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Abstract: The distribution of forest tree species provides crucial data for regional forest management
and ecological research. Although medium-high spatial resolution remote sensing images are widely
used for dynamic monitoring of forest vegetation phenology and species identification, the use of
multiresolution images for similar applications remains highly uncertain. Moreover, it is necessary
to explore to what extent spectral variation is responsible for the discrepancies in the estimation of
forest phenology and classification of various tree species when using up-scaled images. To clarify
this situation, we studied the forest area in Harqin Banner in northeast China by using year-round
multiple-resolution time-series images (at four spatial resolutions: 4, 10, 16, and 30 m) and eight
phenological metrics of four deciduous forest tree species in 2018, to explore potential impacts of
relevant results caused by various resolutions. We also investigated the effect of using up-scaled time-
series images by comparing the corresponding results that use pixel-aggregation algorithms with the
four spatial resolutions. The results indicate that both phenology and classification accuracy of the
dominant forest tree species are markedly affected by the spatial resolution of time-series remote
sensing data (p < 0.05): the spring phenology of four deciduous forest tree species first rises and then
falls as the image resolution varies from 4 to 30 m; similarly, the accuracy of tree species classification
increases as the image resolution varies from 4 to 10 m, and then decreases as the image resolution
gradually falls to 30 m (p < 0.05). Therefore, there remains a profound discrepancy between the results
obtained by up-scaled and actual remote sensing data at the given spatial resolutions (p < 0.05). The
results also suggest that combining phenological metrics and time-series NDVI data can be applied
to identify the regional dominant tree species across different spatial resolutions, which would help
advance the use of multiscale time-series satellite data for forest resource management.

Keywords: time series; trees species identification; phenological metrics; scale effect; up-scaling

1. Introduction

Accurate spatial distribution information of forest tree species is a precondition for
almost all questions dealing with regional forest ecology and is quite important for under-
standing the land-surface phenology (LSP) processes and the refinement of ecological and
atmospheric models [1–3]. In addition, accurate mapping of the dominant tree species is
critical for forest-environment monitoring, forest management, and associated decision-
making and planning [4,5]. In recent years, remote sensing images with medium to high
spatial resolution (≤30 m) have been widely used to map and classify dominant tree species
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in the different regional forest ecosystems, because the viewing field of the image is close
to the size of tree species and of tree stands [6–9]. However, given the limitations to a
few bands with wide central bandwidths, it remains challenging to map forests finely and
accurately by solving the common problem of foreign bodies with spectra similar to that of
tree species with multispectral images of differing resolution [10–13].

With today’s continuous improvement in multispectral satellite revisit cycles, temporal
characteristics have proven to have high application value for forest classification [14,15].
The time-series normalized differential vegetation index (NDVI) was generally considered
to be applicable for identifying vegetation and extracting phenological information [16–18],
which plays a key role in classifying the dominant tree species and overcoming the problem
of foreign bodies with similar spectra [19,20]. Given this advantage, some studies have
confirmed the use of time-series NDVI data and phenological characters would raise the
mapping accuracy of forest types in both urban areas [13,21] and rural areas [18,22–24].

MODIS and NOAA satellites can provide images with very short revisit intervals
(less than 2 days). Therefore, most previous researches have discussed the results of forest
composition mapping and dynamic detection based on time-series NDVI data from a
regional to global scale [5,25]. However, the spatial resolution of traditional time-series
images such as NOAA AVHRR [26], SPOT Vegetation [27], and MODIS imagery data [28]
generally range from hectometers to kilometers, resulting in poor spectral purity and
limited identification of broad forest types (such as coniferous or broad-leafed forests).
Hence, medium-to-low resolution remote sensing images were considered to be applicable
to classify general forest-cover types [29,30] in which finer tree species composition infor-
mation is not involved [9,31]. As a rule, medium-high resolution satellite images can be
used to produce more accurate results of forest species composition by providing detailed
spectral features of the canopy of dominant tree species [32,33].

An increasing number of medium- and high-resolution Earth-observation satellites
have now entered use in recent years (e.g., Sentinel-2, SPOT-6 and -7, Gaofen-1 and -2, etc.).
Some multitemporal medium-high-resolution NDVI images have proven to be applicable
to classify the dominant tree species in forests [11,34–36], but less attention has been focused
on spatial mapping [37]. In addition to the time-series spectral dynamics, plant phenology
should be equally considered for tree species mapping [38–41]. Therefore, it is essential
to use multiscale time-series data to explore the effect of image resolution and phenology
information on the accuracy of forest tree species classification. The study of vegetation-
phenology dynamics by remote sensing mainly involves extracting the corresponding key
time nodes and characteristic values by analyzing the significant variations in vegetation
index time series data, which are commonly called LSP metrics [11,17,42,43]. LSP metrics
are important status parameters for land-vegetation ecosystems, especially at the start
of spring (SOS) [44], also called the start of the growing season [45] or the green-up
date [46]. These parameters are the most commonly extracted because of their importance
in determining the growing season, and they are also powerful indicators of an ecosystem’s
response to climate change [44].

To date, LSP metrics have been used to identify different vegetation species. For
example, Liu et al. (2018) used the combination of fused 30 m time-series NDVI data
and phenological metrics to map rice paddies, and they found that using both of the
selected NDVI and phenological features could allow the highest accuracy in extracting
rice paddy areas [47]. Another recent study suggested that phenological metrics can help
improve the accuracy of remote-sensing recognition of different forest stands [17]. In
addition, Schwieder et al. (2018) demonstrated that adding phenological information
from multitemporal imagery improves the estimation of aboveground biomass through
modified discrimination of vegetation types [48]. However, few studies involving the
mapping and phenology of forest tree species have integrated different spatial observation
scales with multiscale satellite images, which is necessary to compensate for the lack of
research on higher-resolution time-series data.
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The mapping results of forest types or tree species through remote sensing would
be influenced by the spatial resolution of remote sensing data obviously [6,7,49,50]. In
addition, most previous studies have focused on single time-phase imagery, which led
to no results available on temporal data [51]. In fact, both species classification and
phenological metrics are affected by the spatial resolution of remote sensing data. For
example, Zhang et al. (2017) explored how spatial resolution affects the start of vegetation
season (SOS) by comparing observations obtained from images with 30 m and 500 m spatial
resolution, and found the difference of SOS at the high and low resolution was larger in
heterogeneous regions [52]. Tian et al. (2020) investigated how spatial resolution affects
the difference in spring phenology of rural-urban vegetation as detected by resampling
the satellite data from 30 m to 8 km spatial resolution. They found that coarser images
overestimate the urbanization effects and that the SOS obtained by coarser time-series
NDVI data would be earlier than that of the actual result [53]. It should be noted that
the multiresolution imagery data used in the above researches consists of resampled
multispectral images by using up-scaled algorithms (e.g., Nearest Neighbor (NN) and
pixel aggregation (PA)), which generate a set of lower spatial resolution images using the
high-resolution image through pixel resampling. However, the imaging mechanism of
these up-scaled images differs from that of satellite imagery data obviously, which may
lead to some uncertainty in the final results of relevant studies [51,54,55]. In consequence,
it could be assumed that the phenological monitoring results obtained by up-scaled time-
series NDVI data may differ from that detected from time-series satellite imagery, which
accounts for the necessity to re-evaluate the results associated with time-series resampled
images [53].

In this study, we systematically evaluate how temporal images with a medium-high
spatial resolution (4, 10, 16, and 30 m) affect the accuracy of forest tree species mapping
and the variability of spring phenological information. The multiscale time-series satellite
remote sensing data were obtained from Gaofen-2 (4 m), Sentinel-2 (10 m), Gaofen-1
(16 m), and Landsat-8 (30 m), respectively, acquired over seasonal deciduous forests in
2018 from a state forest farm region in Harqin Banner, China. In addition, we evaluate
the performances obtained by using up-scaled time-series images of different spatial
resolutions. Eight phenological metrics are extracted to classify forest tree species based on
the random forest (RF) algorithm combined with time-series NDVI data. Accordingly, we
tried to find out (1) what is the regular pattern for monitoring spring phenology within
the medium-high remote sensing spatial resolution range; (2) which scales of time-series
images most effectively reflect spectral differences in each forest tree species and the
relationship between these phenological metrics and tree species classification; and (3)
whether the spatial patterns in up-scaled images are competitive to map the distribution
of forest tree species from multiscale satellite datasets. Answers to these points should
improve the credibility of using time-series remote sensing images to monitor and map
forest tree species for use in forest resource management or regional eco-climate models.

2. Materials and Methods
2.1. Study Area

The study area is in northeast China near the city of Chifeng and has a size of approxi-
mately 55,100 ha of which over 45,500 ha are forested landscape. An overview of the area
is given in Figure 1. The study area belongs to the border area of the Greater Hinggan
Mountains and Yanshan Mountains within a range of 878 to 1890 m, and the climate here is
temperate monsoon. The dominant tree species occurring in the local forest are deciduous
forest dominated by Quercus mongolica (Qm), Populus davidiana (Pd), Betula platyphylla (Bp),
and Larix gmelinii (Lg), accounting for about 84% of the total forest area in 2018; there is
also an evergreen forest, which is dominated by Pinus tabulaeformis (Pt). The five dominant
tree species mentioned above account for over 95% of the total forest area in 2018 [19].
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Figure 1. The study area located in northeast China with major vegetation cover types in the background (a), and sampling
plots of the four deciduous tree species, including Betula platyphylla (Bp; n = 330), Larix gmelinii (Lg; n = 330), Quercus
mongolica (Qm; n = 331), and Populus davidiana (Pd; n = 329), overlaid on a Landsat-8 imagery (21 June 2018) in the
background (b).

2.2. Methods

The methodological workflow is illustrated by the flowchart presented in Figure 2.
The research process includes four main steps. First, the collection and preprocessing
of both remote sensing data and ground observation data were completed. Next, we
calculated forest phenological metrics based on multiscale time-series data and analyzed
the scale effect of spring phenology. Then, forest tree-species mapping was performed using
satellites and up-scaled time-series NDVI data and phenological metrics with different
spatial resolutions. Finally, comparisons of multiple considerations on the accuracy of
forest mapping were conducted to illustrate how spatial resolution affects tree-species
classification.

2.2.1. Data Resources and Preprocessing

We selected four sets of multiresolution remote sensing images acquired once per
month to make a series of spatial scale images respectively (Table A1 in Appendix A)
and acquired with cloudiness less than 15%. The main parameters of the images used in
this study can be seen in Table 1. This study used a total of 48 satellite remote sensing
images covering the entire study area; there were 46 of them acquired in 2018 while the
other two with poor imaging quality were replaced by the data of the same period in
2017, which was proven to be feasible [19]. All Sentinel-2 images were obtained from the
European Space Agency (ESA; https://scihub.copernicus.eu; accessed on 18 December
2019); Landsat-8 images were obtained from the United States Geological Survey (USGS;
http://glovis.usgs.gov; accessed on 15 January 2020); Gaofen-1 and Gaofen-2 images were
obtained from the China Center for Resources Satellite Data and Application (CCRSDA;
http://www.cresda.com/CN; accessed on 12 September 2020).

https://scihub.copernicus.eu
http://glovis.usgs.gov
http://glovis.usgs.gov
http://www.cresda.com/CN
http://www.cresda.com/CN
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Table 1. The main parameters of satellite images used in this study.

Satellite Sensor
Revisit
Interval

(day)

Spatial
Resolution

(m)

Swath
Width
(km)

Radiometric
Resolution

(bit)
Blue (µm) Green

(µm) Red (µm)
Near-

Infrared
(µm)

Gaofen-2 PMS 4 4 45 10 0.45–0.52 0.52–0.59 0.63–0.69 0.77–0.89
Sentinel-2 MSI 5 10 290 12 0.46–0.52 0.54–0.58 0.65–0.68 0.79–0.90
Gaofen-1 WFV 4 16 800 10 0.45–0.52 0.52–0.59 0.63–0.69 0.77–0.89
Landsat-8 OLI 16 30 185 12 0.45–0.52 0.53–0.60 0.63–0.68 0.85–0.89

Before analysis, the four sets of time-series datasets with different spatial resolutions
were carefully harmonized. A Savitzky–Golay (SG) algorithm served for polynomial fil-
tering of the time-series NDVI data because it better maintains the temporal vegetation
dynamics and minimizes atmospheric effects [56,57]. This also implied a smoothing and
filtering of the four time-series could remove undesired artifacts due to poor atmospheric
conditions and undetected clouds [58]. The four sets of multiscale time-series data pre-
processing by using a series of related models and algorithms in ENVI (Environment for
Visualizing Images; version 5.3) and IDL (Interactive Data Language; version 8.5) software
platform (Research Systems Inc., Boulder, CO, USA). The orthorectification, atmospheric
radiation correction, and geometrical rectification were carried out in sequence to prepro-
cess all images used in this study, to transform the digital value into the actual surface
spectral reflectance at different image resolutions (Figure 2). The radiometric correction
methods include the incident causational matrix (ICAM), and pseudo-invariant feature
(PIF) models [59], and the corresponding parameters of radiation correction of different
satellite remote sensing data were obtained from their official websites, that is CCRSDA,
ESA, and USGS, respectively. In addition, the geometric root means squared error (RMSE)
of all images was controlled within 0.5 pixels.

The PA algorithm was selected for up-scaled images (Figure 2). PA assigns different
weights to each pixel based on mapping distance which is integrated at the ENVI software,
and it is widely used in researches of multiscale remote sensing [46,53]. One related study
suggests that PA better maintains pixel values than do other up-scaled algorithms (e.g.,
nearest neighbor, bilinear, and cubic convolution) [51]. The NDVI data then were calculated
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as Equation (1). To ensure that different time series can be compared to each other, the
up-scaled datasets were smoothed in the same way as the satellite data. To better analyze
the timing of (phenological) events, the (smoothed) monthly NDVI series were saved as
30 daily values on the 15th of each month were assigned as DOY (day of the year; Julian
date) for the compositing period of the month.

NDVI =
ρNIR − ρred
ρNIR + ρred

(1)

where ρNIR and ρred are the surface reflectance of near-infrared (NIR) and red bands.

2.2.2. Collection of Forest Inventory Data

The field surveys in the study area were undertaken in July 2018 and May 2019. A total
of 1320 sample plots (30 m× 30 m) were selected randomly. Approximately 330 sample
sites for each deciduous dominant tree species (Table A2 in Appendix A) are shown in
Figure 1 (more than 85% of the tree population is single species). Then, 70% of these data
were randomly set as training samples and the rest as verification samples. Therefore, the
spectral reflectance of different dominant tree species was extracted from the center of each
stand plaque at each sample point in the imagery to guarantee the spectral purity of the
different image pixels.

2.2.3. Calculation of Forest Phenological Metrics

From the time series NDVI images with different spatial resolutions for related func-
tions in TIMESAT [60], eight typical phenological metrics were obtained: the start of growth
season (SOS), end of growth season (EOS), length of growth season (LOS), peaking time of
growth season (POS), length of the peak-time (LOP), middle of SOS (SOSm), middle of EOS
(EOSm), and amplitude (AMP). All the mentioned phenology-related metrics are noted as
the Julian date. Here, both the SOS and EOS were calculated from the fitting function when
the trees grow to a certain fixed time phase, e.g., the time position ranges from the position
where 10–30% of the left (right) minimum of the NDVI value and the maximum NDVI
value [61,62], which was indicated as a suitable time point. Nevertheless, the threshold of
the determined phenological time points ranged around 20% according to the geographical
locations and tree species selected [19,63,64]. The LOS is further calculated as the difference
between the EOS and SOS, the POS is identified as the date when the trees grew to the
maximum NDVI value at the fitted temporal dynamic curve, then the LOP is the length
between 80% of the left and right maximum NDVI of the temporal dynamic curve. The
amplitude (AMP) presents the maximum ranges of the tree photosynthetic dynamics across
the whole growing season, and SOSm and EOSm stand for the average days of the growing
season when the trees grow above their 80% level on the right and left side of the peaking
time. A more detailed description of the calculated metrics can be found in Schwieder et al.
(2018) [48] and Lebrini et al. (2019) [65].

2.2.4. Classification and Accuracy Assessment

Supervised classifiers are believed to be more clearly preferable while the prior knowl-
edge for ground objects is enough [66]. In this study, we used the Random Forest (RF)
classifier to identify deciduous tree species, and set its ntree to 500 and the mtry to the
square root of the number of input features, as suggested [67–69]. RF is derived from
statistical learning theory to process high-dimension datasets and reduce the overfitting
issues [69–71], which was considered to be one of the most robust classifiers compared with
other algorithms, such as maximum likelihood (ML), linear discriminant analysis (LDA),
support vector machine (SVM), and decision tree classifiers (DTC) [72–74]. Therefore, it
integrates hundreds of decision-making trees and encapsulates an important ranking pre-
dictor (the mean decreases of accuracy; MDA), which was designed to be used to evaluate
the importance of variables in the accuracy efficiently [75]. Then, we extracted the forest
boundary and used winter images to separate the dominant evergreen forest landscape.
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Based on this, we focused on the remote-sensing classification results for the four deciduous
forest tree species: Betula platyphylla (Bp), Populus davidiana (Pd), Quercus mongolica (Qm),
and Larix gmelinii (Lg) based on time-series NDVI data and the combination of NDVI and
phenological metrics.

In addition, we calculate the overall accuracy (OA), kappa, and the accuracies of
producer and user to examine and compare each result from different image datasets by
constructing corresponding error matrices [76]. By randomly selecting training samples
and validation samples, each set of classification results was cross-validated 10 times and
averaged. The one-way analysis of variance (ANOVA) was used to decide significant
differences in the classification results among the different spatial resolutions and methods.
This was followed by multiple comparisons using the least-significant difference (LSD) to
identify where the differences lay (p < 0.05).

3. Results
3.1. Multiscale Sequence NDVI Curve of Different Deciduous Forest Stands

The annual NDVI curves of the four deciduous forest species with spatial resolution
range from 4 to 30 m show obvious unimodal characteristics, with clear forest stand
growth stage characteristics (Figure 3). However, the mean NDVI values of four dominant
deciduous tree species in the study area were significantly different, in especial, the spectral
reflectance captured in 4 m high-resolution images is significantly less than that in lower-
spatial-resolution images (p < 0.05). In addition, the NDVI curves of different dominant
tree species differ, where the NDVI curve of Qm is higher than that of the other deciduous
tree species, and that of Pd is the lowest.
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Figure 3. Time-series image training NDVI curves for different deciduous tree species of (a) Betula
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up-scaled images, the same below.

In terms of the up-scaled NDVI curves, there are no significant changes in almost
all NDVI data observed (p > 0.05), which is significantly below the NDVI value from



Remote Sens. 2021, 13, 2716 8 of 19

multiscale satellite images at each given spatial resolution (p < 0.05), meaning the up-scaled
NDVI curves were underestimated compared to that obtained from actual satellite data at
the same resolution.

3.2. Multiscale SOS Results by Satellite Images

The SOS results of multiscale images of different dominant tree species differ signif-
icantly (p < 0.05; Figure 4). For different tree species, the mean SOS for Lg (109–121) is
the earliest, Bp (117–129) is relatively later than all species (including four deciduous tree
species; 116–128), and Pd (118–134) is slightly earlier than Qm (122–132), showing the
phenological difference among the four deciduous tree species in this study region. For
different spatial resolutions, almost all dominant deciduous tree species reveal a significant
difference in the mean SOS based on native multiscale images at the same spatial resolution
from 4 to 30 m (p < 0.05). Overall, the mean SOS increases from 4 to 16 m and then decreases
slightly to 30 m (p < 0.05). Similarly, the SOS results of all species first increase and reach
a peak at 16 m resolution and then begin to decrease as the resolution comes to 30 m
(p < 0.05), where the mean SOS delay time ranges from 8.02 to 11.95 days.
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However, the SOS results for each tree species at different up-scaled spatial resolutions
are similar relatively, and an analysis of variance demonstrates that no significant difference
appears between image resolutions from 4 to 30 m (p > 0.05), whereas the SOS results
differ markedly from that of native multiscale satellite data at each same given resolution
(p < 0.05). Therefore, for SOS results of different dominant tree species across different
resolution images, the standard deviation incurred in up-scaled images is generally several
times greater than that of native satellite images with the same resolution, ranging from
1.33 to 3.39 (p < 0.05).

3.3. Multiscale Classification by Satellite Images and Up-Scaled Images

There were significant differences among the OA values of the dominant forest species
at different spatial resolutions (p < 0.05; Figure 5a), while the Kappa values show consistent
results (p < 0.05; Figure 5b). For multiscale satellite time-series NDVI images, the mean OA
(Kappa) first increases while image resolution goes from 4 to 10 m (p < 0.05) at the highest
accuracy of 83.63% (0.7825), and then decreases to the minimum accuracy of 78.60% (0.7154)
at 30 m resolution (p < 0.05). The classification accuracies of forest tree species are closely
related to the image resolutions, and an analysis of variance reveals significant differences
between classification accuracies based on time-series satellite data of differing resolution
(p < 0.05). Combining phenological metrics and time-series NDVI data can improve the
mapping of the regional dominant tree species at each given resolution (p < 0.05; Figure 5).
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When the contrast is integrated with time-series NDVI and LSP metrics, the best overall
accuracy (Kappa) of forested landscape identification with 10 m resolution increases to
86.05% (0.8147; p < 0.05).
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significant differences (p < 0.05).

However, for up-scaled time-series images, the classification accuracy of the dominant
tree species decreases from 81.88% (0.7583) to 77.23% (0.7014) with the spatial resolution
ranging from 4 to 30 m# (p < 0.05). Therefore, there is no significant difference appears
between the classification accuracies of dominant tree species of up-scaled time-series data
at the resolution of 16 and 30 m (p > 0.05). Finally, combining phenological metrics and
time-series NDVI data does not increase the recognition accuracy but leads to the decline
from 10 to 30 m# resolution, which differs obviously from the results of native multiscale
satellite data at each same given resolution (p < 0.05).

3.4. Contributions of Different LSP Metrics to Multiscale Tree Species Classification

The feature importance for identifying forest tree species using the eight LSP metrics
of four image resolutions are different (Figure 6). Before analysis, each final feature
importance for variables was averaged after ten cross-verifications. The results show that
the LSP metrics are valuable for differentiating among forest tree species in the study region
(p < 0.05). The various LSP metrics produce different positive effects on the classification of
dominant tree species, although the magnitude of the influence varies (p < 0.05; Figure 6).
When considering the four different spatial resolutions, the importance of each LSP metric
turns out to be inhomogeneous (Figure 6). The phenological information such as SOSm,
EOS, and POS are more important at higher image resolution, whereas only the LOS
achieves the highest importance at lower spatial resolution. In addition, AMP and SOS
show roughly the same degree of importance at different resolutions.

Testing the cumulative importance of each LSP metric for individual spatial resolutions
reveals the importance of each variable from medium to high resolutions (Figure 6). At
first, the LSP metrics in AMP, SOSm, and SOS are by far the three most important features
(p < 0.05), showing the middle and early growth period account for the most important
contribution in tree-species phenological observations. They are followed by LOP and
LOS, which control the length of the growth period and the peak period. Subsequently, the
remaining EOSm and EOS metrics represent the period of declining growth which has less
importance. Finally, POS is the least important metric which indicates the peak time, and
the differences of POS among the different dominant tree species are small.
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3.5. Comparisons of Accuracy for Producer and User of Dominant Tree Species

In native satellite images, the PA of Bp, Lg, Qm, Pd, and the UA of Bp, Lg, Qm show a
downward trend on the whole with the decrease in spatial resolution goes from 4 to 30 m;
except for the UA of Pd which increases at first and then decreases (Figure 7). None of
the dominant classes of tree species have both a low UA and PA. The confusion matrix
shows that many Bp, Lg, and Qm are misclassified into Pd in different spatial resolutions,
which also leads to an over-mapping for Pd, so the UA of Pd is less than the PA from 4 to
30 m resolution, especially at 4 m. For the mapping results of forest tree species landscape
(Figure 8), the comparison shows that the worst classification result occurs in imagery
with 30 m resolution, where a portion of Qm and Lg is misclassified as Pd. In addition,
some Lg are misclassified as Qm at 16 m resolution and the overall forest mapping at 10 m
resolution is better than at 4 m resolution, which is mainly due to the higher mapping
accuracy of Qm and Bp.
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However, for up-scaled images, both PA and UA values of different deciduous species
change only slightly when the spatial resolution goes down (Figure 7). The UA of Bp, Lg,
and Qm and the PA of Pd change slightly from 4 to 30 m# resolution. At the same time,
the UA of Bp, Lg, and Qm are significantly higher than their PA, except for Pd, implying
over-mapping occurred. On the contrary, the forest tree species with high UA but low
PA refer to under-mapping [77]. In this study, low PA of Bp, Lg, and Qm show that large
areas of Bp, Lg, and Qm are not properly classified into their respective class, and their PA
decrease as the image resolution goes down (Figure 7). In general, PA and UA of the most
tree species for up-scaled data are often diminished and more unstable than that for real
satellite data, furthermore, almost all tree species reaching their maximum value at the
image resolution of 4 m.

4. Discussion

Spatial resolution significantly affects the identification of forest species and mapping
based on single-date images [7,12,50,78]. Some studies have indicated that the NDVI
temporal variation of stand canopy shows the detailed dynamics of timeline-based spectra
of different forest types [14,15]. However, less attention has focused on the spatial scale
of the uncertainty in the results. The present study confirms that the overall accuracy
gradually extends from 78.59% to 83.63%, while the kappa synchronously increases from
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0.7154 to 0.7825, which indicates that the classification accuracy of the dominant tree
species is strongly linked to the spatial resolution of the time-series satellite data (p < 0.05).
In this study, for a spatial resolution of 4 and 10 m, the classification accuracy is high
(>81.88%), where the forest landscape identification is apparent, and each dominant species
are classified correctly (p < 0.05). Overall, the time-series images with higher resolution
(4–10 m) providing higher and more stable OA and kappa perform better in identifying
the regional forest tree species than those with lower resolution (16–30 m). However, it
does not mean that images with finer resolution can always provide more accurate results
because it also depends on the selected feature datasets and classification methods.

The mean NDVI values of 4 m images are less than that of 10 m (p < 0.05; Figure 3),
which we attribute to the NDVI being prematurely saturated at the higher resolution
because a higher resolution correlates with less energy incident on the sensor, which
decreases the spectral resolution [51,79]. Hence, the annual peak NDVI is mostly below
0.7 for the various dominant deciduous species at 4 m resolution, which is significantly
less than the NDVI at the resolution of 10, 16, and 30 m, respectively (p < 0.05; Figure 3).
Furthermore, the result is also assisted by the narrower near-infrared band and higher
radiation resolution of Sentinel-2 image (12 bit, whereas 10 bit of the Gaofen-2 image),
which could provide a better capability of vegetation information monitoring. It actually
may overcome the negative effects of its coarser resolution to some extent. In addition,
the multiscale annual mean NDVI of the sample data for different forest land remains
essentially stable for up-scaled data (Figure 3). The spectral information in up-scaled images
has a strong dependence on the input high-resolution images, which leads to discrepancies
in comparison to actual imaging results at the given spatial resolution (Figure 3). As the
image resolution decreases, the spectral information related to the forest tree species was
smoothed which would increase omission and commission errors [80]. These results imply
that the resampled time-series data have different spectral reflectance in comparison to
native images acquired at the same resolution evidently (p < 0.05), which reduces the
susceptibility to spatial resolution and barely represents the satellite image features of
the same scale due to the spectral distortion [51]. Therefore, the classification results of
tree species based on up-scaled images differ from those of native images for a given
resolution (p < 0.05), indicating that native satellite data cannot be accurately replaced by
up-scaled images.

Satellite remote sensing imagery is widely applied to monitor forest phenology on
global and regional scales [42–44]. Plant phenology provides valuable information for
classifying vegetation types [43], and some studies use spectral and phenological param-
eters to map crops [52,65,81]. However, research on mapping forest tree species has not
considered the phenological metrics with images at a medium-high spatial resolution,
which might introduce uncertainties in identifying and mapping different tree species [19].
Our classification results combined with NDVI and LSP metrics increases the OA (Kappa)
by 2.24% (0.0322), 2.42% (0.0322), 1.89% (0.0258), and 1.94% (0.0243) at 4, 10, 16, and 30 m,
respectively. For the 10 m time-series data, all deciduous tree species are correctly classified
into their respective categories (Figure 8), and their UA and PA can reach more than 83.12%.
These results show that using spatial resolution NDVI data combined with temporal phe-
nological characteristics improves the accuracy of the results at each scale from 4 to 30 m
(p < 0.05), which indicates that combining the spectral curve and the LSP metrics is a good
way to identify and monitor the main forest ecosystem and may improve the precision of
spatial mapping in temperate regions from medium to high spatial resolution.

Although differences appear in the phenological metrics at different resolutions, to
some extent they have positive effects on the classification of forest tree species in this
study region (Figure 6). The three highest phenological variables are AMP, SOSm, and
SOS, based on the contribution of different phenological metrics and the classification of
tree species. This indicates that the growth stage from germination to maximum growth
and the amplitude of the growth spectrum contribute the most to the identification of
the tree species. In addition, after combining the phenology metrics, the accuracy of the
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classification results based on the up-scaled data decreases by different degrees compared
with the previous results (Figure 5). This is mainly contributed to the decrease in effective
spectral information after the smoothing of up-scaled NDVI data and the increase in
invalid band information, which would increase feature redundancy, leading to the further
degradation of classification results [51,82].

Considering the special significance of phenology in spring [38,44,53], many previous
studies were conducted to investigate the effects of forest spring phenology with different
resolutions. However, most of them used up-scaled images due to a lack of multiresolution
satellite data covering the area with a shorter revisit period [83]. Therefore, we investigate
herein how scaling affects spring phenology (SOS) via a comparison between results from
low- and high-resolution data. The results show that retrievals of SOS date reflect the
difference in spatial scale, resulting in a delay as the resolution worsens. In this study, the
SOS results of all species of Landsat-8 data (30 m) are earlier than that of Genfen-1 data
(16 m). This result is mainly attributed to the better radiometric precision of Landsat-8
OLI (12 bit, whereas 10 bit of the Genfen-1) and the spectral range refinement of the near-
infrared band (Table 1), which improves the overall signal to noise ratio for vegetation
monitoring [51] and somewhat avoid overestimation [44] and further reasons need to
be verified in follow-up studies. Relative to data with a medium-low resolution that
is commonly used to monitor vegetation phenology, medium-high resolution satellites
can achieve higher classification accuracy. This is because the observation of deciduous
vegetation phenological characteristics is vulnerable to the interference of the evergreen
forests or other background factors such as the stand age and topography [84,85]. As a
consequence, medium-high resolution satellites can observe more spatial detail information
and therefore capture the spectral variation of vegetation in phenology which is not
normally detectable in data from sensors with lower spatial resolution.

However, the results show that estimations of spring phenology from up-scaled
imagery have little noticeable change, corresponding less to the results derived from
multiscale satellite remote sensing data. These findings are consistent with related studies
based on up-scaled data. For example, Tian et al. (2021) resampled time-series images
with 10 m to a series of lower spatial resolution images from 30 m to 8 km and obtained
relatively stable vegetation SOS data in rural areas with a resolution ranging from 10 m
to 8 km [53]. Similarly, another study found that the overall SOS averaged from images
with a resolution ranging from 1 × 250 m to 35 × 250 m is generally similar but with
a difference of fewer than five days [44]. Therefore, Zhang et al. (2017) suggested SOS
datasets should be calculated from actual time-series images of different spatial scales
but not the time-series data up-scaled from finer resolution imagery data using simple
resampling methods [52].

In this study, both phenological monitoring and the classification of forest tree species
differ significantly when using multiscale satellite images and up-scaled images because of
the differences in the imaging mechanism. Related research revealed the difference between
the native satellite data and up-scaled data is determined by the mechanism of remote
sensing imaging, in which the most up-scaled results are spatial insensitive because of not
considering the spatial adjacent information of landscapes [51,86], nor adjusting as the
variation of spectral reflection properties at different spatial resolutions [87]. Therefore, the
up-scaled images cannot be directly used to replace remote sensing images in time-series
monitoring or quantitative analysis. Therefore, methods are gradually being developed to
scale-transformation model involving physical mechanism [86–89] and temporal–spatial
fusion algorithms [23,53,90], to ensure image features from different spatial resolutions can
be integrated into applications.

This study expands on previous work in two important ways: First, we continue to
compare tree species classification for multiscale time-series images and explore the appli-
cability of remote sensing images to the study of LSP metrics. Next, we discuss how spatial-
scale uncertainty affects phenological observations and the classification of dominant tree
species. In addition, we try to construct herein monthly time-series multiscale satellite
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images with resolutions ranging from 4 to 30 m. In fact, the monthly time-series data has
proven to suffice to describe the one-year spectral curve dynamics of forest tree species
when cloud-free imagery is available at specific phenological stages [17,24,70]. However,
some studies have shown that more intensive time-series images would be better at captur-
ing fine dynamic differences to separate information on similar forest tree species [19,91].
With recent breakthroughs in multispectral remote-sensing, the temporal-spatial resolu-
tion of satellite data is improved obviously. Using imagery from more advanced sensors
will enhance the precision of forest phenology monitoring and tree species classification.
Therefore, more intensive time-series multiscale images are required to extend the results
in this paper.

5. Conclusions

The spatial resolution of satellite remote sensing data has a major impact on forest
information extraction and dynamic monitoring, and it is critical to the success of regional
dominant tree species mapping. This study develops a process for reconstructing time-
series satellite images with medium-high spatial resolution and applies it to monitor forest
phenology and map tree species. The study also examines how time-series spectral data
responds to the scaling effect obtained from various spatial resolution satellites. Moreover,
we discuss how spatial resolution and LSP metrics affect the classification of dominant
tree species. The results indicate that remote sensing images with 10 m resolution are
more appropriate for the time-series-based forest tree-species classification with superior
performance in the study region. In addition, the use of additional LSP metrics further
improves the classification results, so they are highly recommended.

Nowadays, though the temporal resolution of remote sensing data is improving, few
pieces of research have been designed to investigate how up-scaled time-series images
affect forest mapping on landscapes. The present results elaborate the general pattern
of time-series remote-sensing tree species identification and spring phenology extraction
with medium-high spatial resolution. Therefore, a significant difference was found by
contrasting the forest landscape classification results obtained from real multiscale time-
series satellite data with that of up-scaled time-series images. This work thus provides a
primary understanding of how to use and compare time-series remote sensing images with
different spatial resolutions for forest monitoring.
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Appendix A

Table A1. The information of satellite images used in this study.

Month Imaging Date
(Gaofen-2)

Imaging Date
(Sentinel-2)

Imaging Date
(Gaofen-1)

Imaging Date
(Landsat-8)

January 20180121 20180120 20180117 20180111
February 20180215 20180214 20180214 20180212

March 20180316 20180311 20180311 20180316
April 20180430 20180415 20180418 20180417
May 20180510 20180515 20180515 20180519
June 20180608 20180614 20180621 20180620
July 20180722 20180729 20180722 20180706

August 20180816 20180823 20180820 20180823
September 20170920 20170922 20180916 20180924

October 20181019 20181017 20181019 20181025
November 20181118 20181121 20181120 20181126
December 20181213 20181216 20181215 20181213

Table A2. Characteristics of the dominant tree species in this study.

Species Name Picture Main Characteristics

Larix gmelinii (Lg)
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