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Abstract: To address the problem of intelligent recognition of optical ship targets under low-altitude
squint detection, we propose an intelligent recognition method based on simulation samples. This
method comprehensively considers geometric and spectral characteristics of ship targets and ocean
background and performs full link modeling combined with the squint detection atmospheric
transmission model. It also generates and expands squint multi-angle imaging simulation samples of
ship targets in the visible light band using the expanded sample type to perform feature analysis and
modification on SqueezeNet. Shallow and deeper features are combined to improve the accuracy of
feature recognition. The experimental results demonstrate that using simulation samples to expand
the training set can improve the performance of the traditional k-nearest neighbors algorithm and
modified SqueezeNet. For the classification of specific ship target types, a mixed-scene dataset
expanded with simulation samples was used for training. The classification accuracy of the modified
SqueezeNet was 91.85%. These results verify the effectiveness of the proposed method.

Keywords: low-altitude squint; optical simulation sample generation; feature fusion; network
structure transformation; ship target recognition

1. Introduction

In this study, a novel low-altitude platform detection system based on the concept
of shipborne low-altitude unmanned aerial vehicles (UAVs) is applied in marine early
warning monitoring, to develop a simple, rapid, and economical monitoring method to
enhance the ability of marine situation awareness. This can effectively improve the ability of
existing shipborne or shore-based platforms in long-distance communication and regional
awareness. This new shipborne aerial platform equipped with photoelectric cameras for
target recognition can be used for squint multi-angle and high-resolution imaging of targets
in the field of view (FOV) at a particular altitude. The details and feature dimensions of
targets are richer than those of existing spaceborne and airborne high-altitude imaging
observation systems. This provides the possibility of refined target recognition.

At present, studies on optical ship target recognition are mainly focused on low-level
recognition applications, such as the classification and recognition of military and civilian
ships and recognition of important ship targets [1,2], and the fine identification ability
of the target model is insufficient. One reason is the limited data availability and the
knowledge level of the target types. The other reason is the complexity and variability
of the marine environment, where factors such as lighting, clouds, and shielding have a
significant impact on the quality of high-resolution optical satellite remote sensing imaging.
In addition, ship targets of the same type and different models have high similarity in shape
and other aspects, whereas the targets may have various postures and scales in the imaging
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process. Owing to these factors, traditional recognition and interpretation methods based
on image multi-feature matching can hardly meet the application requirements of fine
recognition of target models in terms of accuracy and timeliness.

In recent years, deep convolutional neural networks (DCNNs) have made significant
advances in several fields of computer vision, such as target detection [3] and image
classification [4–7]. The use of satellite remote sensing ship target data to develop training
images has had a positive effect in intelligent recognition of space-based ship target type
detection. For instance, Zhang et al. [8] proposed a cascaded convolutional neural network
(CNN) ship detection method, CCNet, based on multispectral images. Lei et al. [9] first
classified marine and non-marine regions, extracted the candidate areas of ocean and ship
targets through morphological calculation, and finally extracted the ship targets through
a trained CNN. Liu et al. [10] proposed a detection framework for ships in any direction.
However, real-scene observation images are relatively scarce for the detection of low-
altitude squint ship targets. The few-shot learning problem is one of the main reasons that
restrict the training effect of the deep learning algorithms.

Data augmentation is the main method to solve the few-shot learning problem. Spatial
transformation (flip, rotation, scale, crop, translation, etc.) is the most commonly used
method of data augmentation. The spatial transformation operation cannot essentially
enrich the feature information of the image, and it has limited improvement in the perfor-
mance of the model. The data augmentation method based on the generative adversarial
networks (GANs) [11] is uncontrollable causing the collapse problem. Multi-angle image
inversion based on two-dimensional remote sensing images is difficult, which also limits
the application of the network in real scenes. However, computer simulation can flexibly
regulate the simulation environment conditions, complete the simulation modeling of the
geometric appearance, material texture, and lighting environment, and simulate the optical
characteristics of the target and the imaging effect of the camera.

With the development of computer graphics (CG) and virtual reality (VR), professional
imaging simulation systems and software have been put into practical applications. For
instance, the Digital Imaging and Remote Sensing Laboratory at Rochester Institute of
Technology developed an imaging simulation program that can render a two-dimensional
scene into an infrared radiation image. They further improved on this and developed
a remote sensing imaging simulation software named digital imaging and remote sens-
ing image generation (DIRSIG) [12]. The Vega series simulation module launched by
MultiGen-Paradigm is a commercial remote sensing imaging simulation toolkit with rel-
atively complete functions. This toolkit can realize the dynamic simulation of the entire
remote sensing imaging process. The simulation images satisfy the physical mechanism
and visual expression. High-precision feature expression is the basis for the application of
simulated images in multiple fields.

Deep learning has produced a variety of state-of-the-art models that rely on massive
labeled data [13]. Owing to the difficulty of acquiring real-scene images and the rapid
development of imaging simulation systems, simulation-scene images have been widely
used in the field of deep learning. For instance, Wang et al. [14] generated the simulation-
scene ship images in the infrared scene and improved the detection accuracy of ship targets
under infrared conditions. Li et al. [15] presented an effective method to automatically
generate a simulation-scene dataset called “ParallelEye.” They verified the effectiveness of
“ParallelEye” for the target detection task. The results of these related works sufficiently
demonstrate that the application of simulation images to the field of deep learning has
scientific implications.

The typical features of a target play a crucial role in an algorithmic model [16]. The
parameters of the imaging simulation system have accurate and rigorous mathematical
expressions and practical implications. In the simulation-scene image, the distribution
characteristics of the target typical features are aligned with the real-scene target, which is
the essential reason why the simulation-scene image can be used for data augmentation.
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The appropriate network structure is another key factor affecting the performance
of the algorithm. The traditional CNN structure is inefficient, mainly in terms of the
speed of the model storage and prediction. It consists of a large number of weights
parameters in a network with hundreds of layers that need to be stored on devices with
huge storage capacities. To combine the CNN structure with mobile devices, several
representative lightweight CNN models have been developed in recent years, such as
SqueezeNet, MobileNetV1 [17], MobileNetV2 [18], and ShuffleNet [19]. Among them,
SqueezeNet can achieve an effect close to that of AlexNet on the ImageNet dataset using 50
times fewer parameters than AlexNet. Combined with deep compression [20], the model
file of SqueezeNet can be 510 times smaller than that of AlexNet. Our study is based on
SqueezeNet, as it is a representative work in the field of CNN model compression.

Because the existing optical ship datasets have limited images in low-altitude squint
scenes, certain types of ship images are difficult to obtain, and effectively training DCNN
based on the existing optical ship datasets is impossible. Considering the geometric and
optical characteristics of ship targets and the ocean background, we performed an imaging
simulation study of low-altitude squint visible light ship targets. To classify low-altitude
squint optical ship targets, we used the simulation-scene images to expand the training set,
to improve the accuracy of the model algorithm. The main contributions of this study are
summarized as follows:

(1) For the imaging simulation of low-altitude squint visible light ship targets, we con-
sidered their geometric and spectral characteristics, the ocean background, and the
atmospheric transmission link to complete their optical imaging simulation modeling.

(2) We present a new deep neural network to accomplish low-altitude squint optical
ship target classification based on SqueezeNet. We modified SqueezeNet with feature
fusion (FF-SqueezeNet), using the complementary output of the shallow layer and
the deep layer features as the final output to enrich the feature content. The overall
framework is illustrated in Figure 1.

(3) For specific ship target type recognition, we used a mixed-scene dataset expanded
by simulation samples during training. The classification accuracy of our pro-
posed FF-SqueezeNet was 91.85%, which demonstrates the effectiveness of the pro-
posed method.

Figure 1. Our framework for the recognition method of low-altitude squint optical ship target fused with simulation samples.

The remainder of this paper is organized as follows. Section 2 introduces the op-
tical image simulation of low-altitude squint multi-angle ship target and our proposed
FF-SqueezeNet. The datasets and experimental details are provided in Section 3. The
experimental results and discussion are presented in Section 4, and the conclusions are
presented in Section 5.
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2. Materials and Methods
2.1. Optical Imaging Simulation of Low-Altitude Squint Multi-Angle Ship Target
2.1.1. Simulation Principle of Visible Light Imaging for Low-Altitude Squint Ship Targets

In emergency monitoring of offshore moving ship targets in low-altitude and high-
squint views, shipborne floating platforms carrying optical payloads are often used and
wide staring or scanning modes are adopted to achieve long-distance and large-range target
detection. A specific imaging detection scene is shown in Figure 2a. The radiation received
by the optical payload on a low-altitude squint detection platform is mainly solar radiation
interacting with the atmosphere, ship targets, ocean background, and other complex factors.
The FOV of visible light cameras includes the direct reflection of solar radiation energy
from ship targets under different solar illumination and squint visibility conditions and
the radiation of complex environments, such as the atmospheric environment and ocean
background near the targets. Using the application scenario of low-altitude squint imaging
detection in Figure 2a as an example, its physical effect is shown in Figure 2b. The radiation
energy received on the focal plane of imaging detection considers the characteristics of
moving ship targets interacting with the ocean background and atmospheric environment.
It mainly includes the following: (A) After passing through the atmosphere, the sunlight
directly reaches the surface of the ship target and subsequently reflects the radiation energy
into the imaging FOV. (B) After passing through the atmosphere, the sunlight directly
reaches the ocean background surface and subsequently reflects the radiation energy into
the imaging FOV. (C) The sky background light formed by the scattering of sunlight
through the atmosphere reaches the surface of the ship target and subsequently reflects the
radiation energy into the imaging FOV. (D) The sky background light, which is formed by
the scattering of sunlight through the atmosphere, reaches the ocean background surface
and subsequently reflects the radiation energy into the imaging FOV. (E) Before reaching
the scene surface, the path radiation formed by atmospheric scattering directly enters the
imaging FOV.

Figure 2. Low-altitude squint detection scene and radiation effect diagram. (a) Specific imaging
detection scene. (b) Radiation mechanism of imaging simulation for low-altitude squint imaging
detection application scene.

Under the condition of low-altitude squint visible light image detection, this study
performed radiation imaging simulation modeling and calculation of ship targets and
ocean background based on radiation transmission theory, considering the geometric and
spectral characteristics of both, coupling the effect of the scene and the ocean atmospheric
environment, and the space-time relationship of image detection.

For ship targets, we constructed a three-dimensional (3D) geometric model using
3 ds Max. Thus, we mapped the geometric facet with the spectral data using a texture
classification method combined with the measured spectral data of typical materials. The
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incident radiation, ET , received by the patch unit of the ship surface includes direct solar
and sky background light radiations, and the calculation formula is:

∣∣EdT(x, y, z, t, λ) = FdT(x, y, z, θdT , φdT , t)τdT(x, y, z, θdT , φdT , t, λ)E′dT(t, λ)cosθdT

|EsT(x, y, z, t, λ) =
∫ 2π

ϕsT=0

∫ π
2

θsT=0 VsT(x, y, z, θsT , ϕsT , t)LdT(x, y, z, θsT , ϕsT , t, λ)cosθsTsinθsTdθsTdϕsT

|ET = EdT(x, y, z, t, λ) + EsT(x, y, z, t, λ)

(1)

where (x, y, z, t, λ) are the coordinates of the target patch unit at time t and wavelength λ,
EdT denotes the incident irradiance of the solar radiation, and FdT denotes the visibility
coefficient between the sun and the target, whose value is between 0 and 1 (zero indicates
that the direct radiation of the sun to the target is completely blocked, whereas 1 indicates
that the direct radiation of the sun to the target is not blocked at all). τdT denotes the
atmospheric transmissivity between the solar spectrum and the target; θdT and φdT denote
the zenith and azimuth angles of the sun relative to the ship target, respectively; E′dT is
the solar irradiance outside the atmosphere of the scene area; θsT and ϕsT are the zenith
and azimuth angles of the sky diffuse sampling in the hemispherical sky above the target,
respectively; LdT is the downward radiance of the sky diffuse light reaching the target;
and VsT is the visibility coefficient of the sky diffuse light of the target along the (θsT , ϕsT)
direction to the target, with a value between 0 and 1 (zero indicates that the sky diffused
light along the (θsT , ϕsT) direction of the target is completely blocked, whereas 1 indicates
that it is completely unobstructed).

We introduced a bidirectional reflectance distribution function (BRDF) model of the
ship target based on the calculation of the incident irradiance field of the 3D scene to
derive the radiation distribution of the zero meteorological range emergent radiance on the
surface of the ship target, as expressed in Equation (2).

LrT(x, y, z, θrT , ϕrT , t, λ) =
ρdT(θdT ,ϕdT ,θrT ,ϕrT ,λ)

π · EdT(x, y, z, t, λ)

+
∫ 2π

ϕsT=0

∫ π
2

θsT=0
ρsT(θsT ,ϕsT ,θrT ,ϕrT ,λ)

π VsT(x, y, z, θsT , ϕsT , t)LdT(x, y, z, θsT , ϕsT , t, λ)cosθsTsinθsT dθsTdϕsT
(2)

where LrT denotes the brightness value of the zero meteorological range emergent radiance
from the target patch unit, and (θrT , ϕrT) is the observation direction. ρdT is the BRDF of
the target from the direct radiation direction (θdT , ϕdT). Further, ρsT is the BRDF of the
target from the sky background sampling light incident direction (θsT , ϕsT), and the other
parameters are as defined above. The radiance fields of all target patch units in the scene
were obtained through comprehensive calculations.

Based on the calculation of the emergent radiance fields of the target surface in
the zero meteorological range and considering the influence of the atmospheric upward
transmittance and atmospheric path radiation in the observation direction of the sensor,
we calculated the upward radiance value of the target arriving at the sensor, that is, the
radiance value at the entrance pupil of the sensor. The definition is as follows:

LuT(xu, yu, zu, θrT , ϕrT , t, λ) = LrT(x, y, z, θrT , ϕrT , t, λ)τuT(xu, yu, zu, θrT , ϕrT , t, λ)
+LpT(xu, yu, zu, θrT , ϕrT , t, λ)

(3)

where LuT denotes the upward emergent radiance of the target patch unit. θrT and ϕrT are
the zenith and azimuth angles of the sensor relative to the target patch unit, respectively.
(xu, yu, zu) is the sensor position. τuT denotes the atmospheric upward transmittance and
LpT is the upward path radiation reaching the sensor position.

For the modeling and simulation of marine background, the grid characteristics of the
ocean surface determine the wave shape in the imaging FOV. Because the ocean background
is different from static backgrounds, external factors will cause a continuous change in the
marine surface height distribution field. For the dynamic marine background, we used
geometric grid modeling based on the Phillips wave spectrum to realize the distribution
modeling of marine surface height under typical marine conditions. Moreover, to model
the spectral characteristics of the ocean surface, marine surface spectral modeling was
performed following [21], considering the marine surface wind speed, sea water white
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cap reflection, specular reflection, and radiation reflection from the water. Finally, for
the grid-faceted ocean background, as the incident radiation received by each patch also
includes solar direct and sky background light radiations, according to the target radiation
transmission link in Equations (1)–(3), we can calculate LuB, the upward emergent radiance
of the ocean background patch unit (xB, yB, zB) from the observation direction (θrB, ϕrB) to
the low-altitude sensor.

Based on the calculation model of the ship target and marine background radiation
transmission, the calculation formula for the radiation transmission characteristics of a
low-altitude squint detection scene is expressed as follows:

Lu(xu, yu, zu, t, λ) =
∫

Target
LuT(xu, yu, zu, θrT , ϕrT , t, λ) +

∫
BackOcean

LuB(xB, yB, zB, θrB, ϕrB, t, λ) (4)

2.1.2. Simulation Image Generation of Ship Target in Visible Light Band with
Low-Altitude Squint

Based on the analysis of the process and transmission mechanism of visible light
radiation of low-altitude squint ship targets, we identified the imaging parameters that
affect the transmission characteristics of visible light, including space scale, observation
azimuth, and atmosphere conditions. Thereafter, we organized these parameters into
a discrete observation space to meet the basic input requirements of sample simulation.
Simultaneously, we performed a sample simulation combined with the simulation of visible
light imaging. The framework of the simulation is shown in Figure 3:

Figure 3. Framework of the visible light imaging simulation system.

The scene diversity construction module includes the ship target geometric structure,
ship target spectral feature, sea surface dynamic geometry, sea surface spectral feature, and
multi-feature mapping model of the scene. Among them, 3 ds Max was used for modeling
the ship target geometric structure according to the typical size and structure of a real ship.
The spectral feature modeling of ship targets can generate multispectral data curves by
collecting spectral data of typical materials. The sea surface dynamic geometry modeling
generates a dynamic sea surface level by using the geometry grid modeling method based
on the Phillips sea wave spectrum. The spectral characteristic modeling of the sea surface
was achieved using the model in [22] to generate a multispectral curve of the sea surface.
The multi-feature mapping modeling of the scene uses the geometry-texture-spectrum
strategy to realize the correlation mapping between the geometric patches and the spectral
data, providing the input for the radiation link calculation of the scene.

The atmospheric offline data calculation module uses MODTRAN to calculate the
ocean scene solar irradiance, sky background light irradiance, atmospheric downward
transmittance along with other parameters under typical time periods, atmospheric modes,



Remote Sens. 2021, 13, 2697 7 of 16

and visibility conditions. The module is also responsible for calculating parameters such
as upward path radiation and atmospheric transmittance of the detection platform and
moving the ship target and background under typical visibility, distance, and observation
angle. These parameters are organized and managed using a look-up table (LUT) to support
the simulation of the atmospheric environment effect of the ship target and background in
the radiation transmission process.

The incident radiation calculation module aims at geometric patch units in the scene.
According to the simulation conditions, the module obtains the corresponding solar and
sky irradiance, atmospheric downward transmittance, and other parameters through the
atmospheric LUT. The incident radiation energy of the ship target and ocean background
is calculated individually according to Equation (1).

Based on the incident radiation calculation, the emergent radiation calculation module
combines the observation azimuth information of the scene from the current platform
with the related attributes of each geometric patch and material of the scene, obtains
the corresponding reflectance spectral curve data through the material data table, and
calculates the zero meteorological range radiation energy of the output scene according
to Equation (2). The scene radiation energy at the entrance pupil, that is, the upward
emergent radiation energy, is calculated according to Equation (3).

The simulation module of the platform camera effect maps the geometric relationship
between the scene and camera focal plane, considering the platform position, altitude, and
camera imaging geometry. Based on the photoelectric conversion calibration coefficient,
the radiation value at the entrance pupil of the camera was converted to the quantitative
gray value of the camera imaging. Thereafter, the image simulation was generated based
on the current platform and camera observation conditions.

The simulation scene sample annotation generation module implements the annota-
tion generation of the samples by describing the simulation parameters, such as superim-
posed time period, visibility, bandpass, target type, and observation direction. It provides
unified data management for the sample data generated by the annotation.

We constructed a geometric model and generated a sample simulation under the condi-
tions of specific visibility, specific low-altitude detection altitude, and multiple observation
angles. Based on the simulation sample generation framework, this study combines the
low-altitude squint detection application scenario to meet the requirements of intelligent
recognition for a specific ship target, as presented in Figure 4.

Figure 4. Specific ship target appearance diagram (real-scene image).

Figure 5 shows the simulation results of the visible light band for the typical detection
altitude and visibility under the conditions of 15◦ of solar altitude, mid-latitude summer
atmospheric model, and marine aerosol type. The squint distance is the connection distance
between the camera and ship target. The observation angle is defined by the observation
altitude and azimuth angles. The observation altitude angle is the angle between the optical
axis of the staring camera and the vertical at sea level. The observation azimuth angle is
the angle between the projection at sea level and the direction of the bow (positive for the
clockwise direction and negative for the anticlockwise direction).
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Figure 5. Sample simulation results under typical visibility and detection altitude conditions. The first row of the image
represents the simulation results of the platform with a height of 260 m and visibility of 12, 15, and 18 km. The second row
of the image represents the simulation results of the platform with a height of 150 m and visibility of 12, 15, and 18 km.

As can be observed from the results of the simulation samples under specific scenarios
in Figures 5 and 6, based on Figure 3, the simulation framework of the low-altitude squint
ship target in the visible light band can generate an optical sample image of the ship
target under the condition that covers typical visibility, detection distance, and multiple
observation angles. The sample results are in accordance with imaging physics, and the
simulation images can compensate for the low number of optical sample images of ship
targets under the existing low-altitude squint detection conditions. In this study, we
constructed a high-quality simulation sample dataset under the condition of low-altitude
squint imaging, which can provide training samples for the optimization and training of
the recognition algorithm.

Figure 6. Cont.
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Figure 6. Simulation results of the ship target scene in the visible light band for different squint distances and viewing
angles under the conditions of 15◦ of solar altitude angle, mid-latitude summer atmospheric model, marine aerosol type,
and visibility of 23 km.

2.2. Modified Design of SqueezeNet Classification Network Structure Based on Simulation Images

SqueezeNet [23] was proposed based on the Inception [24] module and it is a repre-
sentative work of neural network model compression research. SqueezeNet adopts two
key structures to simplify parameters and optimize calculation: the fire module and global
average pooling [25].

Most of the existing neural network structures, including SqueezeNet, use the final
output feature mapping and rarely use the middle layer feature map as the output for
classification. Although the automatic construction and extraction of features are com-
pleted, several intermediate feature information, including details, are missing. The study
by Zeiler and Fergus [26] is a pioneering work on feature visualization in the field of CNNs.
Using feature visualization, we can determine the features that a CNN has learned from
each layer, and thereafter help explore the working mechanism of the network model and
the details of feature extraction. CNN visualization can be divided into three methods: fea-
ture visualization [27,28], convolution kernel parameter visualization, and class activation
map visualization [29,30]. Figure 7 shows the feature visualization outputs of the different
fire modules in SqueezeNet.

Figure 7. Feature maps of some neurons in the Fire module of SqueezeNet. (a) Input image of the
network; (b) result of the characteristic graph of some channels of SqueezeNet’s Fire1, Fire3, Fire5,
and Fire7.
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Figure 7a shows the input image of the network, whereas Figure 7b shows the result
of the feature map from some channels of the network, specifically Fire1, Fire3, Fire5, and
Fire7. As can be observed from Figure 7b, the low-level feature has higher resolution and
contains more location details. However, owing to less convolution, it has fewer semantic
features and more noise. High-level features contain more semantic information. As the
size of the feature map is reduced, higher dimension semantic level feature information is
gradually located. However, the resolution of high-level features is low, and the perception
ability of details is poor.

Based on the above analysis, we considered using the complementary advantages of
the high-level and low-level features of CNN. The specific method is to modify the original
SqueezeNet and cascade the output of the intermediate layer to enhance the classification
and recognition ability. The structure of FF-SqueezeNet and the processing flow design are
shown in Figure 8.

Figure 8. The network architecture of our modified SqueezeNet with feature fusion (FF-SqueezeNet).

The image preprocessing module aims at a low-altitude squint detection application.
Because the availability of actual multi-angle squint detection images is very limited, data
augmentation is an important means to offset the insufficient number of original images.
We improved the feature richness by fusing the outputs of different fire layers. The fusion
process is determined using Equation (5).

X f = φ f (Ti(Xi)) (5)

where Xi denotes the feature map to be fused, Ti represents the down-sampling or up-
sampling operation for the feature map to be fused to bring the feature map to the same
size, φ f represents the concatenation of feature maps to obtain the fused feature map X f ;
the feature fusion diagram is shown in Figure 9.
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Figure 9. Feature fusion diagram of our FF-SqueezeNet middle layer.

3. Experimental Details and Data Exploitation
3.1. Experimental Environment and Index Design

The experiment was performed on an Intel Xeon CPU E5-2609 with 16 GB of RAM,
NVIDIA GeForce GTX 1080Ti with 11 GB of memory, Python 3.8.2, and PyTorch 1.4.0
for network model training and testing. The ship classification accuracy was defined as
follows:

Accuracy =
TP + TN

TP + FN + FP + TN
where TP, TN, FP, and FN are the numbers of true positives, true negatives, false positives,
and false negatives, respectively.

3.2. Dataset

The experimental dataset was sourced from the images generated by the simulation
system, and those collected from the web. Data enhancement techniques [31,32], such as
cropping and scaling, were used in the experiment.

3.2.1. Real-Scene Ship Dataset

To verify the performance of our proposed FF-SqueezeNet, the datasets were all real
images, including all types of warships and civilian ships such as cargo, cruise, sailing, and
industrial ships. The training set comprised of 860 images, 50% warships and 50% civilian
ships; the test set included 1011 images, 755 images of civilian ships, and 256 images of
warships. The reason for this setting was that the number of civilian ships was significantly
greater than the number of warships in the images obtained from the web. To ensure the
data in the training set is balanced, we attempted to maintain the training set samples close
to a 1:1 ratio. The settings of the real-scene ship dataset are listed in Table 1.

Table 1. Setting of the real-scene ship dataset.

Class Image Type Number of Training
Set Images

Number of Test Set
Images

Warship Real-scene image 430 256
Simulation-scene image 0 0

Civilian ships Real-scene image 430 755
Simulation-scene image 0 0

Total 860 1011
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3.2.2. Mixed-Scene Ship Dataset

The mixed-scene ship dataset includes real-scene images of specific targets and non-
specific targets, along with simulation-scene images of specific and non-specific targets.
More specifically, a “specific target” represents the Zumwalt-class ship as shown in Figure 4.
A “non-specific target” represents other types of ships. Table 2 summarizes the number of
targets belonging to the two classes in the mixed-scene ship dataset.

Table 2. Setting of the mixed-scene ship dataset.

Class Image Type Number of Training
Set Images

Number of Test Set
Images

Specific target Real-scene image 25 15
Simulation-scene image 150 0

Non-specific
target

Real-scene image 25 15
Simulation-scene image 150 0

Total 350 30

Real-scene images of non-specific targets include cargo ships, cruise ships, sailboats,
and work ships, whereas the simulation images of non-specific targets include targets such
as industrial ships. We selected 25 high-quality real-scene ship images from each category
to form the real sub-dataset of the mixed-scene ship dataset. The real-scene and simulation-
scene images had various observation angles and observation distances, and the simulation
images have various visibility conditions. To ensure the diversity of simulation samples,
the selection of simulation samples covered different visibility, observation distance and
direction as much as possible. We selected 150 high-quality simulation-scene images in each
category as the simulation sub-dataset of the mixed-scene ship training set. The 150 images
of each category were the simulation results of the platform at the squint distance of 1.0, 1.9,
2.5, 3.0, and 5 km, 15 sets of observation angles, and visibility of 20 and 23 km. Figure 10
shows some sample images from the dataset.

Figure 10. Sample images from the mixed-scene ship dataset.

4. Results and Discussion
4.1. Performance of FF-SqueezeNet

To prove that the fusion of shallow and deep features can improve the performance
of SqueezeNet, we compared the performance of the original algorithm and our FF-
SqueezeNet on the real-scene ship dataset. The parameter settings were: A batch size of 16,
60 epochs, and initial learning rate of 0.001. We selected cross-entry loss as the loss function,
whereas the Adam optimizer [33] was selected as the optimization algorithm. Dropout [34]
was used as the over-fitting mitigation method, and the deletion ratio, P, was 0.5.
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The two network models in the experiment were pretrained with the ImageNet dataset,
and the loss curve outputs of both networks during training are shown in Figure 11.

Figure 11. Loss curves of the original SqueezeNet and our FF-SqueezeNet.

As shown in Figure 11, the loss curve of the original SqueezeNet fluctuated signif-
icantly during the entire training process. Meanwhile, the loss curve of FF-SqueezeNet
decreased rapidly in the initial training stage and subsequently decreased more gradually
in the middle and late training periods. It is worth noting that the loss of the FF-SqueezeNet
was significantly higher than that of the original SqueezeNet at the beginning of training.
Both networks were pretrained on the ImageNet dataset. However, owing to the structural
changes of the modified network, the matching between the network and initial weight
was poor; therefore, the loss at the initial training stage was significant. With the increase
in training rounds, the low-level and high-level features complemented each other and
increased the richness of information, resulting in a rapid reduction of loss in the network
and a relatively small change in later periods. The effect on the same test set demonstrates
that FF-SqueezeNet outperforms the original SqueezeNet, as summarized in Table 3.

Table 3. Performance comparison of original SqueezeNet and our proposed FF-SqueezeNet.

Algorithm Model Accuracy

Original SqueezeNet 84.31%
FF-SqueezeNet 88.54%

As presented in Table 3, compared with the original SqueezeNet, the performance
of the algorithm improved by 4.23% using feature fusion. Moreover, it was proven that
not only the high-dimensional semantic features play an important role but also the low-
dimensional features are of great significance in the target classification task.

4.2. Improving the Performance of FF-SqueezeNet with Simulation-Scene Images

For the fine-grained ship classification task under low-altitude squint conditions, due
to the scarcity of the “specific target” real-scene images, the classification accuracy of the
algorithm model is seriously restricted. The experiment aimed to determine whether the
target must be a specific target and verify whether the simulation-scene dataset can improve
the performance of the algorithm to explore the importance of the simulation dataset as an
extension of the real-scene dataset in the field of deep learning. Using the model trained
on the real sub-dataset of the mixed-scene ship dataset as the baseline, we compared the
model performance index before and after adding high-quality simulation-scene images.
We tested the traditional k-nearest neighbors (KNN) algorithm, original SqueezeNet, and
our FF-SqueezeNet algorithm. The results are summarized in Table 4.
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Table 4. Comparison of experimental results before and after adding simulation-scene images.

Algorithm Dataset Accuracy

Traditional algorithm (KNN) Real sub-dataset of mixed-scene ship dataset 61.54%
Mixed-scene ship dataset 78.41%

Original SqueezeNet Real sub-dataset of mixed-scene ship dataset 76.24%
Mixed-scene ship dataset 87.96%

FF-SqueezeNet Real sub-dataset of mixed-scene ship dataset 83.63%
Mixed-scene ship dataset 91.85%

As presented in Table 4, KNN, original SqueezeNet, and our FF-SqueezeNet im-
proved the classification accuracy by expanding the dataset using the simulation-scene
images. The detection accuracy reached 83.63% when only the real sub-dataset of the
mixed-scene ship dataset was used. The performance of FF-SqueezeNet improved to
91.85% after the simulation-scene image was added, which is significantly higher than
that of KNN. The original SqueezeNet improved performance by 11.72% before and after
expanding the simulation images to the training set. On the mixed-scene ship dataset, our
FF-SqueezeNet achieved 3.89% higher accuracy than the original algorithm. By comparing
the experimental results of the original SqueezeNet and FF-SqueezeNet, the performance
improvement of FF-SqueezeNet is more apparent in few-shot learning. The experimental
results demonstrate the importance of data used for deep learning and the effectiveness of
image simulation for improving the performance of the algorithm.

5. Conclusions

In this study, we considered the geometric and spectral characteristics of a ship
target and marine background, combined with the atmospheric transmission link, and
performed optical imaging simulation modeling of a tilted target. The multi-angle squint
imaging simulation modeling of the ship target and ocean background in the visible
light band was performed, thus providing simulation samples for the research of target
recognition algorithms. Thereafter, we proposed FF-SqueezeNet to ensure that the low-
dimensional and high-level semantic features complemented each other in the final output,
thus enhancing feature information. Owing to the lack of real-scene images, effectively
training an intelligent recognition algorithm is difficult. To address this problem, we used
simulation images to expand the dataset and train our proposed FF-SqueezeNet. The
results demonstrate that using simulation samples to expand the training set can effectively
improve recognition performance of an algorithm.
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