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Abstract: Prompt estimation of phytoplankton biomass is critical in determining the ecological quality
of freshwaters. Remote Sensing (RS) may provide new opportunities to integrate with situ traditional
monitoring techniques. Nonetheless, wide regional and temporal variability in freshwater optical
constituents makes it difficult to design universally applicable RS protocols. Here, we assessed the
potential of two neural networks-based models, namely the Case 2 Regional CoastColour (C2RCC)
processor and the Mixture Density Network (MDN), applied to MSI Sentinel-2 data for monitoring
Chlorophyll (Chl) content in three monomictic volcanic lakes while accounting for the effect of their
specific water circulation pattern on the remotely-sensed and in situ data relation. Linear mixed
models were used to test the relationship between the remote sensing indices calculated through
C2RCC (INN) and MDN (IMDN), and in situ Chl concentration. Both indices proved to explain a large
portion of the variability in the field data and exhibited a positive and significant relationship between
Chl concentration and satellite data, but only during the mixing phase. The significant effect of the
water circulation period can be explained by the low responsiveness of the RS approaches applied
here to the low phytoplankton biomass, typical of the stratification phase. Sentinel-2 data proved their
valuable potential for the remote sensing of phytoplankton in small inland water bodies, otherwise
challenging with previous sensors. However, caution should be taken, since the applicability of such
an approach on certain water bodies may depend on hydrological and ecological parameters (e.g.,
thermal stratification and seasonal nutrient availability) potentially altering RS chlorophyll detection
by neural networks-based models, despite their alleged global validity.

Keywords: remote sensing; mediterranean area; Phyto-PAM; volcanic lake; phytoplankton; water
management; C2RCC; MDN; water framework directive; water quality

1. Introduction

It is widely shared by scientists and public opinion that freshwater ecosystems are of
high importance for human wellbeing, although diverse activities act as environmental
stressors detrimentally impacting the aquatic habitat quality, functionality, and status [1].
Major pressures such as nutrient pollution, deforestation, and urbanization are strongly
reducing water quality, leading to the degradation of freshwater habitats [2–4]. In the EU
territory, preserving and monitoring water quality has raised growing concern, leading
to the adoption of the Water Framework Directive (Directive 2000/60/EC or WFD). WFD
encourages policymakers, environmental managers, and researchers to plan and adopt
yearly monitoring programmes to improve the ecological quality of all waters within the
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territory. Phytoplankton biomass monitoring is a conventional method, also included in the
WFD guidelines, for assessing water quality status in both inland [5] and marine waters [6].
Specifically, since chlorophyll-a (Chl-a) is the main pigment in photosynthetic organisms,
it represents a suitable proxy for phytoplankton biomass estimation [7], thus relating to
nutrient concentration and to freshwater trophic state.

However, the need for consistent, long-term assessment of freshwater ecological status
urges integrative, frequent, and synoptic approaches. While in situ sampling of photo-
synthetic pigments is expensive and labour-intensive, as well as spatially and temporally
limited, Remote Sensing (RS) provides new opportunities to integrate and improve tradi-
tional monitoring techniques [8–10]. Further, the increasing number of orbiting satellites
makes remote sensing a cost-effective, energy- and time-saving method without equal.
In particular, the recent launch of high spatial resolution satellites providing free and
open data (e.g., Landsat-8 and Sentinel-2) has enhanced remote freshwater investigations,
resulting in an ever-growing number of studies [11–15] with the specific features of the
MultiSpectral Instrument (MSI) onboard Sentinel-2 satellites offering additional advan-
tages for water quality measurement [16]. The MSI sensor measures Earth’s reflected
radiance in 13 spectral bands. Given its high spatial resolution (10–60 m) in the visible
region, and its 12-bit radiometric resolution, MSI allows fine-scale measurement of water
properties, enabling the monitoring of small water bodies [13,17]. Furthermore, Sentinel-2
temporal resolution of 2–5 days provides frequent data acquisition, allowing constraints to
be overcome (such as frequent cloud cover) and to detect rapid changes of phytoplankton
biomass [18].

Remote sensing-based detection of Chl relies on the application of specific indices
depending on the biogeochemical characteristics of the water body, which leads to the
distinction between case-I and case-II waters [19,20]. The former are waters where phy-
toplankton and its degradation products dominate optical properties (e.g., open oceans),
while inland waters are categorised as case-II waters, being subject to potentially large and
independent variations of Chl and other optically active suspended substances. Given the
wide regional and temporal variability in constituents of case-II waters, a large number
of Chl-retrieving algorithms have been developed and tested so far (e.g., semi-empirical
methods or semi-analytical approaches) [15,17,21–29], making the selection of the most suit-
able index sometimes intricate [27,30,31]. Indeed, specific algorithms are often optimized
and validated for commonly understood but not always straightforward to define water
types, e.g., turbid [32] or clear water [33]. Other statistical methods like neural networks
(NN) based on spectral inversion algorithms for radiative transfer simulations [34] have
successfully been applied, is intended for use under different bio-optical regimes and
without a priori knowledge of the in-water optical conditions (being trained to varying
parameter concentration and optical property ranges), sometimes outperforming other
methods [27,31,35–38].

Among these, the Case-2 Regional CoastColour processor (C2RCC) [39] is a “user-
friendly” method using MSI data that is readily available in the ESA’s SentiNel Application
Platform (SNAP) [28]. C2RCC functioning relies on a set of neural networks deriving water
inherent optical properties, which are then converted into Chl-a and total suspended matter
(TSM) concentrations. The C2RCC processor is an improvement of the Case 2 Regional
processor originally developed by Doerffer and Schiller [34], integrating an atmospheric
correction part dedicated for water observation, and has been trained to cover even extreme
ranges of scattering and absorption [39]. On the other hand, the Mixture Density Network
(MDN) is a recently developed algorithm by Pahlevan et al. [27], which is a variation of
Multilayer Perceptrons NN methods and relies on a class of neural networks that estimates
multimodal Gaussian distributions over a range of solutions. The MDN algorithm has
been trained with 1000 co-located in situ Rrs- Chl-a pairs and was initially tested with
Sentinel-2 and Sentinel-3 data, outperforming previously published algorithms (e.g., OC
and Blend) [27]. Still, both C2RCC and MDN are far from being considered universally
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applicable approaches for Chl retrieval, and their efficiency needs to be tested under
different conditions.

Water quality analysis of volcanic lakes has rarely been addressed by applying RS
techniques [40,41] and, as far as we know, none of these studies has investigated warm
monomictic volcanic lakes using MSI data. In such lakes, temperatures never drop below
4 ◦C and thermal stratification occurs during summer, when air temperature increases,
and surface water is heated more rapidly. Water circulation occurs only once a year when
surface waters cool to a temperature equal to the bottom waters. In most temperate and
sub-tropical warm monomictic lakes, water column mixing brings hypolimnetic nutrients
to the surface, leading to annual maximum phytoplankton proliferation [42–44]. Such a
marked variation in primary production between the thermally stratified season and the
full water column mixing could define a sharp temporal divergence in the viability of RS
observation of such water bodies.

Accordingly, the purpose of this paper is to assess the potential of two open-source
algorithms (i.e., C2RCC and MDN) applied to MSI Sentinel-2 data to retrieve Chl content in
three monomictic volcanic lakes (Central Italy) while accounting for their water circulation
pattern. Given the appropriateness of both processors for a broad range of bio-optical
conditions, we hypothesize that the water circulation pattern of such lakes (i.e., one mixing
and one stratification phase) will not affect the strength of the relationship between remote
sensing and field data. Due to growing anthropogenic activity and to an increasing
frequency of algal blooms, the need for trophic level assessment of Italian volcanic lakes
has become essential for their preservation [45].

2. Materials and Methods
2.1. Study Area

This study was carried out in three warm monomictic volcanic lakes located in the
Latium region, Italy: Lake Albano, Lake Bracciano, and Lake Nemi (Figure 1).
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Figure 1. Location of the three investigated volcanic lakes within the study area. Datum: WGS 84,
UTM 32N.

These lakes are all located in craters originated from Quaternary volcanic activity [46],
which determines their circular shape and great depth compared to the relatively low sur-
face area [44] (further described in Appendix A). As their water input is nearly exclusively
provided by underground springs and rainfall, these lakes are characterized by long water
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renewal times, which can represent an additional risk factor if deterioration phenomena
occur [45,47].

Based on the temperature data of the water column collected by the Regional Agency
for Environmental Protection of Lazio (ARPA Lazio), in all three lakes, the seasonal thermal
stratification for the year 2019 started in spring, in agreement with findings from previous
studies reporting similar trends [42,45]. According to the water circulation phases, chloro-
phyll concentration data were grouped as follows (Figure 2): mixing from November to
April, stratification from May to October.
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Figure 2. Water thermal profiles in 2019 of: (a) Lake Bracciano, (b) Lake Albano, and (c) Lake Nemi 

(data from two sampling dates in the month of May are available: May = 6 May 2019 and May2 = 31 
Figure 2. Water thermal profiles in 2019 of: (a) Lake Bracciano, (b) Lake Albano, and (c) Lake Nemi
(data from two sampling dates in the month of May are available: May = 6 May 2019 and May2 = 31
May 2019). Blue lines represent temperature profiles of the mixing phase, during which little or
no differences between the surface and deep layers of the water column were observed. Red lines
represent thermal stratification, where the water column is divided into epilimnion (top, warmer
layer), metalimnion (with rapid temperature change), and hypolimnion (bottom, colder layer).
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2.2. Digital Data Collection and Processing

Sentinel-2 MSI L1C products were downloaded from the Copernicus Open Access
Hub (https://scihub.copernicus.eu (accessed on 28 October 2019)). L1C products contain
orthorectified, georeferenced Top of Atmosphere (TOA) reflectance in UTM map projection
with WGS84 datum. Matchups with in situ measurements were selected with a mean time
difference between suitable Sentinel-2 and in situ data of ~2 days. For only one matchup a
maximum time difference of 8 days with Sentinel-2 MSI overpass was allowed (Table 1),
provided that weather conditions were stable between the image acquisition and field
sampling and that no algal blooms occurred. This time window was set to allow sufficient
matchups between ground data and Sentinel-2 imagery.

Table 1. Sentinel-2 image acquisition dates and sampling dates (“-“ indicates the absence of suitable satellite data).

Lake Albano Lake Bracciano Lake Nemi

Sampling
Date

Image
Acquisition

Date
Time

Difference (d)
Sampling

Date
Image

Acquisition
Date

Time
Difference (d)

Sampling
Date

Image
Acquisition

Date
Time

Difference (d)

19 March 2019 22 March 2019 3 18 March 2019 22 March 2019 4 19 March 2019 22 March 2019 3
2 April 2019 1 April 2019 1 1 April 2019 30 March 2019 2 2 April 2019 1 April 2019 1
16 April 2019 - - 17 April 2019 19 April 2019 2 16 April 2019 - -
16 May 2019 - - 16 May 2019 - -
28 May 2019 5 June 2019 8 30 May 2019 31 May 2019 1 29 May 2019 5 June 2019 7
12 June 2019 15 June 2019 3 10 June 2019 13 June 2019 3 12 June 2019 15 June 2019 3
27 June 2019 25 June 2019 2 26 June 2019 25 June 2019 1 27 June 2019 25 June 2019 2
9 July 2019 5 July 2019 4 9 July 2019 5 July 2019 4
23 July 2019 25 July 2019 2 25 July 2019 25 July 2019 0 23 July 2019 25 July 2019 2
5 September

2019
3 September

2019 2 17 September
2019

18 September
2019 1 5 September

2019
3 September

2019 2

21 October
2019

23 October
2019 2 21 October

2019
23 October

2019 2

Satellite images were visually checked to make sure that the studied lakes were not
covered by clouds or cloud shadows before application by exploiting the spectral band
at 1375 nm (band 10), which enables cirrus detection. Due to cloud cover on images, no
satellite data are available for two sampling dates for Lake Albano and Lake Nemi.

Two different indices were implemented, one calculated through the neural networks
of the C2RCC processor (INN) and one calculated through the MDN algorithm (IMDN).
The Case 2 Regional Coast Colour (C2RCC) processor (v1.0) is readily available on SNAP
among the Thematic Water Processing tools. Getting as input the water leaving reflectances
from the atmosphere part, the in-water part performs the inversion of the spectrum into
inherent optical properties (IOPs), i.e., absorption and backscattering coefficients, from
which Chl and total suspended matter concentrations are calculated. The simulations
on which the C2RCC is built are based on a large set of optical data and concentration
measurements, enabling the processor to cover extreme ranges of scattering and absorption
and making it suitable for a large variety of study areas [34]. To better adapt the processing
to the conditions of the study area, C2RCC allows flexibility in adjusting ancillary parame-
ters. Among the processing parameters, we adjusted elevation, salinity, and temperature
according to local values registered during each sampling campaign. The CHL exponent
and the CHL factor required to better estimate Chl concentration remained unchanged
from the default values, as it was not possible to retrieve such parameters from the lakes
under study. To test the suitability of this approximation, we assessed the relationship
between in situ measured Chl and Chl absorption coefficient (iop_apig) calculated by the
C2RCC (the results are presented in Appendix B).

The MDN algorithm was recently developed by Pahlevan et al. [27] and is freely
available on GitHub (https://github.com/STREAM-RS/STREAM-RS (accessed on 26 May
2021)). Such processor models conditional probability distributions of the target variables
(i.e., Chl-a) as a mixture of multiple Gaussian functions from remote sensing reflectance
(Rrs). The Gaussians are subsequently combined to form the final output estimation through
maximum likelihood [48]. In the case of the MSI sensor, the processor requires as input Rrs
values at the following wavelengths: 443 nm, 490 nm, 560 nm, 665 nm, 705 nm, 740 nm,

https://scihub.copernicus.eu
https://github.com/STREAM-RS/STREAM-RS
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and 783 nm (i.e., Band 1 through Band 7). In the present study, Rrs reflectance values were
calculated via the C2RCC atmospheric correction.

The SNAP Pixel Extraction tool was later used to extract pixel values from the GeoTIFF
products obtained from both types of processing. To minimize errors due to boat drift and
GPS positional inaccuracies, the median value of a 3 × 3 pixel window centred at each
sampling point was extracted and used for further statistical analysis.

2.3. In Situ Data

To validate remote sensing data, a total of 30 sampling campaigns were conducted over
the period March-October 2019. Samples were collected at five sampling sites distributed
uniformly across each lake. The sampling site coordinates were recorded, and geolocation
uncertainties related to boat drift and GPS positional inaccuracies were taken into account in
the satellite data analysis (3 × 3 pixel windows, see Section 2.2). Concurrently, epilimnetic
water temperature, pH, salinity, and dissolved oxygen (DO) concentration were recorded
at each sampling site using a Hach HQ40d Portable Multi-Parameter Meter.

To estimate water Chl content, 2 L water samples, one at each sampling site, were
collected from the surface layer (max. 50 cm depth, according to previous literature)
with a Van Dorn water sampler [13,21,26–29,49]. Samples were stored on ice in sterile,
light-reflective containers (to prevent pigment degradation).

Within 24 h of collection, water samples underwent laboratory measurement of their
Chl content. In this study, total Chl concentration measurements were carried out using the
Phyto-PAM—Multiple Excitation Wavelength Phytoplankton & Photosynthesis Analyzer
(Heinz Walz GmbH, Effeltrich, Germany). This instrument allows non-invasive and rapid
biomass estimates since it does not require sample treatments before carrying out the
analysis. The functioning of this fluorimeter relies on the selective amplification of a
fluorescence signal, measured with the help of short (µsec) pulses of measuring light at a
high repetition rate (1200 Hz). These light pulses are provided by an array of light-emitting
diodes at four distinct light wavelengths (470, 520, 645, and 665 nm). A photomultiplier in
conjunction with a pulse amplifier is used as a detector for fluorescence at wavelengths
above 710 nm. The information consisting of four independent fluorescence signals is
further processed by computer-controlled data analysis using the dedicated PhytoWin-
software. Three measurements were carried out for each water sample. A Zero offset (Zoff)
determination preceded fluorescence measurement to remove other fluorescing substances’
contribution to the measured signal (e.g., humic acids).

As remote sensing indices are developed to retrieve Chl-a concentration and the Phyto-
PAM instrument measures total Chl concentration, a standard spectrophotometric method
was applied to a representative subset of water samples to validate the use of the Phyto-
PAM results (further description of the validation process can be found in Appendix C). We
assumed that Phyto-PAM’s concentration values were consistent with Chl-a concentration.
Water samples were filtered through Whatman GF/F glass microfiber filters (0.7 µm pore
size) under vacuum pressure. Filters were subsequently put in 5 mL of 90% acetone solution
and then homogenised, and acetone solution was added to the emulsion to reach the final
volume of 10 mL. Sample extracts were stored at 4 ◦C in the dark for 24 h for pigment
extraction. Extracts were clarified by centrifugation (3500 rpm, 12 min) and then transferred
to a 15-mL vial to measure their final volumes. Triplicate absorbance measurements were
carried out on each water sample using a dual-beam spectrophotometer. The resulting
absorbance values at 630 nm, 647 nm, 664 nm, and 750 nm were entered into the equation
by Jeffrey & Humphrey (1975) [50] to estimate Chl-a concentration.
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2.4. Statistical Analysis

To test the relationship between remote sensing derived indices and in situ Chl
concentration, we assumed a positive linear relationship between the two sets of data.
Due to the spatial interdependence of the samples in our dataset, we used linear mixed
models (LMM) as they allowed us to use the lake identity as a random intercept effect. We
used R software v. 3.6.1 [51] and lme4 package [52] to fit the linear mixed-effect model,
using the indices as the dependent variable and the in situ Chl content as a fixed-effect
independent variable. Further, we considered the interaction of in situ Chl concentration
with the water mixing period (i.e., mixing from November to April, stratification from May
to October), deleting the intercept to see the effect of the interaction. Finally, to determine
the amount of variance in our in situ data explained by the models, we considered the
model’s conditional R2 (R2c), related to the variance explained by both fixed and random
effects, and marginal R2 (R2m), related to the variance explained only by fixed effects [53].
No evident deviations from normality emerged after visual inspection of residual plots.

3. Results
3.1. In Situ Data

Descriptive statistical results of measured parameters are shown in Table 2. Over
the sampling period, Chl and Chl-a concentrations exhibited comparable trends in all
three lakes, with the highest values recorded in early spring and minimum values in
July (Table 2). Epilimnetic water temperatures showed their lowest values in March and
maximum values in July, followed by a slow decrease. Comparable values of DO and
pH were observed among the three lakes, whereas salinity was significantly lower in lake
Nemi compared to the other two lakes.

Table 2. Statistical description (mean, minimum, maximum, and standard deviation) of water properties: total chlorophyll
concentration (Chl) measured spectrophotometrically, chlorophyll-a concentration (Chl-a) measured spectrophotometrically,
epilimnetic water temperature (Temp), salinity (Sal), pH, dissolved oxygen concentration (DO) in the studied lakes.

Lake Chl (mg/L) Chl-a (mg/L) Temp (◦C)

Mean Min Max SD Mean Min Max SD Mean Min Max SD
Bracciano 1.68 0.44 3.73 0.95 1.29 0.44 2.51 0.60 18.37 10.47 26.47 6.03
Albano 3.69 0.42 20.2 4.56 3.17 0.33 19.1 4.2 21.1 11.1 30.1 6.3
Nemi 2.15 0.42 10.86 2.81 1.87 0.33 8.55 2.5 20.4 10.3 28.7 6.1

Lake Sal (‰) PH DO (mg/L)

Mean Min Max SD Mean Min Max SD Mean Min Max SD
Bracciano 0.27 0.26 0.27 0.01 8.31 7.14 8.92 0.37 9.57 8.3 10.38 0.79
Albano 0.24 0.22 0.25 0.01 8.42 8.04 8.65 0.15 0.27 8.57 10.68 8.42
Nemi 0.16 0.15 0.16 0.00 8.30 7.36 8.69 0.27 8.96 7.59 10.31 0.94

3.2. Indices Performance Assessment

When analysing the results for the INN and IMDN models, we found significant depen-
dency on the water mixing period. In particular, the relationship between INN and the in
situ data was significant when considering data in the mixing phase, while there was no
significant relationship during the stratification period (Figure 3a). For the mixing phase,
there was a positive relationship between the two sets of data, while for the stratification
phase the relationship was negative, although not significant (Figure 3b).
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The 95% coefficient interval for stratification includes zero, which indicates a non-significant relationship between measured
and predicted chlorophyll content. (b) Plot of the interaction effect between Chl concentration and water circulation phase.

With the IMDN index, similar outcomes were obtained in comparison to the model
with INN. The relationship between Chl data and remote sensing data was positive and
significant during the water mixing phase, whereas there was no significant relationship at
low Chl concentrations, that is, during the stratification phase (Figure 4).

Furthermore, the variance explained by the two indices showed comparable values of
R2m (INN = 0.331, IMDN = 0.316) and R2c (INN = 0.475, IMDN = 0.467), indicating that the
neural networks-based approaches implemented in C2RCC and MDN are able to explain a
satisfactory portion of the variability in the in situ data.
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Figure 4. (a) Coefficient plot of the linear mixed model designed with the index based on the MDN algorithm (IMDN). Dots
represent coefficient estimates; the outer error bars are 95% confidence intervals and the inner error bars are 50% confidence
intervals. The 95% coefficient interval for stratification includes zero, which indicates a non-significant relationship between
measured and predicted chlorophyll content. (b) Plot of the interaction effect between Chl concentration and water
circulation phase.
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4. Discussion

The aim of this paper was to test the performance of the C2RCC and MDN processors
applied to Sentinel-2 products for Chl concentration monitoring in three volcanic lakes of
central Italy while assessing the influence of the water mixing conditions on the relationship
between remote sensing and field data. We chose to apply (a) the C2RCC processor due
to its ease of operation within the ESA’s SentiNel Application Platform (SNAP) and wide
applicability, thus potentially making it a favoured choice for many users; (b) the MDN
algorithm as it is a recently developed method that proved to outperform previous, well-
established methods when applied to Sentinel-2 data. Given the purpose of the present
study, our efforts were focused on a restricted (but representative) number of comparable
lakes over one seasonal cycle, unlike other studies investigating one [12,29] or several
water bodies [15] on a single or limited dates.

This study showed that MSI data has potential for Chl estimation in monomictic
volcanic lakes, proving Sentinel-2 satellites to be powerful tools for water quality mon-
itoring. Indeed, the two models based on INN and IMDN both exhibited a positive and
significant relationship between Chl concentration and satellite data. Nonetheless, contrary
to our expectations, such a significant relationship was observed only during the mixing
phase, indicating that the water circulation pattern of such lakes (i.e., one mixing and one
stratification phase) may affect the strength of the relationship between remote sensing and
field data when using C2RCC and MDN processors.

Seemingly, the significant effect of thermal stratification on the performance of the
RS-based index can be explained by the low responsiveness of the RS approach applied
here to the low amount of phytoplankton biomass. Indeed, the large amount of nutri-
ents made available by the full water circulation taking place during the mixing phase
increases phytoplankton biomass, which can be more easily captured by RS techniques.
Conversely, when the stratification phase is established, the water column is divided into
three compartments: (1) an upper layer (epilimnion) of warm, oxygenated water, where
the majority of primary production takes place; (2) a thin middle layer (metalimnion)
where temperature changes more rapidly; and (3) a cold, low in dissolved oxygen layer
(hypolimnion) where the decomposition of sedimenting organisms from the epilimnion
occurs [43,44]. Hence, during thermal stratification, the organisms’ metabolism within
the epilimnion causes a progressive reduction of nutrient availability with a consequent
phytoplankton mortality increase in this layer [54–58]. Accordingly, when considering
data related to the stratification phase, the absence of a significant relationship between
Chl concentration surveyed by the Phyto-PAM and the one retrieved by RS can have a
threefold explanation.

First, several studies proved the important (and sometimes dominant) contribution
that inorganic and organic sediments have on the optical properties of case-II waters [59–64].
Their effects on total backscattering are magnified when phytoplankton biomass is low. In
this case, the remotely-sensed signal can be noticeably impacted by non-phytoplankton
water constituents (e.g., minerals and CDOM) which are not correlated with Chl-a concen-
tration [34,62,65,66]. In the case of spectral inversion algorithms, as in C2RCC, the ability
of radiative transfer simulations to simultaneously solve several IOPs (i.e., absorption and
backscattering coefficients) is sensitive to errors due to the existence of ambiguous solutions
resulting from the additive nature of the IOPs. That is to say, different combinations of
IOPs of each water component can lead to an identical sum of IOPs and, thus, to similar
reflectance values [67,68]. On the contrary, the MDN algorithm attempts to overcome
this one-to-many issue by modeling a conditional probability distribution of the target
variables given input Rrs data rather than directly modeling the Rrs- Chl-a relationship
like standard NNs [27,48,69]. However, the results obtained in the present study show a
comparable performance, indicating that this non-uniqueness problem is yet to be fully
solved for the investigated lakes. Indeed, such ambiguity error on the total absorption
coefficient is the highest for highly absorbing water bodies [67]. Therefore, even though
the methods used in this study are suitable for phytoplankton monitoring, the difficulty of
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sensing low Chl-a signals limits their effectiveness only to the mixing phase of the yearly
water circulation pattern of this type of lakes. Moreover, the performance of this kind
of approach is dependent on the ranges of the training parameters. Indeed, when the
bio-optical properties of the investigated area are beyond training ranges, this is expected
to adversely impact the NN efficiency of retrieving Chl concentration [70,71].

Second, the absence of a significant correspondence between remotely-sensed data
and field data could be concurrently ascribed to the MSI sensor specifications in terms
of Signal-to-Noise Ratio (SNR). Sentinel-2 MSI SNR (generally below 150:1 for most of
its spectral bands) is much lower than the minimum SNR required for Chl retrievals in
marine waters, which is set at 400:1 for all visible bands and at 600:1 for NIR bands [72,73].
However, improving SNR values when designing sensors requires trade-offs in terms of
reduced spatial and spectral resolution, as well as other radiometric characteristics [72,74].
Due to the relatively low Sentinel-2 SNR, it is reasonable to assume that the MSI sensor
mainly measures noise when Chl concentration is low. Consequently, a higher relative
error in the sensed signal is expected [75], which affects the significance of the indices
during the stratification phase.

5. Conclusions

Sentinel-2 data proved their valuable potential for remote sensing of phytoplankton
in small inland water bodies, otherwise challenging with previous sensors. This study
confirmed the feasibility of C2RCC and MDN applied to Sentinel 2 data to monitor chloro-
phyll content in warm monomictic lakes. The approach presented has a good potential for
operational monitoring of small and medium-sized water bodies required, for instance,
by the European Union Water Framework Directive. Nonetheless, it is worth highlighting
the limits intrinsically embedded in our dataset. Indeed, this study was carried out on a
group of peculiar lakes and over just one year, without an optimal (although acceptable)
time match-up between ground data and Sentinel-2 imagery. Additionally, the absence of
simultaneous field radiometry data did not allow an accurate validation of the atmospheric
correction.

Caution should be taken when relying on remote sensing for water quality monitoring
(i.e., C2RCC and MDN) because the consistency of such a method may depend on the
hydrological and ecological processes associated with the water mixing conditions, which
have not been addressed in the algorithm yet. Especially the low chlorophyll concen-
trations during the stratification phase can prove challenging for the performance of the
tested approach, despite its claimed broad applicability. From the present study, it seems
evident that preliminary ecological knowledge of the water body under investigation is of
paramount importance for a proper application of the Chl-retrieving algorithms, even on a
temporal scale. Therefore, indiscriminate use of the neural networks-based approaches
assessed in this study without focusing on the local biological and hydrodynamic pro-
cesses could lead to inconsistent results, because water thermal stratification of lakes could
significantly affect retrieval.
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Appendix A

Lake Bracciano is included in Bracciano-Martignano Regional Park and designated
as a Site of Community Importance (SCI-IT6030010). Lake Bracciano has recently been
used as a drinking water supply in the event of a city water emergency. The lake water
crisis of 2017 caused by dry weather and constant uptake led to a substantial water-level
reduction (up to −198 cm) and to water quality deterioration, causing growing concern for
the preservation of the ecosystem integrity.

Lake Albano is ranked as meso-eutrophic [47,76], with progressive deterioration over
time due to an increase of sewage discharge [77] and over-extraction of groundwater within
the watershed. Cyanotoxic algal blooms regularly occur in Lake Albano, when the water
column mixing brings hypolimnetic nutrients to the surface [76,78,79]. Even though its
quality is gradually deteriorating, Lake Albano is designated SCI (IT6030038).

Together with Lake Albano, Lake Nemi is part of Castelli Romani Regional Park.
Recent data reveal an improvement in Lake Nemi’s water quality. After the implementation
of domestic sewage diversion in the early 1990s, all biological and chemical data showed
partial recovery, shifting Lake Nemi’s trophic status from eutro-hypereutrophic to meso-
eutrophic [46,47,77].

Table A1. Main features of the volcanic lakes under investigation.

Lake Bracciano Lake Albano Lake Nemi

Location (Lat., Lon.) 42◦07′16′ ′N
12◦13′55′ ′E

41◦45′0′ ′N
12◦39′54′ ′E

41◦42′44′ ′N
12◦42′09′ ′E

Max. depth (m) 165 175 27.5
Mean elevation (m a.s.l.) 164 293 316

Surface area (km2) 57.5 6.0 1.6
Volume (106 m3) 5050 464 26.5

Renewal time (yr) 137 47.6 15

Outflows

Arrone river
(currently dry in its
first stretch), Paul

aqueduct

No natural outlets No natural outlets

Appendix B

Table A2. Marginal R2 (R2m) and conditional R2 (R2c) of the linear mixed model based on the
chlorophyll absorption coefficients retrieved from the C2RCC (iop_apig).

R2m R2c

0.326 0.476
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Appendix C

A correlation test between Phyto-PAM chlorophyll values and the ones obtained
spectrophotometrically was performed. Before carrying out this test, it has been necessary
to assess the effective relationship between total chlorophyll and chlorophyll-a, as well as
testing whether this latter pigment was the major contributor to total Chl concentration. To
this end, a T-test was used to calculate the differences between Chl-a and total chlorophyll
concentration. The results indicate that Chl-a does not differ significantly from total
chlorophyll (p-value = 0.402). The association between total Chl and Chl-a values was
assessed using a correlation test, whose result was significant (p-value < 2.22× 10−16), with
r = 0.99. Based on the aforementioned results, total chlorophyll and Chl-a concentrations
measured spectrophotometrically showed comparable values and trends. The result of
the correlation test exhibits a significant and high association (p-value < 2.22 × 10−16,
r = 0.95) between total Chl estimated by Phyto-PAM and through spectrophotometric
measurements.
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