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Abstract: Recently, numerous reconstruction-based adaptive beamformers have been proposed,
which can improve the quality of imaging or localization in the application of passive synthetic
aperture (PSA) sensing. However, when the trajectory is curvilinear, existing beamformers may not
be robust enough to suppress interferences efficiently. To overcome the model mismatch of unknown
curvilinear trajectory, this paper presents an adaptive beamforming algorithm by reconstructing
the interference-plus-noise covariance matrix (INCM). Using the idea of signal subspace fitting,
we construct a joint optimization problem, where the unknown directions of arrival (DOAs) and array
shape parameters are coupled together. To tackle this problem, we develop a hybrid optimization
method by combining the genetic algorithm and difference-based quasi-Newton method. Then, a set
of non-orthogonal bases for signal subspace is estimated with an acceptable computational complexity.
Instead of reconstructing the covariance matrix by integrating the spatial spectrum over interference
angular sector, we extract the desired signal covariance matrix (DSCM) directly from signal subspace,
and then the INCM is reconstructed by eliminating DSCM from the sample covariance matrix (SCM).
Numerical simulations demonstrate the robustness of the proposed beamformer in the case of signal
direction error, local scattering and random curvilinear trajectory.

Keywords: covariance matrix reconstruction; curvilinear trajectory; passive synthetic aperture;
robust adaptive beamforming

1. Introduction

Passive synthetic aperture (PSA) is a technology that uses time–space correlation of
signals and motion information of sensor platform to construct a virtual array, therefore
effectively expanding the aperture of sensing system, which can greatly benefit the quality
of imaging or localization [1,2]. As one of the most important procedures of synthetic aper-
ture radar (SAR) imaging [3,4], beamforming is a data-dependent array signal processing
technique, which aims to extract the desired signal while suppressing interferences from
other directions and ambient noise.

Typically, traditional imaging scenario uses conventional beamformer. However,
the conventional beamformer is data-independent, which cannot effectively suppress in-
terference. To this end, Capon proposed the well-known standard Capon beamformer
(SCB) [5], which can achieve optimal performance when the actual INCM and the steering
vector (SV) of desired signal are precisely known. Because the precise INCM is unknown
in practical applications, a practical version of SCB named sample covariance matrix inver-
sion (SMI) beamformer was proposed using the sample covariance matrix (SCM), which
is highly sensitive to SV mismatches. By applying the diagonal loading technique, Cox
proposed a modified version of SCB that joins identity matrix and the SCM together [6]. Sev-
eral SCM-based beamformers were proposed later, such as the robust capon beamformer
(RCB) [7], the worst-case optimization techniques [8,9], the Convex optimization beam-
forming [10], the linear constrained RCB [11] and the adaptive beamforming algorithm
that uses iterative approach [12].
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Some works show that when there are SV mismatches, the signal of interest (SOI)
component in the SCM will cause performance degradation of the SCM-based beamform-
ers, which is related to the input signal-to-noise ratio (SNR), and when the SNR is high,
the performance of SCM-based beamformer may be dramatically reduced due to sell-
canceling [13]. To overcome this issue, [14] proposed a covariance matrix reconstruction
method using an angular sector reconstruction technique, which is called the reconstruction
and estimation beamformer (REB). REB first divides the whole angular domain into two
parts, namely the sector of the desired signal and the complement sector that only contains
interferences and noise. Then, REB reconstructs the INCM using the nominal SV and
spatial spectrum in the complement sector. Based on the concept of INCM reconstruction,
plenty of beamformers were proposed, for example, REB with sparse spatial spectrum [15],
the low-rank beamformers [16], the subspace-projection-based INCM reconstruction beam-
formers [17]. In [18], a spatial spectrum estimation method is proposed, which uses the
concept of maximum entropy in the procedure of INCM reconstruction, in [19], authors cor-
rect the interference SV by estimating gradient vector, which results in more precise INCM.
In [20], authors try to remove the desired signal from the received signal, which can lead to
a desired-signal-free INCM. In [21], authors shrink the uncertainty set of received signals,
and reconstruct the covariance matrix of interference and desired signal. To be robust
with SV mismatches due to sensor displacement, Chen et al. applied weighted subspace
fitting to SV estimating and then calculates the weighing vector using the reconstructed
INCM [22].

The above-mentioned algorithms assume that the sensor locations are exactly known
and stay unchanged during the observation procedure. Similarly, when these methods
are applied to SAR imaging/localization, the velocity of platform is usually assumed as
a constant value with a linear flight path. However, in practical environments, trajectory
variations due to atmospheric turbulence or other causes are inevitable. To overcome these
challenges, an intuitional idea is to calibrate the sensor position error in the beamforming
procedure and estimate the ambient noise power.

In terms of array shape or trajectory calibration, numerous array calibration methods
were proposed, and the first type of calibration methods mainly use auxiliary sensors
including heading, pose, and depth sensors. Howard et al. [23] estimated the array shape
by installing heading sensors at both ends of the horizontal towed array. Park et al. [24]
installed multiple heading and pitch sensors in each segment of the horizontal towed line
array, and then obtained the array deformation model. However, the accuracy of calibration
using auxiliary sensors is severely limited by the accuracy of each sensor. In addition,
the auxiliary sensors also require additional channels to collect real-time data, which brings
great challenges to the engineering implementation.

When the trajectory changes, the characteristics of virtual array observation data
will change accordingly. Using this feature, scholars presented plenty of self-calibration
methods. Theoretically, these calibration methods can estimate the array shape without
additional types of sensors. In [25], Gary et al. using eigen-decomposition to estimate the
phase information of the signals received by each sensor, and then the position of each
sensor can be estimated. However, This method needs precisely known incident angles
of all signals. Ng et al. [26] prefabricated several reference sources with precisely known
DOAs, and coordinated the emission time or frequency of each source. Then the array
shape is estimated using the array observation data. To further reduced the number of
reference sources, Park et al. [27,28] modeled the sensor position as a polynomial form of
angle and array element spacing, and used weighted subspace fitting (WSF) to estimate
the sensor positions and array shape.

To be completely free of reference sources, some self-calibration methods were proposed.
However, when the reference sources are not used, the signal DOAs are unknown and coupled
with the sensor positions in the steering vector (SV) of the array, which will cause ambiguity in
sensor position estimation. With regard to this issue, Weiss et al. [29,30] proposed to calculate
the sensor positions and DOAs iteratively. For the partially calibrated array, Yang et al. [4]
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proposed to use the wideband signal received by the hydrophone array to deblur the phase
of the SV, then the sensor positions and DOAs can be jointly estimated.

Considering the facts that the performance of existing adaptive beamforming algo-
rithms is far from optimum when the trajectory is curvilinear, this paper proposes a robust
curvilinear PSA reconstruction and estimation beamformer (C-PSA-REB), which can en-
hance the beamformer’s performance in two aspects. The first aspect is that we present
signal model when the trajectory is curvilinear in arbitrary plane. The second aspect is
that we propose a reconstruction algorithm that can precisely obtain the INCM when the
trajectory is curvilinear.

The rest of this paper is organized as follows. In Section 2, we describe the signal
model of this paper. In Section 3, we describe the details of the proposed beamforming
algorithm. Several numerical examples are simulated, and the results are demonstrated in
Section 4. Finally, in Section 5, we draw some conclusions of this paper.

2. Signal Model of Curvilinear Trajectory

In this section, we consider the most fundamental scenario that one sensor with a
single channel measures M times continuously during the movement at a distance of d,
which equals to a virtual array with M sensors.

Figure 1 shows the curvilinear trajectory in 3-D view, the ideal trajectory is a strict straight
line that is located on the x-axis, and the incident signals are assumed in the xoy plane.

ideal trajectory
practical trajectory

plane of curvilinear

trajetcory

Figure 1. Curvilinear trajectory in 3-D view, where β is the angle between curved plane and signal
incident plane.

Noticing that the trajectory may be curvilinear due to various causes, and the curved
trajectory may be not on the signal incident plane, and the angle between the curved plane
and the xoy plane is β. Figure 2 shows the curvilinear trajectory in the plane of curve,
we assume that when the trajectory is curved, the scalar speed of movement is barely
changed. In other word, the platform travel distance between two measurements are
almost d, and the angle between the m-th and the m + 1-th measurement are αm.
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ideal trajectory practical trajectory plane of curvilinear

trajetcory

Figure 2. Trajectory in the 2-D curved plane.

Hence, the coordinates of all virtual sensors can be modeled as

px,m+1 = px,m + d cos αm,

py,m+1 = py,m + d sin αm cos β,

pz,m+1 = pz,m + d sin αm cos β.

(1)

Assume that the first sensor represents the first measurements, which is the reference
sensor, the coordinates of the m-th (m = 2, · · · , M) virtual sensor can be approximated in
an iterative form as

px,m ≈
m−1

∑
j=1

d cos αj,

py,m ≈
m−1

∑
j=1

d sin αj cos β,

pz,m ≈
m−1

∑
j=1

d sin αj sin β.

(2)

According to (2), the matrix of all virtual sensors’ coordinates can be defined as [21]

PM(α, β) =

 0, px,2, · · · , px,M
0, py,2, · · · , py,M
0, pz,2, · · · , pz,M

 (3)

Hence, the SV of the curvilinear path (virtual array) at direction θ is described as a
function of vector α = [α1, α2, · · · , αM]T and β as

a(α, β, θ) = e−jkT(θ)PM(α,β), (4)

where k(θ) represents the vector of wavenumber, and it is defined as follows

k(θ) = kwv(θ) = −kw[cos θ, sin θ, 0]T, (5)

where kw = 2π/λ is the scalar-wavenumber.
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Assuming that the virtual array receives one desired signal and Q interferences during
the movement, all incident signals are narrowband, and the received data matrix x(k) of
the virtual array can be formed as

x(k) = a0s0(k) +
Q

∑
q=1

aqs0(k) + n(k), (6)

where s0(k) denotes the desired signal waveform in one measurement.
It is worth noticing that there may be frequency deviation between the received signal

and the actual signal due to Doppler effect, but in this paper, the velocity of movement
is assumed significantly slower than the signal travel speed, and the Doppler shift can
be ignored. a0 is the actual SV of s0(k), Q represents the number of interferences, sq(k)
denotes the q-th interference, aq represents the q-th SV. n(k) denotes the noise matrix,
which is assumed to be additive white Gaussian noise. All signals and noise are statistically
independent from each other, and then theoretical covariance matrix of virtual array
received data can be expressed as

Rx = E
{

x(k)xH(k)
}
= Rs + Ri+n , (7)

where E{·} denote the expectation process, (·)H represents the Hermitian transpose opera-
tor, Rs is the theoretical DSCM, and Ri+n denotes the actual INCM. Then the weighting
vector w that is optimal can be calculated according to the principle of minimum variance
distortionless response (MVDR) [5] as

min
w

wHRi+nw, s.t. wHa0 = 1. (8)

By using the Lagrange multiplier, the weighting vector from Equation (8) can be
optimized as

wopt =
R−1

i+na0

aH
0 R−1

i+na0
. (9)

In practical applications, actual INCM Ri+n cannot be obtained, it can be replaced with
estimated SCM [6] as

R̂x =
1
K

K

∑
k=1

x(k)xH(k). (10)

3. Proposed Beamforming Algorithm

This section introduces the proposed passive synthetic aperture beamforming algo-
rithm to enhance the performance of adaptive beamformer when the trajectory is curvi-
linear. We first apply eigen-decomposition to the SCM, the signal subspace and noise
subspace can be correctly separated as

R̂x = VSΛSVH
S + VNΛNVH

N , (11)

where ΛS represents a matrix that the diagonal elements are the principle eigenvalues
(several largest eigenvalues) in descending order, VS is a matrix that consist of dominant
eigenvectors, the diagonal elements of ΛN represents the rest of the eigenvalues, and VN
denotes the eigenvectors that corresponding to ΛN. According to the definition of R̂x, it is
positive Hermitian, which indicates the orthogonality of the signal subspace and the noise
subspace as

span{VS}⊥span{VN} . (12)

With the separated signal subspace, a joint optimization problem can be formed,
and the non-orthogonal bases of the signal subspace are estimated. Then, the subspace
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bases transition will be applied to obtain the reconstructed INCM and weighting vector of
the proposed algorithm directly.

3.1. Non-Orthogonal Bases Estimation

Based on the mathematical definition of VS, it should contain the actual information
of the PSA virtual array, including the virtual array geometry (in fact, the actual curvilinear
trajectory). Moreover, the column vectors of VS are orthogonal to each other, and VS can
be regarded as a group of orthogonal bases of the signal subspace. Because the desired
signal component is decomposed into the different basis of VS, it is tough to separate
the component of desired signal from interferences in VS. According to the definition,
the major difference between the component of desired signal and the interferences is that
signal incident angle. Therefore, the most intuitional idea is that the signal subspace can be
projected to angular domain and a group of non-orthogonal bases can be obtained, where
the desired signal component can be directly separated.

When the trajectory is curvilinear and the signal incident angles are unknown, the ma-
trix that contains all possible SVs can be

A(α, β, Θ) =
[
a(α, β, θ0), · · · , a(α, β, θQ)

]
, (13)

where Θ =
[
θ0, θ1, · · · , θQ

]T is the angular set of unknown incident angles, and the number
of signals can be estimated using various source number estimation methods.

When the observation time is long and the number of snapshot is high enough,
the incident signals’ actual SVs and VS span the signal subspace

span{A(α, β, Θ)} = span{VS} . (14)

It is obvious that the SV set A(α, β, Θ) is angle-related, which indicates that it is
the ideal non-orthogonal bases. However, the actual SV set A(α, β, Θ) cannot be directly
calculated because the actual trajectory and the incident DOAs are unknown. Moreover,
the DOAs and the parameter of curvilinear trajectory α, β cannot be estimated precisely
because they are coupling together.

In contrast to the array shape estimation algorithms and DOA estimation algorithms,
the ultimate goal of the proposed algorithm is removing the desired signal from the
calculated SCM, and reconstructing a precise INCM. Although α, β, Θ is coupled together
and hard to decouple, we can estimate a set of α, β, Θ that makes the difference between
estimated A(α, β, Θ) and span{VS} as small as possible.

To jointly estimate the parameter of the actual curvilinear trajectory α, β and incident
DOAs, we can use the idea of weighted subspace fitting as

min
α,β,Θ

∥∥∥VSW1/2 −A(α, β, Θ)T
∥∥∥2

F
, (15)

where ‖·‖F represents the Frobenius norm operator. For the lowest asymptotic variance,
we can form the weighting matrix W:

W = (ΛS − σ̂2
nI)2Λ−1

S , (16)

where W is a positive definite matrix.
According to [22], T can be estimated first and then be substituted back into (15),

therefore obtaining
A(α̂, β̂, Θ̂) = min

α,β,Θ
tr
{

P⊥AVSWVH
S

}
, (17)

where P⊥A = I−PA denotes the orthogonal projection matrix, and PA = A(α, β, Θ)A+(α, β, Θ)
is the matrix that is the projection of A(α, β, Θ), (·)+ is the pseudoinverse operator. It is obvi-
ous that (17)) is a nonlinear optimization problem, which contains M + Q + 1 variables.
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To solve Equation (17) and estimate non-orthogonal bases of the estimated signal
subspace, nonlinear optimization methods need to be applied. In [31], the optimization
problem was solved using genetic algorithm, which is a global algorithm (GA) with low
sensitivity of initialization. However, the genetic algorithm does not use any gradient
information, which will definitely consume more computational resources than other
gradient-based algorithms.

Considering the robustness and the convergence speed are both needed if the number
of variables is high in the optimization problem, we choose to apply a hybrid optimization
method that combine the GA method and a quasi-Newton method named BFGS. Here,
we construct a vector as the solution of (17) as

δ =
[
α1, α2, · · · , αM−1, β, θ0, θ1, · · · , θQ

]T, (18)

and the optimization problem can be rewritten as

A(δ̂) = min
δ

F(δ) , (19)

Since the parameters α, β̂, Θ̂ are unknown, the GA method is applied first with a few
iterations to give a relatively reasonable initial value for the next BFGS procedure.

Here, the iterative procedure of the BFGS can be expressed as

δ̂l+1 = δ̂l − µlB
−1
l+1gl , (20)

where δ̂l is the estimated solution at the l-th iteration, µl is the step length that can be
obtained by searching when F(δl+1) < F(δl), B−1

l+1 is the inversion of the Hessian matrix,
which can be iteratively calculated, and the iterative equation is

B−1
l+1 =B−1

l +

(
1 +

∆gT
l B−1

l ∆gl

∆gT
l ∆δl

)
∆δT

l ∆δl

∆δT
l ∆gl

−
B−1

l ∆gl∆δT
l +

(
B−1

l ∆gl∆δT
l

)T

∆gT
l ∆δl

,

(21)

where ∆gl and ∆δl are the deference of the gradient vector and the solution vector between
two adjacent iterations, respectively. gl denotes the gradient vector of the objective function
F(δ), which can be constructed as

gl = F′(δl) =

[
∂F
∂α1

, · · · ,
∂F

∂αM−1
,

∂F
∂β

,
∂F
∂θ0

, · · · ,
∂F

∂θQ

]T
. (22)

Instead of listing the theoretical gradient, we use central difference of the objective
function as an approximation of the gradient, where the partial derivative of α1 can be
approximated as

∂F(δ)
∂α1

≈ F(δ + ∆δα1)− F(δ− ∆δα1)

2∆α1
, (23)

where ∆δ = [∆α1, 0]T, ∆α1 is a constant value that is small positive, according to the
definition, ∆δ represents the infinitesimal unit of α1. Similarly, the other partial derivatives
can be efficiently calculated.

After several steps of iteration, the optimal output of the optimization problem is
obtained. Although the estimated δ̂ does not represent the actual δ due to the coupling
of the parameters, the estimated Â = F(δ̂) is non-orthogonal bases of the signal subspace
that is angle-related.
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3.2. INCM Reconstruction and Beamformer Design

In this subsection, we propose an effective method that can remove the desired signal
from the estimated SCM, then the reconstructed INCM can be obtained, and derive the
weighting vector of the proposed algorithm.

Considering that Â is the estimated using BFGS method and initialized by the GA
algorithm, each column of Â represents the estimated SV of incident signals. However,
the order of SVs in estimated Â is randomly placed, and the SV of the desired signal must
be found and tagged.

Once the DOA of the desired signal is preset as θ̄0, we can find the order tag i of the
estimated SOI using the following equation as

i = min
q

∥∥∥θ̂′q − θ̄0

∥∥∥ , θ̂′q ∈ Θ̂, q = 0, 1, · · · , Q . (24)

For simplification, we rearrange the estimated Â by placing the i-th SV in Â to the
first column as

Â =
[
â0, Âint

]
, (25)

where â0 is the estimated SV of the SOI, and Âint denotes the estimated SVs of interferences
Since the estimated Â and VS span the same signal subspace, the covariance matrix

that consists of desired signal and interferences is

Rs+i = VSΛSVH
S = ÂPÂH , (26)

where P = diag
{

pq
}

, q = 0, · · · , Q denotes the power matrix, which is a diagonal matrix,
and the diagonal element pq denote the power of incident signal. Therefore, the power
matrix P can be obtained from (26) as

P = Â+VSΛS(Â+VS)
H. (27)

To estimate the INCM, we can reconstruct DSCM and then the INCM can be esti-
mated by eliminating R̂s from the SCM. The DSCM contains only the signal of interest,
the reconstructed DSCM can be calculated by combining (27) and (26) as

R̂s =
[
â0, 0M×Q

]
Â+VSΛS(Â+VS)

H[â0, 0M×Q
]H, (28)

where 0M×Q denotes an M×Q zero matrix.
Based on the above-mentioned procedure, the reconstructed INCM can be calcu-

lated as
R̂i+n = R̂x − R̂s. (29)

By using the MVDR principle, the weighting vector finally can be calculated by using
the reconstructed INCM R̂i+n and the estimated SV â0, then (9) can be rewritten as

wC-PSA =
R̂−1

i+nâ0

âH
0 R̂−1

i+nâ0
, (30)

and Algorithm 1 summarize the detailed procedure of the proposed algorithm.



Remote Sens. 2021, 13, 2562 9 of 18

Algorithm 1 Curvilinear PSA Adaptive Beamforming.

Input: PSA virtual array data x(k);
Output: Beamformer weighting vector wC-PSA ;

1: Eigen-decomposition, Obtain λm ;
2: Eigen-decompose R̂′x, obtain VS, ΛS, and estimating the source number Q;
3: Obtain the initialized vector δ0 using Genetic Algorithm;
4: Solve (19) using BFGS method ( (20) to (23) ) with the initialized vector δ0 ;
5: Find the tag of the estimated SOI in Θ̂ in (24), rearrange the estimated Â in (25);
6: Estimate R̂s in (28);
7: Reconstruct the INCM as R̂i+n = R̂x − R̂s ;
8: Calculate wC-PSA in (30) by substituting â0 and R̂i+n;

3.3. Computational Complexity of Proposed Algorithm

In this subsection, computational complexity of the proposed beamformer is analyzed,
which mainly depends on the optimization in (17), and can be divided into two parts.
The first part is the initialization procedure of Genetic Algorithm (GA), due to the property
of GA, the outcome of optimization is different from run to run. Hence, it is assumed
that after NGA iterations, we can obtain a satisfactory initial vector δ0. For each iteration
in GA, the complexity is O{M2Q2}. Thus, the complexity of first part is O

{
NGAM2Q2}.

The second part is the BFGS method. Since there are M + Q variables in (19), when ap-
plying BFGS method, the computational complexity of one iteration is approximately
O
{
(M + Q)2}. Considering that the total number of iterations using BFGS is simply

hard to predict, we assume that it will take NBFGS iterations to convergence, and the
BFGS procedure will take nearly O

{
NBFGS(M + Q)2}. Therefore, the overall complex-

ity of the devised beamformer depends on the maximum complexity of two parts as
O
{

max
{

NBFGS(M + Q)2, NGAM2Q2}}.

4. Numerical Simulations

This section considers several simulation examples to evaluate the performance of the
proposed beamformer and contrast with other beamformers. The aim of this section is to
simulate the practical beamforming scenarios of curvilinear trajectory.

In this section, a pre-calibrated sensor (free of gain-phase errors) is considered, the sen-
sor moves at a constant speed with random directions, and measures M times during the
movement, which can be seen as an M-sensor virtual array. The desired signal impinges
from 15◦, and two interferences with INRs at 10 dB impinge from−25◦ and 35◦. All signals
and noise are generated from complex Gaussian process and assumed to be in the xoy
plane. Therefore, all signals and noise are statistically independent with each other. The
snapshots number of each measurement is K = 100 when we consider the scenario of SINR
versus SNR, and the SNR is 10 dB when the scenario of SINR versus snapshots number.
The SINR for each simulation is calculated as

SINR =
wHRsw

wHRi+nw
. (31)

To further examine the performance of proposed beamformer, 4 compared beamformers
are considered, specifically the RCB in [7], the REB in [14], S-REB in [17], and ISVPE in [32].

For the SCM-based RCB, the constraint parameter is 0.3M. For REB and S-REB,
the angular sector that involves the surrounding region of the SOI is Θ = [10◦, 20◦]. For the
proposed beamformers, we use the GA [33] to obtain the initial vector in (19), where the
maximum number of iterations is 20. To obtain the statistic results, we simulate 200 times
for different scenario.

4.1. Influence of β

In this numerical simulation, the influence of β on the performance of the beamformer
is discussed, and β denotes the angle between the curvilinear trajectory plane of the array
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and the xoy plane. We assume that parameter α is fixed during that simulation. To simulate
the most commonly curvilinear scenario, we assume that the parameter α satisfies

α1 ≥ α2 ≥ · · · ≥ αM−1, αm ∈ [−90◦, 90◦], (32)

and a set of α is listed in Table 1.

Table 1. Values of parameter α.

Parameter α1 α2 α3 α4 α5 α6 α7 α8 α9

Value (◦) 28.6 17.1 15.3 9.5 7.2 −1.4 −4.9 −9.9 −13.8

Figure 3 demonstrates the normalized response of beamformers when β = 90◦. In this
case, the curvilinear trajectory plane is vertical to the signal incident plane, and the influence
of curvilinear trajectory is not severe to beamformers.

−90 −60 −30 0 30 60 90

Angle  (°)

−40

−30

−20

−10

0
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o
rm

al
li

ze
d
 R
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n
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 (
d
B

)

C-PSA-REB

S-REB

RCB

Figure 3. Normalized beam patterns when β = 90◦.

In Figure 4, β = 0◦, the curvilinear trajectory is parallel to the signal incident plane.
S-REB barely steers the main-beam towards the actual incident angle of SOI, and it cannot
form nulls at the direction of two interferences either. Due to severe SV mismatch caused
by curvilinear trajectory, RCB fails to steer main-beam, and forms nulls at the direction
of SOI, which will lead to “self-cancelation”. Compared to S-REB and RCB, the proposed
C-PSA-REB forms two deep nulls precisely around interferences. Moreover, C-PSA-REB
can keep the beam response distortionless.

Figure 5 demonstrates the Monte-Carlo results about the influence of β on output
SINR. With a certain α, the performance of all other beamformers except C-PSA-REB will
degrade when β changes, the SINR of RCB reaches −15 dB, and other reconstruction-based
beamformers can suffer from a performance degradation up to 10 dB. That is because
when is β close to 0◦, the curvilinear trajectory is parallel to the signal incident plane, which
leads to a larger SV mismatch. Compared to other 4 tested algorithms, the performance of
the proposed C-PSA-REB almost reaches the optimal SINR no matter how the β changes.
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Figure 4. Normalized beam patterns when β = 0◦.
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Figure 5. Output SINR versus β.

4.2. Influence of αm

In this simulation, we investigate the influence of α on beamformers’ performance.
We assume that β = 0◦, and all curvilinear parameters αm in α are uniformly distributed
in [−αmax, αmax], where αmax denotes the upper boundary of αm, m = 1, 2, · · · , M − 1.
In order to simulate the curvilinear scenario, the αm is constrained by Equation (32).

Figure 6 demonstrate the output SINR versus different upper boundary αmax. When
αmax increases, the performance of RCB dramatically decreases, and finally stays around
−17 dB, which indicates the existence of “self-cancelation”. REB, S-REB and ISVPE perform
similarly, their performance degrades severely when αmax increases. When αmax = 35◦,
their SINRs are all bellow 0 dB.
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Figure 6. SINR versus αmax.

Since the curvilinear trajectory is modeled and the non-orthogonal basis of the signal
subspace is estimated by the joint optimization method, the proposed C-PSA-REB performs
robustly with different αmax, and the output SINR remains at about 19 dB even when
αmax = 45◦.

4.3. Performance Analysis with Directional Error

In this example, we show the effect of signal directional error on the output signal-to-
interference-to-noise ratio of each beamformer.

In Monte-Carlo simulations, we suppose that the directional error of each incident sig-
nal obeys a uniform distribution, where the expected signal angle is in θ0 ∈ [11◦, 19◦], the in-
terference incident angle uniformly distributed in θ1 ∈ [−29◦,−21◦] and θ2 ∈ [31◦, 39◦]

We simulated the change of the output SINR of each beamformer with the input
SNR when the direction error occurred, and showed it in Figure 7. It can be seen that
the proposed algorithm and S-REB have almost reached the optimal performance, be-
cause these two algorithms both use the signal subspace, therefore effectively improving
the performance. The performance of REB and ISVPE is about 2 dB below the optimal
SINR, but it is also better than the RCB algorithm based on SCM, especially with high SNR.
It can be seen that as the SNR increases, the SINR of the RCB algorithm drops sharply,
and the phenomenon of self-cancelation of the desired signal may appear.

In addition, we also show the impact of the number of snapshots on the performance
in Figure 8. It can be seen that the SINR of ISVPE and RCB under the condition of
small snapshots is as low as 15 dB and 4 dB, respectively. It may be because that the
limited number of snapshots causes a large difference between the theoretical matrix
and the estimated SCM. However, the other three beamformers, including the proposed
one, are not sensitive to the number of snapshots because they use the reconstructed
covariance matrix.
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4.4. Performance Analysis with Local Scattering

In the fourth simulation, the influence of incoherent local scattering on the performance
of the beamformer is studied. We assume that only the local scattering signal exists in the
desired signal direction, i.e., the expected signal is several random signals around the assumed
incident direction, and the SV of the scattered signal is time-varying [34]:

s̃0(k) = a0s0(k) +
Np

∑
p=1

a
(
θp
)
sp(k), (33)

where s0 is the direct signal, Np is the total number of local scattering signals, and sp is the
incoherent local scattering signal. Similar to the direct signal, the local scattering signal is
also generated from a Gaussian random process. a0 is the SV corresponding to the direct
signal, a(θp) is the SV of the local scattered signal, we assume that the incident angle of the
scattered signal obeys a uniform distribution within [13◦, 17◦]. Np is the number of local
scattering signals, we set Np = 4 to be in this article.

Once the local scattering signal is considered, the rank of DSCM is no longer 1, i.e.,
the number of dominant eigenvalue of DSCM is more than 1. Therefore, in this case, we
can use the dominant eigenvector to the largest eigenvalue of DSCM as the steering vector ,
and the weighting vector can also be written as the dominant eigenvector of R−1

i+nRs.
We have simulated that when there are incoherent local scattering signals, the output

SINR of each beamformer varies with the input SNR, and it is shown in the Figure 9. It can
be seen that all reconstructed beamformers can perform well. By suppressing interference
and noise, the algorithm proposed in this paper can be reach the optimal value just like
S-REB. Due to the presence of local scattering signals, the RCB algorithm must deal with SV
mismatches, which reduces the RCB’s performance to only 22 dB when input SNR is 20 dB
. Then, we simulated the impact of the number of snapshots on performance and showed
it in the Figure 10, similar to Figure 8, REB, S-REB and C-PSA-REB are all insensitive to the
variation snapshot number, and the proposed C-PSA-REB can achieve 19.5 dB even in
small snapshots.
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Figure 9. Output SINR versus SNR when local scattered signal exist.
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Figure 10. Output SINR versus the number of snapshots when local scattered signal exist.

Based on the theoretical analysis and numerical simulations, we summarize the
employed techniques, the needed prior-knowledge, and the robustness in curvilinear
trajectory of all tested beamformers in Table 2.

Table 2. Comparison of the proposed beamformer and tested beamformers.

Beamformer Employed Techniques Needed Prior-Knowledge Curvilinear Robustness

RCB [7] Covariance matrix fitting + Convex optimization Presumed SOI direction No
REB [14] Angular separation + Convex optimization SOI angular sector No

S-REB [17] Subspace projection Interference angular sector No
ISVPE [32] Interference SV and power estimation using RCB DOAs of all incident signals No

C-PSA-REB Signal subspace fitting + Hybrid optimization travel distance between
measurements Yes

4.5. Performance Analysis with Random Curvilinear Trajectory

This example, we investigate the beamformer performance in the case of random
curvilinear trajectory and unknown DOAs of incident signals. We assume that the pa-
rameter αm, m = 1, 2, · · · , M− 1 is uniformly distributed in [−30◦, 30◦], β is uniformly
distributed in [−90◦, 90◦], and direction errors are uniformly distributed in [−4◦, 4◦].

Figure 11 demonstrates the performance of all tested beamformers with different
input SNRs. With random curvilinear trajectory, the performance of REB, S-REB and ISVPE
are all degraded severely, their output SINRs are generally lower than the optimal SINR
around 13 dB. Moreover, RCB performs badly even when the SNR is low. By comparison
to other tested beamformers, the proposed C-PSA-REB almost reaches the optimal SINR,
which indicates the robustness.

Figure 12 shows the performance of all beamformers with different number of snap-
shots. Due to the severe deviation of trajectory, the performance of RCB is below −5 dB
with different snapshots number. Other tested reconstruction-based beamformers are
stabilized with different snapshots, and the proposed C-PSA-REB reaches nearly 20 dB,
which obviously outperforms other tested beamformers.
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Figure 11. Output SINR versus the SNR in the case of random curvilinear trajectory.
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Figure 12. Output SINR versus the number of snapshots in the case of random curvilinear trajectory.

5. Conclusions

In this paper, an adaptive beamformer is proposed for passive synthetic aperture with
curvilinear trajectory by reconstructing INCM. Consider the trajectory of moving platform
may be curvilinear, which will affect the performance of beamforming, the signal model of
curvilinear trajectory is established. Then, a joint optimization problem is then constructed
by applying the theory of subspace fitting, where the curvilinear trajectory parameters and
the unknown DOAs are included. A hybrid optimization method was developed by com-
bining the genetic algorithm and difference-based BFGS method, which can estimate a set
of non-orthogonal bases for signal subspace with an acceptable computational complexity.
Then, the DSCM is directly extracted from signal subspace using the set of non-orthogonal
bases. By removing the SOI component from the SCM, we reconstruct a precise INCM
without any known reference sources. In the end, numerical simulations demonstrate that
the angle between the curved plane and the signal incident plane β and the maximum
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deviation angle of trajectory αmax are two key parameters that influence the performance
of existing adaptive beamformers, and the proposed C-PSA-REB can perform robustly in
different types of SV mismatches, even when the trajectory is severely curvilinear.

Author Contributions: Conceptualization, methodology and writing, P.C.; visualization, L.Z.;
supervision, W.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the China Postdoctoral Science Foundation under Grant
2019M660049XB, by the Fundamental Research Funds for the Central Universities, CHD under Grant
300102240302, and by the National Natural Science Foundation of China under Grants 61871059
and 61901057.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

C-PSA-REB Curvilinear PSA Reconstruction and Estimation Beamformer
DOA Direction of Arrival
DSCM Desired Signal Covariance Matrix
GA Genetic Algorithm
INCM Interference plus Noise Covariance Matrix
ISVPE Interference Steering Vector and Power Estimation Beamformer
MVDR Minimum Variance Distortionless Response
PSA Passive Synthetic Aperture
RCB Robust Capon Beamforming
REB Reconstruction and Estimation Beamformer
SAR Synthetic Aperture Radar
SCB Standard Capon Beamformer
SCM Sample Covariance Matrix
SINR Signal to Interference and Noise Ratio
SMI Sample covariance Matrix Inversion
SNR Signal-to-Noise Ratio
SOI Signal of Interest
SV Steering Vector
WSF Weighted Subspace Fitting
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