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Abstract: Lianas (woody vines) play a key role in tropical forest dynamics because of their strong
influence on tree growth, mortality and regeneration. Assessing liana infestation over large areas is
critical to understand the factors that drive their spatial distribution and to monitor change over time.
However, it currently remains unclear whether satellite-based imagery can be used to detect liana
infestation across closed-canopy forests and therefore if satellite-observed changes in liana infestation
can be detected over time and in response to climatic conditions. Here, we aim to determine the
efficacy of satellite-based remote sensing for the detection of spatial and temporal patterns of liana
infestation across a primary and selectively logged aseasonal forest in Sabah, Borneo. We used
predicted liana infestation derived from airborne hyperspectral data to train a neural network
classification for prediction across four Sentinel-2 satellite-based images from 2016 to 2019. Our
results showed that liana infestation was positively related to an increase in Greenness Index (GI), a
simple metric relating to the amount of photosynthetically active green leaves. Furthermore, this
relationship was observed in different forest types and during (2016), as well as after (2017–2019),
an El Niño-induced drought. Using a neural network classification, we assessed liana infestation
over time and showed an increase in the percentage of severely (>75%) liana infested pixels from
12.9% ± 0.63 (95% CI) in 2016 to 17.3% ± 2 in 2019. This implies that reports of increasing liana
abundance may be more wide-spread than currently assumed. This is the first study to show that
liana infestation can be accurately detected across closed-canopy tropical forests using satellite-based
imagery. Furthermore, the detection of liana infestation during both dry and wet years and across
forest types suggests this method should be broadly applicable across tropical forests. This work
therefore advances our ability to explore the drivers responsible for patterns of liana infestation at
multiple spatial and temporal scales and to quantify liana-induced impacts on carbon dynamics in
tropical forests globally.

Keywords: airborne hyperspectral and LiDAR; aseasonal forest; Greenness Index; liana infestation;
Sentinel-2 imagery

1. Introduction

Lianas (woody vines) are a pervasive component of tropical forests [1,2]. They are
non-self-supporting structural parasites that use the architecture of trees to extend their
leaves to the forest canopy [3]. As competition between lianas and trees is stronger than
tree-tree competition [4], lianas can negatively impact the growth [5,6] and survival of
their host [7,8] and therefore suppress the ability of tropical forests to sequester and store
carbon [9].

Lianas have been proliferating in some tropical forests [10,11], which may lead to
a stronger negative impact on carbon storage and sequestration in these areas. Several
putative mechanisms have been suggested for this increase, such as elevated atmospheric
CO2, an increase in forest disturbance and an increase in the frequency and severity of
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droughts [11]. However, it is currently still unknown which driver(s) may be responsible for
changes in liana biomass and abundance over time. Additionally, while there is compelling
evidence that lianas are increasing in many Neotropical forests [10,12], this may not be a
global phenomenon [13]. This suggests that liana proliferation over time may be driven by
regional rather than global drivers. However, in order to provide insights into the factors
responsible for changes in liana abundance and to test whether these differ geographically,
wide-spread monitoring of lianas over time and across large areas is essential.

Most previous studies which have assessed temporal changes in liana abundance,
biomass or infestation have been based on ground data collected from permanent sampling
plots [10,14,15]. However, while field-based studies may not be limited in their geograph-
ical extent, they are limited by the total area that can be feasibly sampled. This may be
particularly problematic if plot-based research is unable to capture sufficient variation in
environmental variables through space and time to disentangle the driving forces behind
change [16].

Remote sensing technologies may provide a solution to extend field-based knowledge
to larger spatial and temporal scales. However, they are dependent on the ability to
detect liana infestation. Many studies have shown that lianas, as a plant group, can be
distinguished from trees based on their spectral reflectance, particularly in the visible
(400–690 nm) and Near Infrared (NIR)-region (700–1340 nm) [17–21], as well as thermal
properties [22,23]. Subsequently, recent research has successfully detected lianas using
data acquired from; UAVs, fitted with RGB [24,25] and thermal [26] sensors, satellite
imagery [27] and airborne hyperspectral imagery in seasonal [28] and aseasonal forests [29].
While airborne sensors have the potential to provide high spatial and spectral resolution
imagery which can be used to detect liana infestation at landscape-scales, satellite-based
sensors can typically afford more frequent measurements across much larger geographical
extents. However, there are a number of limitations which may pose challenges for
assessing liana infestation with satellite-based remote sensing.

Firstly, spectral reflectance derived from multispectral satellites can be limited in scope
as data represent non-contiguous regions of the light spectrum. Thus, a single value for
each band is associated with the spectral reflectance from large regions of the spectrum [30].
Crucially, however, some bands cover smaller regions than others and may align with
areas of the spectrum that are important for the discrimination of lianas and trees. In
turn, this may limit the accurate detection of liana infestation to specific satellite sensors,
which have spectral bands that represent similar regions of the spectrum. For example,
research by Foster et al. (2008) assessed the spatial distribution of liana infestation in
large canopy gaps using satellite-based hyperspectral imagery (EO-1 Hyperion: 220 10 nm
bands covering 400–2500 nm). However, while Hyperion imagery was used to detect
liana-dominated patches for training purposes, the prediction of liana infestation across
Landsat imagery was achieved by using minimum values of brightness and greenness.
The use of a simple vegetation index, such as greenness, which relates to the amount of
photosynthetically active green leaves, is attractive for its ability to transfer across different
sensors. However, as the study by Foster et al. (2008) was conducted in the dry season and
the detection of lianas was limited to severely liana-dominated patches, it remains unclear
whether multispectral satellite-based imagery, or a simple vegetation index, could be used
to successfully detect liana infestation across a dense, closed-canopy aseasonal forest.

Secondly, variation in spectral reflectance between forest types may restrict the detec-
tion of lianas over broad geographical-scales if the difference is greater than that of trees
and lianas. For example, logged forests typically have higher spectral reflectance compared
to primary forests [31,32]. Differences in spectral reflectance may be driven by the fact that
the canopies of logged forests are typically more homogenous whereas those of primary
forests contain a mix of tree sizes and multiple canopy layers [33,34]. This greater structural
heterogeneity can result in an increase in tree shadow and a decrease in overall reflectance
in primary forests [31] which in turn may affect predictions of liana infestation [35].
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Thirdly, liana chemistry tends to converge with that of trees in aseasonal tropical
forests or those with high annual precipitation [36] and therefore reflectance spectra for
lianas and trees are not as clearly separable [17,37]. Higher reflectance of liana leaves
has been shown to be strongly related to the level of chlorophyll content [17], which is
known to be more similar in wet conditions or within aseasonal forests [37]. As a result,
differences in satellite-derived spectral reflectance between lianas and trees is likely to be
more difficult in aseasonal forests, particularly if spectral resolution is limited to relatively
few wavebands. It is therefore essential to test whether lianas can be detected in aseasonal
tropical forests using satellite-based remote sensing in order to advance our ability to assess
the spatial distribution of liana infestation globally.

Here we therefore aim to determine the efficacy of satellite-based remote sensing
for the detection of liana infestation across an aseasonal tropical forest in Sabah, Borneo.
Additionally, we assess the detectability within primary and selectively logged forests
as well as during and after a period of El Niño-induced drought. We therefore aim to
test whether (1) a response to drought facilitates the differentiation in spectral reflectance
for lianas versus trees (Q1), (2) one single vegetation index is capable of predicting liana
infestation (Q2), (3) liana infestation can be detected in satellite-based imagery using
a neural network classification trained by airborne-derived liana infestation (Q3) and
(4) temporal changes in liana infestation can be observed using a time-series of satellite-
based imagery (Q4).

2. Materials and Methods
2.1. Study Area

This study was based in an aseasonal tropical forest in Danum Valley, Malaysia which
contains a mix of primary and selectively logged lowland Dipterocarp forest (Figure 1).
The Danum Valley Conservation Area (DVCA) represents a large swathe (438 km2) of
intact primary tropical forest. The area surrounding the DVCA has been selectively logged
at varying intensities between 1972 and 1993 [38]. The vegetation within the primary
forest is dominated by Dipterocarps [39], whereas the logged forest has received targeted
removal of larger Dipterocarps and now has a higher proportion of fast-growing, early
successional species [40]. The climate is typical of the aseasonal tropics with a mean annual
temperature of 26.7 ◦C and an average yearly rainfall of 2900 mm [40]. Daily rainfall,
temperature and solar radiation have been recorded at the Danum Valley Field Centre
and are freely available for download from the South-East Asian Rainforest Research
Partnership (www.searrp.org/scientists/available-data/). Borneo has one of the most
aseasonal climates of any tropical region [41], although droughts do occur infrequently
and usually in association with an El Niño event [42,43]. The most recent El Niño occurred
in 2015–2016, peaking in early 2016 [44].

www.searrp.org/scientists/available-data/
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AisaFENIX sensor (Specim Spectral Imaging, Finland) was used to capture hyperspectral 
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(FW) airborne laser scanning (ALS) data with a spatial resolution of 1m (see Chandler et 
al. (2021) for full details on the airborne data collection). 
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2019). We identified individual tree crowns that were fully exposed from above using a 
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of liana infestation to the nearest 5%. Each estimate was discussed and a final estimate 
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GeoEditor application (MapTiler). 
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We delineated a total of 724 trees with liana canopy cover estimates ranging from 0 
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Figure 1. Location of the study area in Sabah, Malaysia, showing the extent of the air- and space-borne
remotely sensed imagery across a primary and selectively logged tropical forest.

2.2. Airborne-Derived Liana Infestation Assessment
2.2.1. Airborne Hyperspectral and LiDAR Data

Hyperspectral and LiDAR data were captured in November 2014 by the Natural
Environmental Research Council (NERC) Airborne Research Facility (ARF). An inbuilt
AisaFENIX sensor (Specim Spectral Imaging, Finland) was used to capture hyperspectral
data from the visible to short wave infrared (380–2500 nm) with a spatial resolution of
3 m. A Leica ALS50-II system was used to capture both Discrete (DR) and Full Waveform
(FW) airborne laser scanning (ALS) data with a spatial resolution of 1m (see Chandler et al.
(2021) for full details on the airborne data collection).

2.2.2. Field Data Collection

We collected liana canopy cover data in the field over a three-year time period
(2017–2019). We identified individual tree crowns that were fully exposed from above using
a tablet computer connected to a GPS with a Canopy Height Model (CHM) preloaded. Tree
crowns were then visually assessed, by a minimum of two people, to estimate the degree
of liana infestation to the nearest 5%. Each estimate was discussed and a final estimate
mutually agreed [28]. Tree crowns were then manually delineated on the CHM using the
GeoEditor application (MapTiler).

2.2.3. Modelling Liana Infestation

We delineated a total of 724 trees with liana canopy cover estimates ranging from 0 to
100%, which corresponded to 21,822 pixels from the hyperspectral imagery that were fully
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inside tree crown boundaries. Airborne hyperspectral data were used to train a neural
network classification to predict liana infestation across the full extent of the airborne
survey. Neural networks, in contrast with many other prediction techniques, can learn
hidden relationships without imposing restrictions on the data. We used a multi-layer
perceptron (MLP) network with resilient backpropagation and weight backtracking, thus
parameters such as learning rate and momentum are not required. The model architecture
consisted of an input layer with eight principal components, one hidden layer with four
units (neurons) and an output layer with two units corresponding to either a tree or liana
class. A sigmoid activation function was applied to the hidden units and therefore the
output values were restricted to a range between 0 and 1. The output from the neural
network represents a measure of the strength of class membership which can be used
to derive a soft classification relating to the proportion of liana infestation [45,46]. We
accounted for error in liana canopy cover estimates which may have changed during the
time lag (2.5–3.5 years) between airborne data acquisition and the ground survey of liana
canopy cover estimates. Following the methodology used in Chandler et al. (2021), we
randomly reclassified 5% of all pixels with no liana infestation and classified them as
severely liana infested. Similarly, we selected 11% of pixels with severe liana infestation
and classified them as liana-free. Even a large degree of error in the training data (>30%)
has shown to not impact the ability of the model to predict liana infestation with good
accuracy [29]. We ran the neural network model 100 times and after each iteration the
model was applied to the entire study landscape. The average of the 100 neural network
outputs was used to produce a final landscape scale liana infestation map.

2.3. Satellite-Derived Liana Infestation Assessment
2.3.1. Satellite-Based Data

We used freely available bottom of atmosphere reflectance Sentinel-2 imagery downloaded
from the United States Geological Survey (USGS) Earth Explorer (https://earthexplorer.usgs.
gov/ (accessed on 5 June 2021)). The earliest image with limited cloud cover to use in
combination with airborne imagery (2014), was obtained in May 2016. This also aligned
with the end of an El Niño-induced drought period in which there were higher tempera-
tures [47] and a significant reduction in precipitation between November 2015 and April
2016 in Danum Valley Conservation Area (DVCA) [44]. We collected additional imagery in
approximately one-year time intervals, depending on when cloud-free images could be
obtained (i.e., November 2017, June 2018 and April 2019). Areas contaminated by cloud
and cloud shadow were manually delineated and removed from each image. As the spatial
resolution of Sentinel-2 bands range from 10 m to 60 m we resampled all bands to a spatial
resolution of 10m so they could be aligned at the same scale. These images were then
used to produce a time series in order to assess whether changes in liana infestation can be
observed over time.

2.3.2. Spectral Reflectance for Lianas versus Trees

To identify which spectral bands from Sentinel-2 imagery may be most important for
discriminating lianas from trees, we assessed the difference in spectra derived from airborne
hyperspectral imagery for liana-free and liana-infested (>75%) trees specifically within
the Sentinel-2 spectral band regions. We calculated the average difference in reflectance
between the two infestation classes for all hyperspectral bands that aligned with Sentinel-2
spectral regions. This revealed that the green band (540–578 nm) was most important for
discriminating between trees and lianas (Figure S1, Supplementary Materials).

We also calculated a variety of vegetation indices to assess whether one simple metric
is capable of discriminating between liana-free and liana-infested pixels. As the green
band was the most effective, we specifically calculated indices that may promote signals in
the green spectrum such as, Greenness Index (GI) which has shown to outperform other
indices when discriminating vegetation using the visible spectra [48]. We assessed which
vegetation index was most effective at separating severely (>75%) and low (<25%) liana

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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infested pixels by comparing their effect size (Table S1). We used Cliff’s delta, which is
considered to be a robust measure of effect size, to calculate the magnitude of difference
between the two groups [49]. Cliff’s delta computes the probability that a randomly
selected observation from one group is larger than an observation from another group:

∑
[x > y]− [x < y]

mn
(1)

whereby x and y are liana-free and severely liana infested pixels and m and n are the
number of pixels within each group.

To assess whether a single vegetation index could be used to detect liana infestation in
satellite imagery over broad spatial scales we tested whether the vegetation index varied
in response to forest type (i.e., primary and selectively logged forests) as well as during
and after a period of El Niño-induced drought (i.e., across years). Subsequently, we used
a linear regression model with an interaction term to allow the effect of airborne-derived
liana infestation on the vegetation index to vary by forest type or year. Liana infestation
classes were defined based on the separability of spectra for each group [28,29]. We also
used a linear mixed effects model to account for variation in forest type. We tested whether
the relationship between the vegetation index and liana infestation differed across the four
years by using a pairwise comparison of the slope coefficients.

2.3.3. Modelling Liana Infestation

To predict liana infestation in satellite imagery we used a neural network classification
trained using the airborne liana infestation output. To accurately predict liana infestation
in satellite-based imagery as well as to test the efficacy of a single vegetation index we
modelled liana infestation using three different sets of input variables: (1) vegetation index
only, (2) all Sentinel 2-bands and (3) all Sentinel 2-bands and the vegetation index.

The same model construction and process was applied (as in the airborne-derived
liana infestation assessment). As the spatial resolutions of the satellite (10 m) and airborne
(3 m) imagery do not match, we degraded the resolution of the airborne imagery so
both products had a resolution of 10 m. We used pixels from the airborne-derived liana
infestation output classified as having no infestation or completely liana infested as training
data. Values greater than 95% were therefore classified as a ‘liana’ and values less than 5%
were classified as a ‘tree’. This yielded a total of 3622 pixels with no (<5%) liana infestation
and 6128 pixels completely (>95%) liana infested. Data were balanced to ensure there was
an equal number of data points within each input class (i.e., 3622 pixels). Data were split
80% for training and 20% for testing. We ran the neural network model 100 times and after
each iteration the model was applied to the entire study landscape. We propagated error
associated with uncertainty in the airborne liana infestation assessment by using each of
the 100 airborne derived liana infestation outputs to train the satellite-based models. With
each iteration we repeated the following steps; (1) removed pixels that were completely
liana infested to ensure each input class was balanced and (2) split data for training and
testing. A final satellite-derived liana infestation map was calculated by averaging all of
the 100 neural network outputs.

2.3.4. Temporal Change in Liana Infestation

To reliably assess a degree of change in predicted liana infestation over time, we
focused on change between low [<25%] and severe [>75%] liana infestation classes within
the primary forest. Individual neural network models were trained for each of the four
years. The percentage of pixels classified as having either low or severe liana infestation
were calculated for each year to indicate a level of change over time. Additionally, we
calculated the percentage of pixels that changed from low to severe and vice versa from
2016 to 2019. This process was repeated for each of the 100 satellite-derived liana infestation
outputs. This allowed for a calculation of uncertainty around estimates of change in liana
infestation over the four years.
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2.3.5. Accuracy Assessment

To assess the accuracy of the satellite-derived liana infestation output we used a
random selection of pixels (n = 200) from both the airborne- and satellite-derived liana
infestation outputs. This process was repeated 10 times and the relationship between the
predictions were assessed after each iteration. To assess the accuracy of the predicted liana
infestation outputs we estimated the root mean squared deviation (RMSD) as:√

1
n − 1

n

∑
i=1

(ŷi − yi)
2 (2)

which represents the mean deviation of predicted ŷi from observed values yi (i.e., with
respect to the 1:1 line) [50]. We also calculated the relative bias, expressed as a percentage:

1
n

n

∑
i=1

LIpred − LIobs

LIobs
∗ 100 (3)

whereby, LIobs and LIpred denote observed and predicted liana infestation. This gives an
indication of the degree to which satellite-derived liana infestation may be over- or under-
predicted relative to airborne-derived liana infestation.

To increase the level of confidence around estimates of liana infestation we also
degraded outputs to an ordinal scale by partitioning predicted liana infestation into four
groups as follows: neural network membership values equal to or below 0.25 were set to
‘low’, values between 0.26 and 0.50 were set to ‘medium’, values between 0.51 and 0.74
were set to ‘high’ and values equal to or greater than 0.75 were set to ‘severe’. To assess
the accuracy of liana infestation classes, we produced a confusion matrix using satellite-
derived liana infestation (predicted) and airborne-derived liana infestation (observed) and
calculated the overall accuracy, specificity, sensitivity, balanced accuracy and area under
the curve (AUC).

3. Results

Satellite-based spectral reflectance in the visible spectrum, and predominantly in
the green reflectance region, was most effective at separating low (<25%) and severe
liana infestation (>75%) classes derived from airborne-hyperspectral data (Figure S1).
Subsequently, we found Greenness Index (GI) to be the most effective vegetation index
for discriminating between low and severe liana infestation (Table S1). We also found that
average predicted greenness values derived from satellite imagery increased significantly
in response to an increase in liana infestation and were significantly greater in the logged
forest in comparison to the primary forest (Figure 2a, Figure S2). In addition, average
predicted greenness values were positively related to liana infestation in all four years
(Figure 2b). However, there was a greater increase in greenness relative to an increase
in liana infestation in 2016 (drought year) in comparison to other years, as shown by
significant differences in slope coefficients (Q1) (Table 1). Slopes did not differ between the
three non-drought years, except for a weak significant difference between 2017 and 2018
(Table 1).

Table 1. Pairwise comparison of linear regression slope coefficients (in Figure 2b). p-values adjusted
using Bonferroni correction. Significance level set at 0.05.

Contrast (Years) Estimate SE df t p

2016–2017 0.01583 0.00158 34852 10.038 <0.0001
2016–2018 0.01170 0.00158 34852 7.415 <0.0001
2016–2019 0.01300 0.00158 34852 8.240 <0.0001
2017–2018 −0.00414 0.00158 34852 −2.623 0.0524
2017–2019 −0.00284 0.00158 34852 −1.798 0.4330
2018–2019 0.00130 0.00158 34852 0.825 1.0000
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in model fit as well as uncertainty derived from error in airborne-derived liana infestation estimates.

A neural network classification using GI as the only input variable was not capable of
accurately predicting liana infestation in satellite-based imagery (Q2) (Figure 3a,d). While
predicted mean greenness values showed a clear increasing trend in response to an increase
in liana infestation (Figure 2a,b), large variation in greenness values ultimately limited its
use as a single predictor variable (Figure 3a,d, Table S2). Using all Sentinel-2 bands without
GI increased the accuracy of satellite-based predictions in the primary (AUC: 0.76) and
logged (AUC: 0.7) forests (Figure 3b,e, Table S2). Furthermore, combining all Sentinel-2
bands and GI provided a further increase in accuracy within the primary (AUC: 0.8) and
logged (AUC: 0.71) forests (Q3) (Figure 3c,f, Table S2). In addition, we found a larger
underestimation of satellite-derived liana infestation, relative to liana infestation obtained
from airborne data, in the logged forest (bias = −15.5 and −14.8) in comparison to the
primary forest (bias = −9.5 and −6.2) for the model using only Sentinel-2 bands and the
model using Sentinel-2 bands and GI, respectively.

To assess change in liana infestation over time we used the output from the model
using Sentinel-2 bands and GI which revealed the greatest accuracy (AUC: 0.99) (Table S2).
The percentage of pixels classified as severe liana infestation showed a sustained and
significant increase over time, from 12.9% ± 0.63 (95% CI) in 2016 to 17.3% ± 2 in 2019
(Q4) (Figure 4c, Table S2). However, the low liana infested pixels did not show a similarly
consistent downward trend and instead remained more or less constant over the three-year
period (35.4% ± 3.6 in 2016 to 33.6% ± 3.2 in 2019). Liana infestation at a pixel level was
dynamic, with 2.66% ± 0.76 of pixels having changed from low to severe and 1.22% ± 0.2
having changed from severe to low liana infestation from May 2016 to April 2019. Taken
together, these results indicate a potential forest-wide increase in severe liana infestation.
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Figure 4. Predicted liana infestation in two classes, Low [≤25%] (purple) and Severe [≥75%] (yellow), derived from
Sentinel-2 satellite imagery showing an extract from (a) 2016, (b) 2019. Grey areas correspond to liana infestation values not
within low or severe classes (i.e., 26–74%). Panel (c) the percentage of pixels within each class for all four years (2016–2019).
Letters in (c) indicate statistically significant differences between years as assessed using a least significant difference test
with Bonferroni adjusted p-values. Significance level was set at 0.05.

4. Discussion

This study provides evidence, for the first time, that liana infestation can be detected
in a closed-canopy tropical forest using multispectral satellite-based imagery. Furthermore,
satellite-derived Greenness Index showed clear separation in response to airborne-derived
liana infestation classes within both primary and selectively logged forests as well as
during periods of wet and dry conditions (Figure 2). These results indicate that reflectance
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in the visible spectra (546–574 nm) was most efficient in distinguishing lianas from trees
(Figure S1) and in particular Greenness Index (GI) was found to be an effective metric
(Table S1). This corroborates results from other studies that found the visible spectral region
to be the most important for spectrally discriminating between lianas and trees [18,28,37].
Previous studies have shown higher reflectance of liana leaves in the visible region consis-
tent with lower levels of chlorophyll content in lianas than in trees [18,37]. Subsequently,
an increase in liana canopy cover will result in higher values of greenness.

A significant positive relationship between GI and liana infestation was found across
all four years for which imagery was obtained, however there was a greater increase in
greenness relative to an increase in liana infestation for the year in which the El Niño-
induced drought occurred (Q1) (Figure 2b). A greater increase in greenness in the drought
year may be attributed to: (1) a reduction in tree greenness (i.e., at 0% liana infestation),
(2) an increase in liana greenness or (3) a combination of both. Lianas generally seem to
experience less water stress due to their ability to access and use water more efficiently
than co-occurring trees during seasonal or periodic droughts [51–53]. Evidence from dry
forests show that the chlorophyll concentration of liana leaves is lower than for trees, and
this difference results in an increase in reflectance in the visible spectra [37]. However, in
wetter forests chlorophyll concentration is observed to simultaneously increase in liana
leaves and decrease in tree leaves [37], which leads to a lower spectral contrast between
trees and lianas.

While one single vegetation index was not capable of predicting liana infestation (Q2),
a strong relationship between greenness and liana infestation was found. Furthermore,
high accuracy was obtained when using all Sentinel-2 bands in combination with a neural
network classification to predict liana infestation at the landscape-level (Q3). This indicates
that interpretation of forest-wide responses to environmental or climatic changes using
satellite imagery may be problematic if lianas are interpreted as tree canopies. Lianas are a
particularly dominant and wide-spread feature of tropical canopies [7,54] and therefore
their presence may obscure or distort satellite-derived spectral reflectance of tree canopies.
Furthermore, as the effect of increased liana infestation on greenness differed under dif-
ferent climatic conditions (Figure 2b), satellite-observed changes in spectral reflectance
in response to climatic changes, e.g., [55] may be complicated cf. [56] by the differential
responses of lianas and trees. This highlights the importance of accounting for the effect of
liana infestation on satellite-derived reflectance metrics to ensure the accurate interpreta-
tion of remotely sensed multispectral data, especially given evidence of increasing liana
biomass and abundance.

We found that temporal changes in liana infestation can be observed using a time-
series of satellite-based imagery (Q4). Severely liana-infested pixels (≥75% infested by
lianas) increased significantly over time from 12.9% ± 0.63 in May 2016 to 17.3% ± 2 in
April 2019, whilst low (≤25%) liana infestation remained relatively constant 35.4% ± 3.6 to
33.6% ± 3.2 over the same three-year period (Figure 4). This degree of change is minimal
compared to change in seasonal forests, where lianas show more rapid growth and have a
significant growth advantage over trees compared with aseasonal forests [57]. For example,
in a seasonal forest, an increase of 65% of trees with severe liana infestation was observed
over a 10-year period [7] in contrast to an increase of around 3% of trees with severe
liana infestation in Peninsula Malaysia over the same time period [58]. In this study
we found an increase of 4.4% over three years, however low liana infestation remained
relatively constant over the same time period. This suggests that increases are limited
to severe liana infestation which may not necessarily represent an increase in the overall
percentage of infested trees. Furthermore, assessing the level of change in the severe
liana infestation class over time is subject to error. While the accuracy of predicted liana
infestation in low (≤25%) and severe (≥75%) classes revealed good accuracy (AUC: 0.99),
accuracy was reduced when liana infestation was predicted across all infestation classes
(Figure 3; Table S2). Subsequently, error in the classification of severe liana infestation,
due to misclassification of pixels in the high (50–74%) liana infestation class, may have
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led to an under- or over-estimation of change in liana infestation over time. Even though
there is no ground data to support this, these results imply that, despite the proportion
of low liana-infested pixels remaining relatively constant, severely liana-infested pixels
may have increased by 4.4% over the three-year time period. If indeed true, this suggests
that an increase in liana abundance may not be confined to the Neotropics, as indicated by
previous studies, e.g., [11,58]. A possible driver of the increase in liana infestation may be
that lianas tend to favor dry conditions and exhibit a dry season growth advantage over
trees [57]. Whilst Borneo has one of the most aseasonal climates of any tropical region [41]
(Whitmore 1984), recent evidence has suggested that Borneo may be experiencing hotter
and drier conditions driven by continued deforestation [42,59,60], which is likely to provide
favorable conditions for liana growth [57,61].

However, similar to studies that assessed individual tree crowns [7,58], these results
also indicate that liana infestation is dynamic, with 2.66% ± 0.76 of pixels changing from
low to severe and 1.22% ± 0.2 changing from severe to low liana infestation over the
three-year time period. This represents a total of 3.9% change between classes over a 3-year
period. Available data from aseasonal and seasonal forests show that changes between low
and severe liana infestation classes over time scales longer than three years range from
4–16.2% [7,58]. A possible explanation for this relatively high change in liana infestation
could be related to the El Niño-induced drought which occurred in 2016 [44]. During
this time, tree growth may have temporarily slowed and lianas may have had a growth
advantage which may have resulted in more dynamic changes in liana infestation over this
period. A longer time-series is therefore needed to provide conclusive results of whether
there is a temporal increase in liana infestation and how this may impact on the ability of
these forests to store and sequester carbon.

Evidence that lianas can be detected across closed-canopy forest using satellite imagery
provides a substantial advance in our ability to monitor change in liana infestation over time.
Furthermore, evidence of this relationship under different climatic conditions and across
forest types suggests that this methodology should apply broadly. However, there are a
number of limitations to the current study. First, satellite-based liana infestation predictions
on a continuous scale seemed to underestimate liana infestation compared to airborne
predictions. Even though there was a small bias in predictions in the primary forests,
underprediction was a particular problem in the selectively logged forests. However, a
high classification accuracy (0.88) for predicted liana infestation for low (≤25%) and severe
(≥75%) classes in the selectively logged forest was found (Table S2). Therefore, prediction
within classes may be required in order to compare liana infestation between forest types.

Second, satellite-based images were trained with the same airborne-derived liana
infestation output, to assess temporal changes in liana infestation over time. This may be
problematic given the dynamic nature of liana infestation [7,58]. For example, changes
across the landscape, such as the formation of canopy gaps, may have led to changes in
liana infestation over time which are not reflected in the training data. This would have
led to certain areas across the landscape being trained incorrectly, and therefore may result
in an increase in error around liana infestation predictions over time. However, as change
was assessed over a relatively short time period, it is unlikely that this would have affected
a large area of the forest. Furthermore, a small degree of error in training data has shown
to have little impact on the accuracy of predictions [29] and therefore it is unlikely that
these results are severely confounded by using the same training data.

Third, the level of exposure to sun light may affect spectral reflectance, which, in turn,
may make it more difficult to detect liana infestation. For example, large canopy gaps
will be more exposed to light whereas smaller canopy gaps and some tree crowns may be
affected by shadow from nearby tall trees. While the effect of shadow has shown to impact
some vegetation indices, the effect has shown to be less on NDVI and Greenness Index [62].
Therefore, while Greenness Index, as a sole input variable, was unable to accurately predict
liana infestation (Figure 3a,d), it is possible that including Greenness Index assists in
the detection of liana infestation in areas affected by shadow. Indeed, the inclusion of
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Sentinel-2 bands which cover the NIR- and SWIR- regions appear to be essential in order
to discriminate between trees and lianas [20,21]. This also suggests that the detection of
liana infestation should be achievable across a variety of multispectral sensors.

Lastly, while this methodology appears to provide an accurate assessment of liana
infestation for the region to which it was trained, it may be limited in its broad applicability
across forests in different regions. The accuracy of satellite-derived liana infestation is
obtained relative to airborne-derived predictions. However, this represents the same area
in which the model was trained upon. It is therefore likely that there could be a reduction
in classification accuracy for areas outside the training extent. The use of this current model
with no additional training data may therefore only be accurately applied to nearby areas
and may require a classification to be restricted to classes of low and high/severe liana
infestation if being applied further afield. Future work should consider the feasibility to
obtain a generalized model to predict liana infestation over regional- or continental-scales.

In summary, this work has demonstrated that during dry periods, or drought events,
lianas and trees are more spectrally distinct (Q1). While one vegetation index (Greenness
Index) is not capable of accurately predicting liana infestation (Q2), the use of all spectral
bands in combination with a neural network classification was capable of predicting
liana infestation with a high degree of accuracy (Q3). Lastly, temporal changes in liana
infestation can be observed using a time-series of satellite-based imagery; however, only
change between low [<25%] and severe [>75%] liana infestation classes was possible due
to increased mis-classification in medium [25–75%] infestation classes.

5. Conclusions

We have shown, for the first time, that satellite-based imagery can be used to accurately
predict liana infestation during both wet and drought years and across forest types, which
suggests this methodology should apply broadly. The use of satellite remote sensing
therefore advances our ability to assess the distribution of liana infestation over time
and across forests globally. This in turn will assist in providing insights into the drivers
responsible for the distribution and change in liana infestation at multiple spatial and
temporal scales as well as quantify the liana-induced impacts on carbon dynamics in
tropical forests.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13142774/s1, Figure S1: Airborne-derived standardized (µ = 0, σ = 1) hyperspectral
reflectance of liana-free trees and trees severely infested with liana leaves; Table S1. Comparison
of vegetation indices for the seperation of low (≤25%) and severe (≥75%) liana infestation classes
within the primary and logged forests and across the full landscape for each of the four satellite-
derived images (2016–2019); Table S2. Accuracy assessment for predicted liana infestation in satellite-
based multispectral imagery using three different sets of input variables: (1) all Sentinel 2-bands,
(2) Greenness Index (3) all Sentinel 2-bands and Greenness Index within the primary and selectively
logged forests; Figure S2. Difference in greenness between the primary and logged forest for imagery
collected from 2016 to 2019.

Author Contributions: C.J.C., G.M.F.v.d.H., D.S.B. and G.M.F. designed the research. C.J.C. collected
ground-derived liana canopy cover data. C.J.C. performed the data analysis and led the writing of
the manuscript. All authors contributed critically to the draft manuscripts and gave final approval
for publication. Conceptualization, C.J.C., G.M.F.v.d.H., D.S.B. and G.M.F.; formal analysis, C.J.C.;
funding acquisition, G.M.F.v.d.H., D.S.B. and G.M.F.; methodology, C.J.C.; writing—original draft,
C.J.C.; writing—review and editing, G.M.F.v.d.H., D.S.B. and G.M.F. All authors have read and agreed
to the published version of the manuscript.

Funding: The authors thank the Natural Environment Research Council [NE/P004806/1 to MEJC, D.S.B.,
G.M.F., G.M.F.v.d.H.; NE/I528477/1 (ARSF MA14/11) to MEJC, D.S.B., G.M.F. and NE/L002604/1 to
D.S.B., G.M.F., G.M.F.v.d.H.;] as well as the University of Nottingham for an Anne McLaren Research
Fellowship to G.M.F.v.d.H. which funded the collection of the ground data.

https://www.mdpi.com/article/10.3390/rs13142774/s1
https://www.mdpi.com/article/10.3390/rs13142774/s1


Remote Sens. 2021, 13, 2774 13 of 15

Data Availability Statement: All the data relating to assessing the spatial distribution of liana infesta-
tion are accessible on the University of Nottingham Research Data Repository, doi:10.17639/nott.7092.

Acknowledgments: The authors thank all the field assistants and staff at Danum Valley as well as
supporting agencies including Sabah Biodiversity Center, Danum Valley Management Committee,
Sabah Forestry Department and the Chief Minister’s Department Office of Internal Affairs & Research
for providing logistical support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pérez-Salicrup, D.R. Effect of liana cutting on tree regeneration in a liana forest in Amazonian Bolivia. Ecology 2001, 82, 389–396.

[CrossRef]
2. Schnitzer, S.A.; Mangan, S.A.; Dalling, J.W.; Baldeck, C.A.; Hubbell, S.P.; Ledo, A.; Muller-Landau, H.; Tobin, M.F.; Aguilar,

S.; Brassfield, D. Liana abundance, diversity, and distribution on Barro Colorado Island, Panama. PLoS ONE 2012, 7, e52114.
[CrossRef]

3. Schnitzer, S.A.; Bongers, F. The ecology of lianas and their role in forests. Trends Ecol. Evol. 2002, 17, 223–230. [CrossRef]
4. Tobin, M.F.; Wright, A.J.; Mangan, S.A.; Schnitzer, S.A. Lianas have a greater competitive effect than trees of similar biomass on

tropical canopy trees. Ecosphere 2012, 3, 1–11. [CrossRef]
5. Van der Heijden, G.; Phillips, O. Liana infestation impacts tree growth in a lowland tropical moist forest. Biogeosciences 2009, 6,

2217–2226. [CrossRef]
6. Grauel, W.T.; Putz, F.E. Effects of lianas on growth and regeneration of Prioria copaifera in Darien, Panama. Ecol. Manag. 2004,

190, 99–108. [CrossRef]
7. Ingwell, L.L.; Joseph Wright, S.; Becklund, K.K.; Hubbell, S.P.; Schnitzer, S.A. The impact of lianas on 10 years of tree growth and

mortality on Barro Colorado Island, Panama. J. Ecol. 2010, 98, 879–887. [CrossRef]
8. Phillips, O.L.; Vásquez Martínez, R.; Monteagudo Mendoza, A.; Baker, T.R.; Núñez Vargas, P. Large lianas as hyperdynamic

elements of the tropical forest canopy. Ecology 2005, 86, 1250–1258. [CrossRef]
9. Van der Heijden, G.M.; Powers, J.S.; Schnitzer, S.A. Lianas reduce carbon accumulation and storage in tropical forests. Proc. Natl.

Acad. Sci. USA 2015, 112, 13267–13271. [CrossRef]
10. Phillips, O.L.; Martínez, R.V.; Arroyo, L.; Baker, T.R.; Killeen, T.; Lewis, S.L.; Malhi, Y.; Mendoza, A.M.; Neill, D.; Vargas, P.N.

Increasing dominance of large lianas in Amazonian forests. Nature 2002, 418, 770–774. [CrossRef] [PubMed]
11. Schnitzer, S.A.; Bongers, F. Increasing liana abundance and biomass in tropical forests: Emerging patterns and putative mecha-

nisms. Ecol. Lett. 2011, 14, 397–406. [CrossRef]
12. Laurance, W.F.; Pérez-Salicrup, D.; Delamônica, P.; Fearnside, P.M.; D’Angelo, S.; Jerozolinski, A.; Pohl, L.; Lovejoy, T.E. Rain

forest fragmentation and the structure of Amazonian liana communities. Ecology 2001, 82, 105–116. [CrossRef]
13. Bongers, F.; Ewango, C.E.; van der Sande, M.T.; Poorter, L. Liana species decline in Congo basin contrasts with global patterns.

Ecology 2020, 101, e03004. [CrossRef]
14. Wright, S.J.; Calderón, O.; Hernández, A.; Paton, S. Are lianas increasing in importance in tropical forests? A 17-year record from

Panama. Ecology 2004, 85, 484–489. [CrossRef]
15. Laurance, W.F.; Andrade, A.S.; Magrach, A.; Camargo, J.L.; Valsko, J.J.; Campbell, M.; Fearnside, P.M.; Edwards, W.; Lovejoy, T.E.;

Laurance, S.G. Long-term changes in liana abundance and forest dynamics in undisturbed Amazonian forests. Ecology 2014, 95,
1604–1611. [CrossRef]

16. Di Vittorio, A.V.; Negrón-Juárez, R.I.; Higuchi, N.; Chambers, J.Q. Tropical forest carbon balance: Effects of field-and satellite-
based mortality regimes on the dynamics and the spatial structure of Central Amazon forest biomass. Environ. Res. Lett. 2014,
9, 034010. [CrossRef]

17. Castro-Esau, K.; Sánchez-Azofeifa, G.; Caelli, T. Discrimination of lianas and trees with leaf-level hyperspectral data. Remote Sens.
Environ. 2004, 90, 353–372. [CrossRef]

18. Sánchez-Azofeifa, G.; Castro-Esau, K. Canopy observations on the hyperspectral properties of a community of tropical dry forest
lianas and their host trees. Int. J. Remote Sens. 2006, 27, 2101–2109. [CrossRef]

19. Hesketh, M.; Sánchez-Azofeifa, G.A. The effect of seasonal spectral variation on species classification in the Panamanian tropical
forest. Remote Sens. Environ. 2012, 118, 73–82. [CrossRef]

20. Guzman, Q.J.; Rivard, B.; Sánchez-Azofeifa, G.A. Discrimination of liana and tree leaves from a Neotropical Dry Forest using
visible-near infrared and longwave infrared reflectance spectra. Remote Sens. Environ. 2018, 219, 135–144. [CrossRef]

21. Kalacska, M.; Bohlman, S.; Sanchez-Azofeifa, G.A.; Castro-Esau, K.; Caelli, T. Hyperspectral discrimination of tropical dry forest
lianas and trees: Comparative data reduction approaches at the leaf and canopy levels. Remote Sens. Environ. 2007, 109, 406–415.
[CrossRef]

22. Guzmán, Q.; Antonio, J.; Sánchez-Azofeifa, G.A.; Rivard, B. Differences in leaf temperature between lianas and trees in the
neotropical canopy. Forests 2018, 9, 307. [CrossRef]

http://doi.org/10.1890/0012-9658(2001)082[0389:EOLCOT]2.0.CO;2
http://doi.org/10.1371/journal.pone.0052114
http://doi.org/10.1016/S0169-5347(02)02491-6
http://doi.org/10.1890/ES11-00322.1
http://doi.org/10.5194/bg-6-2217-2009
http://doi.org/10.1016/j.foreco.2003.10.009
http://doi.org/10.1111/j.1365-2745.2010.01676.x
http://doi.org/10.1890/04-1446
http://doi.org/10.1073/pnas.1504869112
http://doi.org/10.1038/nature00926
http://www.ncbi.nlm.nih.gov/pubmed/12181565
http://doi.org/10.1111/j.1461-0248.2011.01590.x
http://doi.org/10.1890/0012-9658(2001)082[0105:RFFATS]2.0.CO;2
http://doi.org/10.1002/ecy.3004
http://doi.org/10.1890/02-0757
http://doi.org/10.1890/13-1571.1
http://doi.org/10.1088/1748-9326/9/3/034010
http://doi.org/10.1016/j.rse.2004.01.013
http://doi.org/10.1080/01431160500444749
http://doi.org/10.1016/j.rse.2011.11.005
http://doi.org/10.1016/j.rse.2018.10.014
http://doi.org/10.1016/j.rse.2007.01.012
http://doi.org/10.3390/f9060307


Remote Sens. 2021, 13, 2774 14 of 15

23. Sanchez-Azofeifa, A.; Rankine, C.; do Espirito Santo, M.M.; Fatland, R.; Garcia, M. Wireless sensing networks for environmental
monitoring: Two case studies from tropical forests. In Proceedings of the 2011 IEEE Seventh International Conference on eScience,
Washington, DC, USA, 5–8 December 2011; pp. 70–76.

24. Waite, C.E.; van der Heijden, G.M.; Field, R.; Boyd, D.S. A view from above: Unmanned aerial vehicles (UAV s) provide a new
tool for assessing liana infestation in tropical forest canopies. J. Appl. Ecol. 2019, 56, 902–912. [CrossRef]

25. Li, W.; Campos-Vargas, C.; Marzahn, P.; Sanchez-Azofeifa, A. On the estimation of tree mortality and liana infestation using a
deep self-encoding network. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 1–13. [CrossRef]

26. Yuan, X.; Laakso, K.; Marzahn, P.; Sanchez-Azofeifa, G.A. Canopy Temperature Differences between Liana-Infested and Non-
Liana Infested Areas in a Neotropical Dry Forest. Forests 2019, 10, 890. [CrossRef]

27. Foster, J.R.; Townsend, P.A.; Zganjar, C.E. Spatial and temporal patterns of gap dominance by low-canopy lianas detected using
EO-1 Hyperion and Landsat Thematic Mapper. Remote Sens. Environ. 2008, 112, 2104–2117. [CrossRef]

28. Marvin, D.C.; Asner, G.P.; Schnitzer, S.A. Liana canopy cover mapped throughout a tropical forest with high-fidelity imaging
spectroscopy. Remote Sens. Environ. 2016, 176, 98–106. [CrossRef]

29. Chandler, C.J.; van der Heijden, G.M.F.; Boyd, D.S.; Cutler, M.E.J.; Costa, H.; Nilus, R.; Foody, G.M. Remote sensing liana
infestation in an aseasonal tropical forest: Addressing mismatch in spatial units of analyses. Remote Sens. Ecol. Conserv. 2021.
[CrossRef]

30. Asner, G.P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 1998, 64, 234–253.
[CrossRef]

31. Tangki, H.; Chappell, N.A. Biomass variation across selectively logged forest within a 225-km2 region of Borneo and its prediction
by Landsat TM. Ecol. Manag. 2008, 256, 1960–1970. [CrossRef]

32. Huete, A.R.; Kim, Y.; Ratana, P.; Didan, K.; Shimabukuro, Y.E.; Miura, T. Assessment of phenologic variability in Amazon tropical
rainforests using hyperspectral Hyperion and MODIS satellite data. In Hyperspectral Remote Sensing of Tropical and Sub-Tropical
Forests; CRC Press: Boca Raton, FL, USA, 2008; pp. 233–259.

33. Lamb, D. Natural regeneration and secondary forests. In Regreening the Bare Hills; Springer: Dordrecht, The Netherlands, 2011;
pp. 157–209.

34. Baccini, A.; Goetz, S.; Walker, W.; Laporte, N.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.; Dubayah, R.; Friedl, M. Estimated
carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182. [CrossRef]

35. Pinter, P.J., Jr.; Jackson, R.D.; Elaine Ezra, C.; Gausman, H.W. Sun-angle and canopy-architecture effects on the spectral reflectance
of six wheat cultivars. Int. J. Remote Sens. 1985, 6, 1813–1825. [CrossRef]

36. Asner, G.P.; Martin, R.E. Contrasting leaf chemical traits in tropical lianas and trees: Implications for future forest composition.
Ecol. Lett. 2012, 15, 1001–1007. [CrossRef]

37. Sánchez-Azofeifa, G.A.; Castro, K.; Wright, S.J.; Gamon, J.; Kalacska, M.; Rivard, B.; Schnitzer, S.A.; Feng, J.L. Differences in
leaf traits, leaf internal structure, and spectral reflectance between two communities of lianas and trees: Implications for remote
sensing in tropical environments. Remote Sens. Environ. 2009, 113, 2076–2088. [CrossRef]

38. Reynolds, G.; Payne, J.; Sinun, W.; Mosigil, G.; Walsh, R.P. Changes in forest land use and management in Sabah, Malaysian
Borneo, 1990–2010, with a focus on the Danum Valley region. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 3168–3176. [CrossRef]
[PubMed]

39. Kettle, C.J.; Maycock, C.R.; Burslem, D. New directions in dipterocarp biology and conservation: A synthesis. Biotropica 2012, 44,
658–660. [CrossRef]

40. O’Brien, M.J.; Philipson, C.D.; Reynolds, G.; Dzulkifli, D.; Snaddon, J.L.; Ong, R.; Hector, A. Positive effects of liana cutting on
seedlings are reduced during El Niño-induced drought. J. Appl. Ecol. 2019, 56, 891–901. [CrossRef]

41. Whitmore, T. Tropical Rain Forests of the Far East, 2nd ed.; Clarendon: Oxford, UK, 1984.
42. Chapman, S.; Syktus, J.I.; Trancoso, R.; Salazar, A.; Thatcher, M.J.; Watson, J.E.; Meijaard, E.; Sheil, D.; Dargusch, P.; McAlpine,

C.A. Compounding impact of deforestation on Borneo’s climate during El Niño events. Environ. Res. Lett. 2020, 15, 084006.
[CrossRef]

43. Walsh, R.; Newbery, D. The ecoclimatology of Danum, Sabah, in the context of the world’s rainforest regions, with particular
reference to dry periods and their impact. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1999, 354, 1869–1883. [CrossRef]

44. Nunes, M.H.; Both, S.; Bongalov, B.; Brelsford, C.; Khoury, S.; Burslem, D.F.; Philipson, C.; Majalap, N.; Riutta, T.; Coomes, D.A.
Changes in leaf functional traits of rainforest canopy trees associated with an El Niño event in Borneo. Environ. Res. Lett. 2019,
14, 085005. [CrossRef]

45. Foody, G.M. Fully fuzzy supervised classification of land cover from remotely sensed imagery with an artificial neural network.
Neural Comput. Appl. 1997, 5, 238–247. [CrossRef]

46. Foody, G.M. Mapping land cover from remotely sensed data with a softened feedforward neural network classification. J. Intell.
Robot. Syst. 2000, 29, 433–449. [CrossRef]

47. Thirumalai, K.; DiNezio, P.N.; Okumura, Y.; Deser, C. Extreme temperatures in Southeast Asia caused by El Niño and worsened
by global warming. Nat. Commun. 2017, 8, 1–8. [CrossRef]

48. Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D. Color indices for weed identification under various soil, residue,
and lighting conditions. Trans. Asae 1995, 38, 259–269. [CrossRef]

49. Cliff, N. Ordinal Methods for Behavioral Data Analysis; Psychology Press: New York, NY, USA, 2014.

http://doi.org/10.1111/1365-2664.13318
http://doi.org/10.1016/j.jag.2018.05.025
http://doi.org/10.3390/f10100890
http://doi.org/10.1016/j.rse.2007.07.027
http://doi.org/10.1016/j.rse.2015.12.028
http://doi.org/10.1002/rse2.197
http://doi.org/10.1016/S0034-4257(98)00014-5
http://doi.org/10.1016/j.foreco.2008.07.018
http://doi.org/10.1038/nclimate1354
http://doi.org/10.1080/01431168508948330
http://doi.org/10.1111/j.1461-0248.2012.01821.x
http://doi.org/10.1016/j.rse.2009.05.013
http://doi.org/10.1098/rstb.2011.0154
http://www.ncbi.nlm.nih.gov/pubmed/22006960
http://doi.org/10.1111/j.1744-7429.2012.00912.x
http://doi.org/10.1111/1365-2664.13335
http://doi.org/10.1088/1748-9326/ab86f5
http://doi.org/10.1098/rstb.1999.0528
http://doi.org/10.1088/1748-9326/ab2eae
http://doi.org/10.1007/BF01424229
http://doi.org/10.1023/A:1008112125526
http://doi.org/10.1038/ncomms15531
http://doi.org/10.13031/2013.27838


Remote Sens. 2021, 13, 2774 15 of 15

50. Piñeiro, G.; Perelman, S.; Guerschman, J.P.; Paruelo, J.M. How to evaluate models: Observed vs. predicted or predicted vs.
observed? Ecol. Model. 2008, 216, 316–322. [CrossRef]

51. Chen, Y.J.; Cao, K.F.; Schnitzer, S.A.; Fan, Z.X.; Zhang, J.L.; Bongers, F. Water-use advantage for lianas over trees in tropical
seasonal forests. New Phytol. 2015, 205, 128–136. [CrossRef] [PubMed]

52. Maréchaux, I.; Bartlett, M.K.; Iribar, A.; Sack, L.; Chave, J. Stronger seasonal adjustment in leaf turgor loss point in lianas than
trees in an Amazonian forest. Biol. Lett. 2017, 13, 20160819. [CrossRef] [PubMed]

53. Van der Sande, M.T.; Poorter, L.; Schnitzer, S.A.; Engelbrecht, B.M.; Markesteijn, L. The hydraulic efficiency–safety trade-off
differs between lianas and trees. Ecology 2019, 100, e02666. [PubMed]

54. Pérez-Salicrup, D.R.; Sork, V.L.; Putz, F.E. Lianas and Trees in a Liana Forest of Amazonian Bolivia. Biotropica 2001, 33, 34–47.
[CrossRef]

55. Saleska, S.R.; Didan, K.; Huete, A.R.; Da Rocha, H.R. Amazon forests green-up during 2005 drought. Science 2007, 318, 612.
[CrossRef] [PubMed]

56. Anderson, L.O.; Malhi, Y.; Aragão, L.E.; Ladle, R.; Arai, E.; Barbier, N.; Phillips, O. Remote sensing detection of droughts in
Amazonian forest canopies. New Phytol. 2010, 187, 733–750. [CrossRef] [PubMed]

57. Schnitzer, S.A.; van der Heijden, G.M. Lianas have a seasonal growth advantage over co-occurring trees. Ecology 2019, 100, e02655.
[CrossRef] [PubMed]

58. Wright, S.J.; Sun, I.; Pickering, M.; Fletcher, C.D.; Chen, Y.-Y. Long-term changes in liana loads and tree dynamics in a Malaysian
forest. Ecology 2015, 96, 2748–2757. [CrossRef] [PubMed]

59. McAlpine, C.A.; Johnson, A.; Salazar, A.; Syktus, J.; Wilson, K.; Meijaard, E.; Seabrook, L.; Dargusch, P.; Nordin, H.; Sheil, D.
Forest loss and Borneo’s climate. Environ. Res. Lett. 2018, 13, 044009. [CrossRef]

60. Gaveau, D.L.; Locatelli, B.; Salim, M.A.; Yaen, H.; Pacheco, P.; Sheil, D. Rise and fall of forest loss and industrial plantations in
Borneo (2000–2017). Conserv. Lett. 2019, 12, e12622. [CrossRef]

61. Marimon, B.S.; Oliveira-Santos, C.; Marimon-Junior, B.H.; Elias, F.; de Oliveira, E.A.; Morandi, P.S.; Prestes, N.C.d.S.; Mariano,
L.H.; Pereira, O.R.; Feldpausch, T.R. Drought generates large, long-term changes in tree and liana regeneration in a monodominant
Amazon forest. Plant Ecol. 2020, 1–15. [CrossRef]

62. Zhang, L.; Sun, X.; Wu, T.; Zhang, H. An analysis of shadow effects on spectral vegetation indexes using a ground-based imaging
spectrometer. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2188–2192. [CrossRef]

http://doi.org/10.1016/j.ecolmodel.2008.05.006
http://doi.org/10.1111/nph.13036
http://www.ncbi.nlm.nih.gov/pubmed/25264136
http://doi.org/10.1098/rsbl.2016.0819
http://www.ncbi.nlm.nih.gov/pubmed/28077687
http://www.ncbi.nlm.nih.gov/pubmed/30801680
http://doi.org/10.1111/j.1744-7429.2001.tb00155.x
http://doi.org/10.1126/science.1146663
http://www.ncbi.nlm.nih.gov/pubmed/17885095
http://doi.org/10.1111/j.1469-8137.2010.03355.x
http://www.ncbi.nlm.nih.gov/pubmed/20659255
http://doi.org/10.1002/ecy.2655
http://www.ncbi.nlm.nih.gov/pubmed/30947369
http://doi.org/10.1890/14-1985.1
http://www.ncbi.nlm.nih.gov/pubmed/26649395
http://doi.org/10.1088/1748-9326/aaa4ff
http://doi.org/10.1111/conl.12622
http://doi.org/10.1007/s11258-020-01047-8
http://doi.org/10.1109/LGRS.2015.2450218

	Introduction 
	Materials and Methods 
	Study Area 
	Airborne-Derived Liana Infestation Assessment 
	Airborne Hyperspectral and LiDAR Data 
	Field Data Collection 
	Modelling Liana Infestation 

	Satellite-Derived Liana Infestation Assessment 
	Satellite-Based Data 
	Spectral Reflectance for Lianas versus Trees 
	Modelling Liana Infestation 
	Temporal Change in Liana Infestation 
	Accuracy Assessment 


	Results 
	Discussion 
	Conclusions 
	References

