthesis date. During the flowering period, visual inspections were per-
formed to determine the anthesis date of each plot. Hybrids and inbreds in this experiment
had different anthesis dates, with a range of 20 days from the first variety to flower to the
last. This provided an opportunity to evaluate the counting algorithms over a range of
flowering times in the same field.
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Figure 1. Experimental site: the field trials at Agronomy Center for Research and Education (ACRE).

2.2. Data Annotation

A rigorous tassel annotation was performed for this study using the open source
annotation tool LabelMe [39]. First, the tassels are annotated in the orthophoto with
points at the center of the tassel (see Figure 2a), designating the position of the tassel
and the number of tassels per row within the plot. Multiple reviews are needed, as
mistakes are common, even for experienced labelers. As different algorithms require
specific forms of annotation as inputs, a second annotation dataset was developed from
the point annotations, where bounding boxes of 20 x 20 pixels were generated from the
previously annotated points (see Figure 2b). The third annotation dataset (see Figure 2c)
was developed using bounding boxes where the size of the boxes was manually adjusted
to the size of the tassel, avoiding excessive overlap with the neighboring boxes. The impact
of the annotation approaches is evaluated in the Results section.

Figure 2. Tassel annotation: (a) Point; (b) Bounding box; (c) Modified bounding box.
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2.3. Model Description
2.3.1. CenterNet

CenterNet, a state-of-the-art anchor-free detector [36], which was recently demon-
strated to be effective for plant counting, was investigated for the tassel counting problem
because of the simplicity of the annotation and limited computational requirements [5].
For tassel detection and counting, the point annotation dataset described in the previous
section was employed for the training process. For localization, CenterNet uses a Gaus-
sian kernel and a fully connected network (FCN) to create the heatmap, which is used
to estimate the tassel centers. CenterNet does not require any post-processing, which
reduces computational complexity. For this study, the CenterNet-based approach with an
Hourglass-104 architecture was implemented to determine the locations of tassels” centers
(see Figure 3 for more details). The hyperparameters such as learning rate, number of
epochs, and batch size were optimized by grid search for tassel counting.

Stacked Hourglass

I

g0 009 4 -

Figure 3. CenterNet Schematic “Hourglass-104 architecture and illustration of the heatmap for the
input image. A and B are convolutional layers; C and D are inception modules; E is the max-pooling
layer; F is the transposed convolutional layer; G is the residuals modules; H is the loss layer”.

2.3.2. TSD

In TSD [25], the spatial misalignment between classification and regression functions
in the sibling’s head can decrease the object detection accuracy. These functions are
decoupled by creating two spatially disentangled proposals. As shown in Figure 4, the
original images are input to the backbone, and a regional proposal P is then generated
by the region proposal network (RPN). In the next step, two separate proposals, P, and
P,, are estimated for classification and regression. Finally, the object is detected, and the
coordinated box is regressed.

Three modifications of TSD were implemented for tassel detection, as the shape and
size of the tassels are highly variable from one variety to another: (1) Cascade R-CNN,
a multi-stage extension of two-stage R-CNN, was used instead of Faster R-CNN. The
architecture includes a sequence of detectors, where the output of one stage is used to
train the next stage. This improves the threshold of intersection over union (IoU) metric
compared to sequential detectors. The value is gradually increased without overfitting,
and the number of false positives is reduced. For inference, consecutive detectors can also
significantly increase the detection accuracy [40]. (2) DCNs were added to the backbone,
replacing CNNs which have fixed geometric structures and are not appropriate for tassel
detection. This is also due to the limited amount of training data. For detecting rotated or
scaled objects, the training images are augmented, and different augmentation transforms
are considered to achieve reasonable detection accuracy [41]. (3) To address the variation
in the size of the tassels, a multiscale test was also implemented.
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Figure 4. TSD Schematic (ResNext-101).

2.3.3. DetectoRS

DetectoRS obtained the highest accuracy on the COCO dataset in 2020 [27]. It uses
twice looking and thinking ideas, following the architecture of Cascade-RCNN, and im-
plements subsequent detectors. DetectoRS includes two main steps: recursive feature
pyramids (RFP) and switchable atrous convolution (SAC). The existing feature pyramid
networks (FPN) were modified in DetectoRS by adding feedback connections from the
FPN layers into the bottom-up backbone layers (see Figure 5), which help extract stronger
features. In this study, the RFP and SAC were modified for tassel detection because of their
variation in size and geometric complexity; details are explained in the following.

-52 Predict

Predict

’ Select ﬁ
-
Bottom up Badkbone Layers Top-down FPN Layers

(a) ihl

-£2 Predict

Figure 5. DetectoRS Schematic (ResNext-101); (a) REP; (b) SAC.

In the original version of DetecoRS, two sequential RFPs are used. For the tassel
detection, because of the variety in shape and size of tassels, three RFPs are considered (see
Figure 6). Features at each stage are recursively extracted as follows:

fi=HUflx) «f =B, RI(ff) (1=1,231=123) @
where t: iteration number of RFP, i: number of decomposition level at each RFP, fl-o =0,
Bf: i-th stage of the bottom-up backbone at iteration f, F/: i-th stage of the top-bottom at

iteration ¢, Rf: shared function at iteration ¢, fit: i-th output feature at iteration ¢.

® ASPP
® Fusion

Figure 6. Tassel RFP.

In the original DetectoRS, the ResNet architecture is modified. ResNet has four similar
stages; DetectoRS only changes the first layer by replacing it with a convolution layer
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(kernel size one). This is called atrous spatial pyramid pooling (ASPP). Atrous convolutions
add zeros to the original kernel and increase the size of the kernel, but the computational
complexity is not increased [42,43]. The initial weight of this layer is set to zero, so the
pre-trained weights from the ImageNet or COCO datasets can be used. For tassel detection,
the ResNext architecture is used and modified. In the ResNext architecture, unlike ResNet,
the neurons of one path are not connected to the neurons of other paths. It also uses the
bottleneck design at each convolution path and reduces the computational complexity.
ResNext has higher object detection accuracy than the ResNet backbone on the ImageNet
data [44]. Additionally, DCNs have been used instead of CNN in the tassel ASPP (see
Figure 7) because of variation in tassels’ shapes and geometry.

g Y
—{ DCN{1*1)]—-[ DCN{1*1)
»| DCN(1*1) (+
| ResNext (First Layer) e /
Tassel RFP
»| DCN(1*1)
Feature e

Figure 7. Tassel ASPP.

In Figure 5, SAC with the atrous rates 1 (red) and 2 (green) is shown; the same object
at different scales can be easily detected using different atrous rates. Therefore, considering
different atrous rates can increase the accuracy of tassel detection which has different sizes
and shapes. For tassel detection, DCN with kernel size (1 x 1) is used (See Figure 8). The
tassel SAC is calculated as follows:

Convert

DCN(x,w,r)
TasselSAC

S(x)DCN(x,w,r)+ (1 —S(x))DCN(x,w + Aw, ) )
where r is a hyperparameter, and for tassel detection, the optimal value is 5. Aw is a
trainable parameter. The switchable function S(.) includes an average pooling with kernel
size (5 x 5) followed by a convolution layer with size (1 x 1). Based on the ideas in
SENet [44], before and after SAC, DCN and global average pooling were added to increase
the tassel detection accuracy. The multiscale test was also considered because of the
variation in the size and shape of the tassels.

7

Global
AvgPool

Global
AvgPool

® [J-\ngooI(s*'i‘} {Conv(]*l)

DCN(3*3,atrus=3)

SAC

e

Figure 8. Tassel SAC.

2.3.4. TasselNetv2+

For maize tassel counting, the L; loss function which is used in the regression problem
is calculated as follows:
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1 m
Ly =— j

1= Z |aily 3)

i=1
where m is the number of training images, and 4; is the residual that measures the difference
between the regressed count and the ground truth count for the i — th image [19]. The
optimization problem aims to minimize L; using the Adam technique. The optimal
regressed count is the estimated number of tassels in the image, which is not usually an

integer number.

2.4. Parameter Settings

The optimal parameter settings for the four algorithms are determined experimentally
and are shown in Table 1.

Table 1. Parameter settings.

Parameter CenterNet TSD DetectoRS TasselNetv2+
Model ExtremeNet CascadeRCNN CascadeRCNN -
Backbone Hourglass ResNeXt+DCN ResNeXt -
Depth 104 101 101 -
Batch Size 11 2 2 16
Epochs 240 500 500 300
Optimizer Adam SGD SGD SGD
Learning 1.25x10~* 1.25x10°3 1.25x10°3 1.25x102
Rate (Ir)
Gaussian - _ - 6

Kernel Parameter

2.5. Model Evaluation

Two types of metrics for detection and regression-based approaches were implemented
and evaluated.

2.5.1. Detection Metrics

The performance of detected tassels using bounding boxes-based approaches (Detec-
toRS and TSD) is evaluated by the following metrics:

Intersection over union IoU, which measures the overlap between a predicted bound-
ing box B and B¢!, the ground truth bounding box (see Equation (4)), is a widely used
metric. If the values of B and the BS! match exactly, the value of IoU is one. For the tassel
detection, the acceptable value is set to 0.5.

BN B<'|

JoU =111
U= 15U

@)

If the value of IoU is higher than 0.5, they are selected as detected objects and com-
pared to the ground reference. The correct and incorrect detected tassels are then repre-
sented as TP and FP respectively. The missing tassels are also considered as FN. The
precision (Pr), recall (Re), and score (Sc) values are calculated as:

TP
Pr=Tp7p ©®)
Re p 6)

~ TP+ FN
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Re x Pr
Re + Pr

The accuracy of the number of the detected tassels N; and ground truth N, is defined
as follows:

Sc=2x (7)

Ni
Acc = —
cc N (8)

g
For the CenterNet based point annotation, the value of r is considered as the max-
imum distance between the ground truth and the predicted tassel’s center location for
consideration as a correct or missing tassel detection (assumed to be 10 cm). The TP, FP,
and FN values are calculated based on the criteria introduced in [5] for plant counting.

2.5.2. Counting Metrics

The mean absolute error (MAE) and root mean square error (RMSE) indicate the
difference between N; and N, and are obtained as:

1 M
MAE = i Y [Ngi — Ny )
i=1
1 M 5
RMSE = i Y (Ngi — Nyi) (10)
i=1

3. Results

The tassel detection algorithms were implemented on a machine with seven cores,
one GPU (GTX 1080ti, 11 GB RAM), and 128 GB external RAM.

3.1. Comparison of Original and Developed Anchor and Anchor-Free Based Approaches for
Tassel Detection

As mentioned previously, the original version of anchor-free CenterNet and anchor-
based approaches (TSD and DetectoRS) were introduced for object detection of the COCO
dataset. Because of the variation in size, shape, similarity to the leaves, and overlap, the
modifications described in Section 2.3 were implemented for the tassel dataset. In [40], it
was reported that the Cascade R-CNN had a higher object detection accuracy than Faster
R-CNN and Mask R-CNN on the COCO dataset (8 & 6%), respectively. In tassel detection,
the Cascade R-CNN improved the average detection accuracy by ~(2.3 & 2.7%) for TSD
and DetectoRS, respectively, in comparison to Faster R-CNN. Mask R-CNN requires the
mask annotation around the tassels and was not implemented because of the complexity
in the tassel shape and their high overlap. The results in Figure 9 show that applying the
modifications increased the mean tassel detection accuracy and reduced the corresponding
standard deviation.
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CenterNet CenterNet TSD TSD DetectoRS DetectoRS

Figure 9. Comparison of original and developed tassel detection algorithms.

3.2. Sensitivity Analysis to Bounding Box Sizes

The bounding box-based approaches are sensitive to the size of the bounding boxes
and their overlap for mature tassels. Figure 10 shows three different sizes of bounding
boxes used in the TSD algorithm. In Figure 10a, the small bounding boxes were drawn
around the tassels’ centers originally obtained from the point annotation. These bounding
boxes did not fully include the tassels and frequently missed the shape. Therefore, the
detection accuracy was reduced. Figure 10b depicts the bounding boxes which encompass
the tassel. In this image, and for most of the row segments where the tassels have fully
flowered, the bounding boxes have highly overlapping areas. In Figure 10c, the bounding
boxes were selected as large as possible to include the tassel area, while attempting to
reduce the overlapping areas. This sensitivity to the size of the bounding box during
annotation reduces the practicality of using it. The number of tassels in the ground truth
is 61, and TSD detected 44 (TP =43, FP =1, FN =18),46 (TP =45, FP =1, FN =16), and
55 (TP =55, FP =0, FN = 6) tassels in Figure 10a—c, respectively. This illustrates how the
detection accuracy of highly overlapped objects is dependent on the size, and therefore the
degree of overlap of the bounding boxes.
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Figure 10. Bounding box annotation with different sizes (Red: Ground truth, Blue: Detected tassels);
(a) Small; (b) Large; (c) Correct size.

3.3. Sensitivity to Tassel Density and Heterogeneity

As noted in Section 2, the dataset for tassel detection and counting was collected
during the 2020 growing season, consisting of 88 panels with two replicas of inbred and
hybrid varieties. In Figure 11, the image of the field on the west shows clear differences
between the inbred panel planted in the north and the hybrids planted in the south side
of the field. The canopy of the inbreds was less dense, and the tassels” shapes, colors,
structures, and stages of maturity differed from the hybrids as seen in Figure 12. The
dataset provided an opportunity to evaluate the performance of the algorithms over a field
with diverse tassel characteristics.

|Testing | |Training|

range18 Border Border Border Border |Border Border Border Border
range17 Border Border Border Border |Border Border Border Border
5488 I 5489 5490 Border
5481 5480 5479 |Border
5474 5475 5476 5477 5478 |Border
5471 5470 5469 5468 5467 |Border
5462 5463 5464 5465 5466 |Border
5459 5458 5457 5456 5455 |Border
5452 5454

range 16
range15

range 14
range13
range 12
range 11

range 10 Border

range9 5445 5443 |Border
range8 5440 5442 |Border
range?7 5433 5432 5431 |Border
range6 5426 5427 5428 5429 5430 |Border
range5 5423 5422 5421 5420 5419 |Border
range4 5414 5415 5416 5417 5418 |Border
range3 5411 5410 5409 5408 5407 |Border
range2 5402 5403 5404 5405 5406 |Border
range 1 Border Border Border Border Border Border Border Border
Field row 19 21 23 25 27 29 31 33

Figure 11. RGB image of the field and experiment layout. The training and testing regions were
selected to include inbred and hybrid varieties.
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(b)

Figure 12. Tassels at different stages of maturity for (a) hybrid varieties and (b) inbred varieties.

3.4. Training and Testing Information

As described in Section 2, the original orthophoto was divided into 15 subsets (51-515)
with a size of ~(3600 x 2100) pixels. Two-row segments of plots on the west side of the
field were used for testing, while the east side of the image was used for training. Plots
S1-57 correspond to hybrid entries and S8-5S15 to inbreds. Therefore, data from both the
hybrid and inbred varieties were included in both training and testing.

The number of training and testing images is shown in Table 2. The sizes of the
training and test datasets differ for the three algorithms. This is primarily due to the
requirements of the algorithms. If the size of the training images is close to testing images,
the accuracy of tassel detection is artificially increased. TSD and DetectoRS can use different
size datasets for training, unlike CenterNet architecture that requires (512 x 512) inputs.
The image size ~(600 x 2100) was used for training. The combined size of the training
region is ~(3000 x 2100). If this region is divided into (600 x 2100 ), only five training
images could be extracted from each subset (total 75), which is not adequate for training. A
random crop with overlap was applied to the training region to extract 105 images. After
that, the training images were randomly divided 90% and 10% into training and validation.

Table 2. Training and testing information.

Technique Image No. No. No. Training
Size Training Validation Test Time
TasselNetv2+ 2100 x 600 97 8 15 1h & 23 min
CenterNet 512 x 512 350 30 15 7 h & 34 min
TSD 2100 x 600 97 8 15 8 h & 41 min
DetectoRS 2100 x 600 97 8 15 7 h & 57 min

As mentioned, the CenterNet architecture requires (512 x 512) inputs. Thus, if the
image coverage was selected similar to TSD and DetectoRS (2000 x 600), it would need
to be resized to (512 x 512). Because of the complexity in the tassel shapes, CenterNet
could not train well. To mitigate the impact, a few-shot learning strategy similar to the
idea which is used for plant counting in [5] was used to reduce the number of required
training images. Finally, for CenterNet, the total number of training and validation images
considered was 350 and 30, respectively. For a fair comparison, the size (512 x 512) was
also considered for the training images of TSD and DetectoRS. However, this was so small
that some of the annotated bounding boxes were not completely located in the training
images not included during training (especially the tassels which are close to the image
boundary). Because CenterNet uses point annotation, the number of missing tassels that
were close to the boundary during the training was much lower. In the end, ~91 million
pixels were selected for CenterNet, and ~122 million pixels were chosen for training TSD
and DetectoRS, the training time being approximately equivalent for the three methods
(see Table 2).
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3.5. Comparison for Different Annotation Techniques

The detected tassels and ground test reference of five subsets are depicted in Figures 13-17
as examples. Figures 13 and 14 are examples of individual results for hybrid entries with
fully emerged tassels (after the flowering date). Figures 15 and 16 depict inbred varieties
with fully developed tassels (before the flowering date). For these subsets, CenterNet
had the overall best performance based on the score of 99.15%, 94.73%, 95.15%, and
93.97%, respectively.

Figure 13. Results of Test Subset 4 (Ng: Red, TP: Yellow, FP: Cyan). (a) TasselNetv2+. (b) CenterNet.
(c) TSD. (d) DetectoRS.

Figure 14. Results of Test Subset 5 (Ng: Red, TP: Yellow, FP: Cyan). (a) TasselNetv2+. (b) CenterNet.
(c) TSD. (d) DetectoRS.



Remote Sens. 2021, 13, 2881 14 of 20

Figure 15. Results of Test Subset 12 (Ng: Red, TP: Yellow, FP: Cyan). (a) TasselNetv2+. (b) CenterNet.
(c) TSD. (d) DetectoRS.

@saw % %ﬁ%@?rﬂ‘@ _

\
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5

Figure 16. Results of Test Subset 15 (Ng: Red, TP: Yellow, FP: Cyan). (a) TasselNetv2+. (b) CenterNet.
(c) TSD. (d) DetectoRS.

Subset 11 in Figure 17 is included to demonstrate the detection in plots where tassels
had not yet emerged (before the flowering date). The ground truth indicated two tassels.
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DetectoRS and TSD could only find one tassel, and CenterNet and TSD had false positives.
The worst results were from TasselNetv2+, which incorrectly counted 29 tassels.

(b) (d)

Figure 17. Results of Test Subset 11 (Ng: Red, TP: Yellow, FP: Cyan). (a) TasselNetv2+. (b) CenterNet.
(c) TSD. (d) DetectoRS.

The performances of TasselNetv2+, CenterNet, DetectoRS, and TSD are shown in
Tables 3-5. The results of these tables indicate that the tassels are detected more accurately
by the detection approaches (CenterNet, TSD, and DetectoRS) than the regression approach
(TasselNetv2+). As previously mentioned, inbred varieties had fewer tassels compared
to the hybrids at the time of the data acquisition, and the performance of each detector is
affected by the density of the tassels. Table 3 indicates that among the three methods, TSD
had the lowest performance with a score of 89.90 and a standard deviation of 14.59.

Table 3. Testing results for detection-based metrics.

Technique Metric TP FP FN Nt Ng Pr Re SC
Mean  38.67 0.40 3.07 3913 4193 96.86 9097 9324
CenterNet Std
21.36 0.51 2.74 21.25 2217 8.75 9.24 6.46
Dev
Mean  37.60 1.00 4.20 38.60 41.60 9347 87.02 89.90
TSD Std
Dev 20.38 1.41 2.88 20.76 2286 1749 1142 1459
Mean  35.67 0.53 5.60 36.20 41.60 9876 83.86 90.30
DetectoRS Std
Dev 19.33 0.74 3.14 19.64  22.03 1.79 10.33 7.15

The counting results in Table 4 show that TassleNetv2+ had the highest MAE and
MSE values. Its performance is also significantly worse when the number of tassels in the
image is low.
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Table 4. Testing results for counting-based metrics.

Method MAE RMSE
TasselNetv2+ 8.628 77.88
CenterNet 3.333 12.91
TSD 3.270 13.43
DetectoRS 5.400 20.94

Table 5 shows the scores for each testing plot using CenterNet, DetectoRS, and TSD.
In most subsets, CenterNet obtained the best score value.

Table 5. Testing results for detection-based metrics for individual plots.

Testing Plot Flowering Date Ng CenterNet TSD DetectoRS
S1 13-July 61 92.72 89.43 90.56
S2 13-July 62 99.18 95.93 95.86
S3 17-July 49 96.90 92.30 89.88
S4 18-July 61 99.15 96.60 94.01
S5 20-July 51 94.73 89.79 90.52
S6 17-July 58 100.00 91.84 92.72
S7 15-July 56 97.43 97.34 93.33
S8 22-July 22 89.99 92.68 93.76
S9 9-July 52 89.35 92.92 91.08

510 22-July 46 96.83 97.67 93.82
S11 16-July 2 80.00 39.99 66.66
512 26-July 53 95.14 91.99 91.83
S13 20-July 0 - - -

S14 25-July 9 79.99 94.11 95.37
515 22-July 42 93.97 95.11 87.17

The details of tassel counting (TP, FP, and FN) for each of the fifteen subsets are
shown in Figure 18. The number of manually counted tassels (Ng) was always somewhat
larger than the number detected by the algorithms, although the difference between TP
and NG was not statistically different for any algorithm. CenterNet had the maximum
average value of TP. TSD had the largest average value of FP, and DetectoRS had the
largest average FN value.

As shown in Figure 19, the mean precision value of DetectoRS is higher than CenterNet
and TSD. Investigating further, Table 5 shows that for 513, (Ng = 0). Therefore, Figure 19
does not have any information for this subset. The standard deviation of the precision
of DetectoRS is also small. We can infer the DetectoRS could detect the actual tassels
well. However, the recall value is not as high as CenterNet. The accuracy of TSD is lower
than CenterNet, and it detects more false positives (FP) as incorrect tassels. Furthermore,
creating the bounding box around the tassels for training DetectoRS and TSD is time-
consuming, and these algorithms are sensitive to the size of bounding boxes.
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Figure 18. Results of Test (Ng: Red, CenterNet: Yellow, TSD: Green, DetecoRS: Blue). (a) TP.
(b) FP. (c) FN.
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Figure 19. Results of Test (CenterNet: Yellow, TSD: Green, DetecoRS: Blue). (a) Precision (%).
(b) Recall (% ). (c) Score (% ).

The linear regressions between the manual counting and the predicted number of

tassels using the three detection-based methods (CenterNet, DetectoRS, and TSD) and one
regression-based method (Tasselnetv2+) are shown in Figure 20.
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Figure 20. Linear regression plots for (a) TasselNetv2+. (b) CenterNet. (c) TSD. (d) DetectoRS.

The TSD and DetectoRS techniques provide slightly higher fidelity counts than Cen-
terNet and Tasselnetv2+ (see Figure 20). However, CenterNet has the highest mean value
for TP and the lowest FP and FN values. Because of the date of the imagery, most plots
were in the mid-to-late stages of flowering and had a large number of tassels. TassleNetv2+
could only provide good results when the number of tassels in the subset was very high.
The impact of overcounting by TasselNetv2+ compared to ground reference data in plots
with a small number of tassels is clearly visible.

4. Conclusions

A key goal of this study was to investigate the value of detection-based approaches
compared to regression counting methods in the complex scenario of in-field tassel count-
ing. In this article, three state-of-the-art object detection algorithms, CenterNet, DetectoRS,
and TSD, were modified for tassel detection and compared to counts obtained by Tassel-
Netv2+, as well as image-based ground reference counts. All three algorithms had good
overall performance in terms of the number of true positives compared to the ground
reference. CenterNet achieved the highest recall value and score, and DetectoRS obtained
the highest value of precision. TSD has the lowest score value. The performance of Tas-
selNetv2+, which only provides information about counting, is highly dependent on the
number of tassels.

Specific annotation is used for each of the detection-based algorithms. Two types of
label annotations, “point” and “bounding boxes”, were investigated. DetectoRS and TSD
require bounding box annotations, and results are sensitive to the size of the bounding
boxes. CenterNet works based on point annotation, which is simpler, faster to collect, and
more accurate than bounding boxes

As future work, the next steps will explicitly consider multiple dates during the
flowering process, where there is greater diversity in the number and characteristics of
the developing tassels. The strategy will investigate multitemporal analysis and attention-
based networks to predict flowering (anthesis) dates. The impact of temperature will also
be investigated via the incorporation of growing degree days (GDD).
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