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Abstract: This paper addresses the development of a remote hyperspectral imaging system for
detection and characterization of marine litter concentrations in an oceanic environment. The work
performed in this paper is the following: (i) an in-situ characterization was conducted in an outdoor
laboratory environment with the hyperspectral imaging system to obtain the spatial and spectral
response of a batch of marine litter samples; (ii) a real dataset hyperspectral image acquisition was
performed using manned and unmanned aerial platforms, of artificial targets composed of the
material analyzed in the laboratory; (iii) comparison of the results (spatial and spectral response)
obtained in laboratory conditions with the remote observation data acquired during the dataset
flights; (iv) implementation of two different supervised machine learning methods, namely Random
Forest (RF) and Support Vector Machines (SVM), for marine litter artificial target detection based
on previous training. Obtained results show a marine litter automated detection capability with a
70–80% precision rate of detection in all three targets, compared to ground-truth pixels, as well as
recall rates over 50%.

Keywords: hyperspectral imaging; remote sensing; unmanned aerial vehicles; marine litter; machine
learning; deep learning

1. Introduction

Large marine litter accumulation zones, such as marine litter windrows [1], are ap-
pearing in the oceans, such as Atlantic [2] and Pacific [3,4]. Unfortunately, marine litter is
an ever-increasing ecological problem that poses an imminent threat to marine ecosystems
and ultimately even to humans, given it eventually inevitably enters the human food
chain [5]. Therefore, marine stakeholders and research communities are now working on
active/passive systems for detecting and/or capturing marine litter debris. An important
research vector is in the detection and monitoring of the marine litter accumulation zones.
Since the marine litter accumulation zones are spread over large areas, Earth observation
satellite-based technological resources are currently being employed to detect and monitor
marine litter. However, these efforts are still in the early stage of their development and
still require further experimental validation, using complementary detection solutions,
whether using remote and/or in-situ observations.

The work presented in this paper, contributes to the ongoing research efforts to
develop new perception methodologies for marine litter detection. We present a remote
hyperspectral imaging system that can detect marine litter and characterize the spectral
information from marine litter samples, acquired in Pim Bay Area in Faial Island Azores, see
Figure 1. This location is known to be a hotspot for marine litter concentration, see [6,7], and
significant scientific work is currently devoted to studying the marine litter accumulation
effects in that region.
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Figure 1. Porto Pim Bay Faial Island Azores.

For performing this spectral analysis of marine litter samples, the work carried out
was divided into three phases, namely: (i) analyzing the marine litter samples in an outdoor
setup using an hyperspectral image acquisition system that is able to acquire data from
each marine litter sample, from visible (VIS) to SWIR wavelength range (400–2500 nm),
thus determining the spectral response of each sample in that wavelength interval; (ii) to
mount the same payload in two different aerial platforms (manned and unmanned) and
perform remote data acquisition flights at different altitudes over artificial targets that were
built using the same marine litter materials, (iii) develop, train and evaluate a model for
the detection of different plastic types using machine learning methods: Random forests
(RF) and Support Vector Machines (SVM).

This paper is organized as follows: Section 2 provides an overview of the related
work in the detection of marine litter, with a particular focus on the current state-of-the-
art using satellite and airborne solutions. Section 3 describes the hyperspectral imaging
acquisition setup, also encompassing the different tests setups to acquire the hyperspectral
data. Section 4 details the laboratory tests results and the dataset campaign. The remote
manned and unmanned spectral characterization results and comparison with the results
obtained in the laboratory environment can be found in Appendix A. Section 5 shows
the experimental results obtained using RF and SVM methods implementations. Finally,
Section 6 draws some conclusions on the work carried out and describes future work.

2. Related Work
2.1. Marine Litter Concentrations

Marine litter concentrations can be traced back to widely different sources. The
source can be caused by professional and domestic activities, and can be intentional or not.
Some of the actors typically mentioned concerning ocean pollution include not only the
general public consumer attitude but also other activities ranging from coastal tourism and
recreation to waste management policy in beaches. Economic activities usually installed in
near-shore locations such as fisheries or aquaculture explorations are also commonly cited
as potential sources, as well as harbors and other ship docking infrastructure [8].

Is possible to classify the marine litter samples according to their size [9]:

• Small microplastic: <1 mm;
• Large microplastic: 1–5 mm;
• Mesoplastic: 5.1–25 mm;
• Macroplastic: >25 mm.

The effect of ocean currents and harsh meteorological conditions such as direct ex-
posure to UV light during extended periods [10], can alter the marine litter physical
characteristics. Marine debris tend to deteriorate and break apart, turning macroplastics
samples into microplastics and submerging from the sea surface, entering the water col-
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umn [11], or resting in the seabed mainly due to biofouling. The taxonomy adopted for
classification of marine litter samples is important for two main reasons:

• To understand the sinking and fouling of marine litter samples. Small plastic items
start sinking sooner than larger plastic items, while larger debris will float for more
time. This is due to the relation of buoyancy with item volume. Biofouling can also
increase the density of the marine litter to the point where the debris sinks, see [12];

• To trace the marine litter point of origin since there are studies [13] referring the
wind as a main effect of the ocean currents, which will influence the marine debris
trajectory and allows identification of origin patterns [14–16] regarding macroplastics
accumulation in the ocean.

This is of fundamental importance since marine litter composition raises major con-
cerns about the plastics contamination in the ocean, due to their chemically engineered
durability, which decreases their bio-degradation rate [17]. The marine litter composition
will increase the life span of these synthetic polymers which will stay on the ocean for
longer [18], thus producing irreversible damage to the marine ecosystem. There are mul-
tiple examples of environmental impacts of marine debris [19], including entanglement
of marine fauna, ingestion by seabirds or fish [20], as well as the possible dispersion of
microbial and colonizing species to non-native waters [21,22]. Figure 2 shows marine litter
found at the test site in Porto Pim bay (Faial Island, Azores).

Figure 2. Marine Litter found in the test site, Porto Pim Bay (Faial Island, Azores).

2.2. Remote Marine Litter Detection

There are several applications for remote sensing in coastal areas [23]. However,
this section focuses on remote marine litter detection. A summary of previous work on
marine litter detection is presented in Table 1, focusing on previous research that conducted
tests in real environment conditions. The table describes the related work considering the
following items: types of sensor used to detect the marine litter, test site location, platform,
target objects (marine litter samples) and developed algorithms.

Briefly summing up the table content, most of the previous work is being carried out
using drones equipped with RGB cameras [24–27]. All these works resort to deep learning
algorithms, such as Convolutional Neural Networks (CNN). Although the use of RGB
cameras can be considered an easy and low-cost solution, it has operational constraints for
detection such as water reflections due to sunglare, difficulty to achieve the required image
resolution for the marine litter detection, and recent literature results seem to be shying
away from visual-only systems as they are not the most suitable for extended coverage of
the ocean. Other works result from NASA initiatives, such as the one that uses AVIRIS [28],
which is an airborne solution provided by NASA. In [28], the authors first performed an
in-situ analysis of dry and wet marine-harvested microplastics, to detect the absorption
bands of each sample on the spectral wavelength to apply to the collected AVIRIS data.

Other authors based their solutions on the use of satellite data, such as satellite
WorldView 3 (WV3) for marine litter detection [29]. In this work, in addition to the
data collection with the satellite WV3, the authors also collected some samples from the
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test site that was subject to extensive laboratory analysis. To perform the atmospheric
correction in the WV3 data it was used the Atmospheric Compensation algorithm from
DigitalGlobe. The results were convolved using the RSRCalculator, which allowed to
estimate the Anthropogenic Marine Debris (AMD) reflectance values for each spectral
bands that afterward were compared to the laboratory results. The convolved spectral
signatures were then used to train automated classification algorithms such as Support
Vector Machine (SVM), Random Forest (RF) and Linear Discriminant Analysis (LDA).
The results showed a precision of 80% in general (considering all algorithms applied).
However, this precision is only to distinguish between mixture AMD and expanded
polystyrene AMD.

Three other studies use the Sentinel 2 to detect marine litter [30–32]. Two studies
use artificial targets, while one of them also uses plastic aggregations that were present
in the test site. The usage of artificial targets is mainly due to being able to cover the
spatial resolution of the multispectral sensor included in the satellite (which has a spatial
resolution of 10 m × 10 m). However, in addition to the unsuitable spatial resolution
for marine litter detection, the Sentinel-2 multispectral sensor also has a small number of
spectral bands. In [30], the Sentinel-2A data atmospheric correction was performed using
the ACOLITE and Sen2Cor algorithms. The authors also provide a comparison between the
pixel coverage for each target. However, they do not perform any automated classification
task. In work developed in [31], the authors use both Sentinel-2B and airborne data. For
the airborne data, they compared three different algorithms: ENVI true color composite,
greyscale HI index and greyscale NDHI index. The test was conducted only with beach
targets and the authors did not perform any automated classification task. In [32], the
authors developed the FDI algorithm, a new index created especially for Sentinel-2 data.
This index allows easy and fast detection, and it also serves as input to the classification
stage, using naive Bayes. The classification was performed between the following classes:
water, seaweed, timber, plastic, foam and pumice. The results presented show 86% accuracy
for “suspected plastics”, which do not identify the plastic-type.

A recent study [33] uses the PRISMA satellite data to perform tests with several
pansharpening methods to improve the spatial resolution of the PRISMA hyperspectral
sensor. The authors used several artificial targets with different sizes to test the possibility
of using the PRISMA data for marine litter detection, and the minimum spatial resolution
when using pansharpening methods. Although some plastic materials spectra are similar
to the water spectra, the authors were able to produce marine plastic litter indexes, which
had successfully detected the plastic targets placed in the test site.

Our proposed work follows the work already developed in [30–32], but extended
to the use of a hyperspectral image system that collects data at different altitudes with
a manned and unmanned aerial platforms, from 400 to 2500 nm. We characterize the
target samples in wet and dry conditions to evaluate the influence of water in the marine
litter spectral response. These samples were collected at the test site and used to construct
targets according to the Sentinel 2 resolution. Furthermore, we extend previous work by
developing, training, and testing supervised machine learning methods (RF, SVM) to detect
and classify marine litter samples based on the remotely acquired hyperspectral flight data.
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Table 1. Marine litter detection state-of-the-art.

Ref. Sensor Test Site Satellite/Vehicle Target Objects Algorithms Used

[28]

(1) FTIR spectroscopy,
(2) Airborne visible-infrared
imaging spectrometer
(AVIRIS) retrieved from
the AVIRIS online data portal
(224 bands between 360–2500 nm)

California
Sunshine
Canyon
Landfill
(USA)

AVIRIS
Plastic that
was present
in the test site

- Spectral similarity: Spectral contrast angle
- Spectral mixing: used a simplified
linear mixing simulation to analyze how spectral
properties of the dry and wet marine-harvested
microplastics were influenced by varying pixel
coverage

[29]

(1) Laboratory: HyLogger 3
reflectance spectrometer
system and APOGEE PS-300
(2) WorldView 3, using a
multispectral with a spectral
range from 397 to 2373 nm)

Chiloe
Archipelago
(northwestern
area of
Chilean
Patagonia)

WorldView 3
Plastic that
was present
in the test site

- Atmospheric correction of the WV3 data: Atmospheric
Compensation from DigitalGlobe
- The spectral collected using the WV3 were convolved using
RSRCalculator to estimate the samples reflectance values for
the spectral bands in order to compare with the spectral
measurements from the laboratory

[30]

(1) S900 DJI Hexacopter:
multispectral SLANTRANGE 3 P
(S3 P), Parrot Sequoia multispectral
(4 bands in the 450–850 nm),
FLIR Duo R, and RGB camera
(2) Sentinel-2A: multispectral
camera (13 bands between 492–1376 nm)
(3) Sentinel-1: Synthetic
Aperture Radar

Tsamakia
beach of
Mytilene
on Lesvos
Island, Greece

- Drone
- Sentinel-2A
- Sentinel-1

(i) plastic bottles
(ii) plastic bags
(iii) plastic fishing net
Each one of these
plastic types were
held by a
10 m × 10 m frame

Atmospheric correction for the Sentinel-2A data:
ACOLITE and Sen2Cor

[31]

(1) Sentinel-2B: Multispectral
camera (13 bands between
492–1376 nm)
(2) Airborne: Specim Asia
Fenix (300–2500 nm)

Whitsand
Bay (UK)

- Sentinel-2B
- Airborne

(i) 2 plastic targets
from NERC-FSF
with colors grey
and black
(ii) 2 types of
agricultural
fleece plastic targets

Specim data analysis: ENVI true color composite,
grey scale HI index and grey scale NDHI index

[32]
Sentinel 2A and 2B
Multispectral sensors
13 bands between 492–1376 nm

Accra, Ghana
Barbados, Caribbean
Da Nang, Vietnam
Late Island, Tonga
Mytilene, Greece
Gulf Islands, Canada
Scotland, UK
Durban, South Africa

- Sentinel 2A
- Sentinel 2B

(i) Plastic aggregations that
was present
in the test site
(ii) Deployed plastic targets

Acolyte to the correction phase, FDI to detect
and Naive Bayes to classification stage



Remote Sens. 2021, 13, 2536 6 of 22

Table 1. Cont.

Ref. Sensor Test Site Satellite/Vehicle Target Objects Algorithms Used

[24] RGB Camera

Xabelia
beach in
Lesvos,
Greece

DJI Phantom
4 Pro v2

Plastic that
was present
in the test site

Deep learning algorithms - CNN
(VGG16, VGG19, DenseNet121,
DenseNet169, DenseNet201)

[25] 20 MP RGB imaging sensor

Phnom Penh,
Sihanoukville
and Siem Reap
in Cambodia

DJI Phantom
4 Pro v2

Plastic that
was present
in the test site

APLASTIC-Q: (i) plastic litter detection
(PLD-CNN) + (ii) plastic litter quantifier
(PLQ-CNN)

[26,27] 20 MP RGB imaging sensor

Cabedelo
beach,
Figueira
da Foz,
Portugal

DJI Phantom
4 Pro

Plastic that
was present
in the test site

- Random Forest
- CNN

[33]

PRISMA hyperspectral,
with 234 bands from
400–2500 nm and 30 m
spatial resolution

Tsamakia beach,
Lesvos Island,
Greece

PRISMA satellite

12 floating targets
(5.1 m × 5.1 m,
2.4 m × 2.4 m,
0.6 m × 0.6 m), with
HDPE, PET and PS

Pansharpening methods
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3. Hyperspectral Imaging System

This section describes the hyperspectral imaging system setup, including the descrip-
tion of the physical connections and their main components.

3.1. Hyperspectral Imaging System Setup

Concerning the hyperspectral imaging system setup, it consisted of a system composed
of two pushbroom hyperspectral cameras [34], a CPU unit, GPS, and an inertial system.
One of the hyperspectral cameras was a Specim FX10e, a GigE camera with a spectral range
from 400 to 1000 nm wavelength and spatial resolution of 1024 pixels. The other camera
was a HySpex Mjolnir S-620, a hyperspectral system composed of the hyperspectral camera,
a data acquisition unit, GPS, a dedicated inertial system, a control board, power control and
distribution, and an RGB camera, integrated into the same closed box. This hyperspectral
camera has 620 pixels of spatial resolution and covers a spectral range from 1000 to 2500 nm
wavelength. Table 2 depicts the main features of each hyperspectral camera.

Table 2. Specim FX10e and HySpex Mjolnir S-620 main characteristics.

Specifications Specim FX10e HySpex Mjolnir S-620

Spectral range 400–1000 nm 970–2500 nm

Spatial pixels 1024 620

Spectral channels and
sampling 224 bands @ 2.7 nm 300 bands @ 5.1 nm

F-number F1.7 F1.9

FOV 38º 20º

Max speed 330 fps 100 fps

Power consumption 4W (12DC) 70 W (9–32 V)

Dimensions (l × w × h) 150 mm × 85 mm
× 71 mm 374 mm × 202 mm × 178 mm

Weight 1.3 kg 6 kg (including IMU/GPS and DAU)
6.5 kg (including also standard battery)

In Figure 3 is possible to see the hyperspectral image system hardware architecture.

Figure 3. Connections between the hyperspectral cameras, data acquisition computers and GPS/INS.

The hyperspectral imaging system in fact is dual and synchronized, since the Specim
FX10e hyperspectral camera is triggered by the HySpex Mjolnir S-620 system. This trigger
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is related to INS/GPS (Applanix APX-15 UAV) for data georeference. Concerning the data
acquisition, the HySpex system saves a HySpex file containing all the raw data collected
by the camera. The data is processed after the flight with HySpex Rad software, which
performs the calibration, and converts the raw data to radiance by removing the effects
of the sensor in the raw data. For the SPECIM FX10e, the raw data is acquired using a
customized data acquisition software (driver), and afterwards, the calibrated manufacturer
gains are used to convert the raw data into radiance data.

3.2. Hyperspectral Imaging System Setup—Laboratory

For conducting the tests, a laboratory setup with the cameras coupled together using
a custom holder, was mounted to allow fixing the Specim FX10e camera to the HySpex
system. The structure is shown in Figure 4. The distance between the cameras to the marine
litter samples is 1 m in height.

Figure 4. Test setup used during the laboratory test.

The entire structure was built in black to minimize the sunlight reflections captured by
the camera. In addition, the water placed in the tank is seawater collected in the Atlantic
Ocean, the same ocean present in the test zone.

3.3. Hyperspectral Imaging System Setup—Manned Aircraft (F-BUMA)

The first aerial platform included in the project was a manned aircraft—A Cessna
F150L. Figure 5 shows the system already assembled in the aircraft. The GPS antenna was
placed in the rear window of the aircraft, inside the airplane and facing up. The system
was built to ensure that lenses were at the same height, keeping the alignment between
the cameras.

Figure 5. Hyperspectral imaging system mounted in the manned aircraft (F-BUMA).

3.4. Hyperspectral Imaging System Setup—Unmanned Aircraft (Grifo-X)

The second aerial platform included in the project was an unmanned aerial vehicle
(UAV), Grifo-X, developed at CRAS (Center for Robotic and Autonomous System) from
INESCTEC. The GPS antenna was installed in a custom support on top of the UAV frame.
Figure 6 shows the hyperspectral imaging system mounted onto the Grifo-X UAV.
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Figure 6. Hyperspectral imaging system mounted in the unmanned aircraft (Grifo-X).

4. Laboratory Marine Litter Samples Characterization and Dataset Campaign

This section describes the laboratory tests to perform the marine litter samples charac-
terization, and the dataset campaign realized in Porto Pim Bay, Faial Island, Azores.

4.1. Laboratory Marine Litter Samples Characterization

Before the flight campaigns, and to perform a ground-truth comparison of different
marine litter samples, the hyperspectral imaging system was mounted in an outdoor
environment as described in Section 3.2. The objective was to characterize the spectral
response of the marine litter samples under direct sunlight, and under varying natural
light conditions, i.e., morning and in the afternoon using dry and wet samples. This study
will be helpful in future works to understand better the water effects, as well as the light
incidence effects in the spectral analysis of the marine litter samples. The marine litter
samples used in the test were identical to the ones used in the artificial targets on the
airborne dataset campaigns, namely:

• Orange polypropylene plastic used for oyster aquaculture. This type of plastic is
widely found in the hotspot analyzed, and can be observed in Figure 7a;

• Blue polypropylene ropes, used for fishery, one thin and another thick. This type of
plastic is also widely found in the hotspot tested and can be observed in Figure 7g,j;

• White polyethylene plastic, used to cover greenhouses, see Figure 7d.

The results for both morning and afternoon tests of all target materials are shown in
Figure 7. The results concerning the dry and wet samples are very similar, noticing an
attenuation on the energy of the signal in the results of the wet samples due to water effects,
but without significant variation in the absorption of spectral bands wavelength.
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Figure 7. Plastics used in the targets and the laboratory results in normalized radiance for each target material: (a) shows the
orange target material (with approximately 20 cm diameter), (b,c) shows the laboratory results for the orange target material,
respectively; (d) shows the white target material (with approximately 50 cm width, with variable length), (e,f) shows the
laboratory results for the orange target material, respectively; (g) shows the thin rope target material (3 cm diameter, with
variable length), (h,i) shows the laboratory results for the orange target material, respectively; (j) shows the thick rope target
material (5 cm diameter, with variable length), (k,l) shows the laboratory results for the orange target material, respectively.

4.2. Dataset Campaign

The project dataset campaign occurred in Faial Island Azores from the 16th until the
25th of September of 2020. The artificial target setups were placed inside the Pim Bay
area, for conducting the hyperspectral image data acquisition. In Figure 8 it is possible
to see the location of three artificial targets, built using the marine litter samples, during
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the campaign. The targets dimension is 10 m × 10 m which corresponds to the minimal
resolution (1 × 1 pixel) to be detected by Sentinel-2.

Figure 8. Picture of the three targets used. From left to the right: low density polyethylene orange
target (with used oyster spat collectors), white plastic film target and rope target.

The flights were divided into two modules: manned fixed wing and unmanned flights.
Each one of the aircrafts performed a flight a few moments before or after a flyby of the
Sentinel-2 satellite. However, the data collected by Sentinel 2 on the flight’s days was not as
good as expected due to cloud coverage. In our experimental setup, the cloud cover did not
affect significantly the hyperspectral imaging system acquisition, as shown in Figure A6
(Appendix A) where is possible to see that the airplane, the UAV, and the laboratory setup
produce similar results concerning the spectral profile of one of the targets. However, is
know that cloud coverage affects hyperspectral data acquisition results and can reduce the
amount of direct sunlight onto the targets, influencing the energy of the reflections and
shifting absorption bands as described in more detail in [35].

In Figure 9a is possible to see the trajectory of the F-BUMA aircraft during the 20
September 2020 flight, and in Figure 9b is possible to observe the smaller trajectory of the
GRIFO-X UAV during the 25 September 2020 flight.

(a) (b)

Figure 9. Flight trajectories: (a) shows the 20 September 2020 flight trajectory, performed by F-BUMA aircraft, while in (b) is
possible to observe the trajectory of the 25 September 2020 flight performed with GRIFO-X aircraft.
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As a first approximation to characterize the obtained hyperspectral imaging data
results, we compared the laboratory data with the flight data. To conduct this comparison,
three different pixels from the three distinct targets were analyzed, namely a bright pixel,
a medium intensity pixel and a dark pixel. The pixels were manually selected using the
hyperspectral waterfall image (which is an “RGB” type of image using multiple spectral
bands). In all analysis presented in this work, we did not use all the available flybys of
the hyperspectral over the targets, but only the ones that contain all the three targets in
the same flyby. The figures results can be found in Appendix A. It is possible to observe
that the spectral response is similar but with attenuation on some of the spectral bands
particularly in the visible 400–1000 nm wavelength. Another important feature is that the
flight data matches the spectral response when compared with the laboratory data in each
target, which is consistent with the fact that the targets use different plastics materials.

5. Target Detection and Classification

The characterization of the acquired hyperspectral imaging data is important. How-
ever, for helping solve the problem of marine litter detection and identification, automated
means of detection need to be used to detect and classify marine litter in vast amount
of data.

Therefore, in this work, we develop, train and compared the obtained results of two
machine learning (ML) algorithms do detect and classify marine litter samples, namely:
Random Forest (RF) [36] (RF) and Support Vector Machines (SVM) [37]. The algorithms
were tested using the F-BUMA acquired data, due to time-consuming process of manual
annotating the dataset for ground-truth and training purposes.

The training of the model was performed with data collected during the F-BUMA 18
September 2020 flight, which was divided to be used for training and fine tuning of the
model parameters. The second flight, from 20 September 2020, was used for testing the
results. This means that the model was trained using data from a different day than the
one used for the prediction. The data was measured in raw units, and then transformed to
radiance. This allows understanding of the possibility of having a hyperspectral imaging
system in the future to detect marine litter concentrations in near real-time, which needs to
be performed with radiance data.

Given the data characteristics, the flights were divided into flybys over the target
(which considered only the data in the targets vicinity), and only the flybys with the
three targets were used for training and prediction. In Table 3 is possible to observe
some examples of the classes components. Tables 4 and 5 show the pixel distribution for
each class in each flyby. Class 1 represents the Orange target data, class 2 corresponds to
the White target data and class 3 the Rope target data. Class 0 was created with all the
remaining pixels, containing both land and water data. It was necessary to make this class
to train the methods to recognize the characteristics of the non-marine litter pixels, by
grouping all in one class.

Table 3. Targets used during the dataset collection and their division between the classes.

Class 0
Water and Land (Houses,
Trees, Streets, Cars, and

Others Materials)

Class 1
Orange Plastic Target

Class 2
White Plastic Target

Class 3
Ropes Target
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Table 4. Number of pixels (NP) present for each class in 18/9 F-BUMA flight: class 1 corresponds
to the orange target data, class 2 to the white target and class 3 to the rope target data. Class 0 was
created with all the remaining pixels, containing both land and water data.

Flyby Class 0 (NP) Class 1 (NP) Class 2 (NP) Class 3 (NP)

0 57,259 299 664 678
1 125,732 399 857 732
2 86,479 454 1203 1144
3 153,180 462 1880 1338
4 51,438 700 1182 0
5 138,612 620 1658 1710
6 87,266 696 1358 1200
7 117,078 489 1373 1960

Table 5. Number of pixels (NP) present for each class in 20/9 F-BUMA flight: class 1 corresponds
to the orange target data, class 2 to the white target and class 3 to the rope target data. Class 0 was
created with all the remaining pixels, containing both land and water data.

Flyby Class 0 (NP) Class 1 (NP) Class 2 (NP) Class 3 (NP)
0 15,604 516 0 0
1 29,522 858 0 0
2 47,986 662 671 281
3 72,742 715 1157 1026
4 52,024 626 670 0
5 94,414 1246 781 899
6 167,177 1547 1682 2574
7 81,713 813 864 930
8 183,419 2640 1928 1733

To overcome some limitations in the training of the data. Some training techniques
were adopted in the experiments, namely:

• Class imbalance: As can be observed in Tables 4 and 5, the number of pixels for each
class has a considerable variation. Some of the flybys do not hold information about
all the classes, and the difference between the class 0 pixels and the other classes is
significant. Therefore, we randomly selected some samples, so that the number of
points is identical for each class. This was required, so the class with the highest
number of points does not become dominant leading to overfitting;

• Feature normalization: Given the characteristics of the hyperspectral data that is
affected by the variability of atmospheric conditions, particularly direct sunlight, it
is necessary to carry out its normalization. To perform this step, we used the sklearn
python library pre-processing module, to normalize the feature data to unit variance.

• Given the characteristics of the flight (altitude), the targets will appear relatively small
(resolution) in the datasets. In addition, there are targets that due to their physical
construction, will have water in the middle, such as the orange (class 1) and rope
targets (class 3). Furthermore, due to the size of targets in the final dataset, marking the
ground-truth to completely exclude the water in the middle of the target is challenging
to achieve. Therefore, it is still necessary to take this into account and try to balance
this with the number of pixels provided to train the algorithm;

• The targets were always located in the same area. However, due to some variations
in the flights mainly because of atmospheric conditions, there are flybys in which a
considerable amount of land was observed. To allow the methods to learn the terrain
characteristics, some land points were added to class 0. This land points contains data
from: houses, cars, ropes, trees, sand, and other objects. Due to this, the number of
land pixels increased considerably, to ensure that when selecting the points randomly,
all these classes have some representation in class 0. This class is not a pure class (it
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does not contain only one type of material), but it is a class with a combination of
dozens of materials that is not intended to be identified per se.

Considering all the constraints mentioned above, the data were then processed for
training. In this case, the number of pixels for ground-truth in each class was the following:

• Class 0: 170,773 randomly selected pixels;
• Class 1: All the pixels contained in the training dataset, 4119 pixels;
• Class 2: 4119 randomly selected pixels;
• Class 3: 7000 randomly selected pixels;

The selection of the number of pixels for training each class was based on the maximum
number of pixels present in the training data for class 1, since this was the class with fewer
available pixels to identify. During the training process, we also had to add more class 3
pixels since it was difficult to manually select pure rope pixels. Both RF and SVM methods
implementation based on Python sklearn used the same training points from 18/9 F-BUMA
flight, and the same test data from the 20/9 F-BUMA flight. For both algorithms, we used a
grid search method that allowed to fine tuning both RF and SVM to their best parameters.
In the case of SVM, the parameters changed were: C-100, kernel-RBF and gamma-0.0001.
For RF, the parameters changed were: number of trees-3500, maximum features-log2,
maximum depth-10, minimum number of samples in a leaf node-1 and minimum samples
required to split an internal node-5.

Results and Discussion

Both RF and SVM methods were trained with the training data from the 18 September
2020 flight. The aim was to create a model that would be evaluated using the data collected
during the 20 September 2020 flight. Table 6 shows the prediction analysis for both
algorithms (RF, SVM), using the following metrics: precision, recall, f1-score, and accuracy.
For these tests, we only used the flybys with all targets present.

Table 6. Results obtained for the test data (20/09/2020 flight) for random forest (RF) and support vector machine
(SVM) algorithms.

Flyby 2

RF SVM

Class Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

0 0.99 1 0.99

97.35 %

0.99 0.99 0.99

97.47 %1 0.24 0.12 0.16 0.75 0.42 0.54

2 0.85 0.42 0.56 0.66 0.47 0.55

3 0.18 0.44 0.26 0.22 0.50 0.31

Flyby 3

RF SVM

Class Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

0 0.99 1 0.99

97.34 %

0.99 0.99 0.99

97.27 %1 0.20 0.13 0.16 0.75 0.38 0.51

2 0.85 0.53 0.65 0.56 0.43 0.49

3 0.45 0.38 0.41 0.52 0.74 0.61
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Table 6. Cont.

Flyby 5
RF SVM

Class Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

0 0.99 1 0.99

98.09 %

0.99 0.99 0.99

97.06 %1 0.71 0.25 0.37 0.77 0.46 0.58

2 0.74 0.62 0.67 0.57 0.59 0.58

3 0.38 0.56 0.45 0.21 0.47 0.29

Flyby 6

RF SVM

Class Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

0 0.99 1 0.99

97.92 %

0.99 0.98 0.98

96.56 %1 0.52 0.22 0.31 0.71 0.48 0.57

2 0.85 0.59 0.70 0.78 0.67 0.72

3 0.50 0.42 0.46 0.27 0.51 0.35

Flyby 7

RF SVM

Class Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

0 0.98 1 0.99

97.32 %

1 0.99 0.99

98.01 %1 0.01 0 0.01 0.50 0.16 0.24

2 0.95 0.45 0.61 0.44 0.72 0.54

3 0.17 0.01 0.02 0.64 0.76 0.70

Flyby 8

RF SVM

Class Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy
0 0.99 0.99 0.99

97.44 %

0.99 0.99 0.99

97.28 %1 0.85 0.55 0.66 0.10 0.02 0.04

2 0.94 0.36 0.52 0.46 0.55 0.50

3 0.21 0.35 0.26 0.30 0.51 0.38

Table 7 illustrates the detection and classification results compared with ground-
truth information.

The fact that the targets had 10 × 10 m dimension composed by 4 × 4 squares, each
one with 2.5 × 2.5 m, negatively influenced the results. Meaning that at 600 m average flight
altitude is very difficult to manually annotate ground-truth pixels as “pure”. Therefore,
there is no absolute way to be sure that the target pixel is not over dominated by water.
Even though the targets are still able to be identified in most of the flybys the precision rate
and the recall rate are not uniform for all three targets indicating that on some of those
flybys the targets could be submerged in some areas, which is something to be expected in
real environment scenarios.
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Table 7. Figures showing the results obtained for the test data (20 September 2020 flight) for random
forest (RF) and support vector machine (SVM) algorithms. In the first column are illustrated the
ground-truth for each flyby, the second column shows the prediction made by the random forest algo-
rithm, and the last column represents the predicted values by the support vector machine algorithm.

Flyby 2

Flyby 3

Flyby 5

Flyby 6

Flyby 7

Flyby 8

Concerning the implemented methods (RF, SVM), is possible to see both from the
aforementioned from Tables 5 and 6 that the SVM provides slightly more accurate results.
The SVM can detect all three targets in all the flybys, but the precision and recall values
vary between the flybys. RF provides more stable results when it detects a target but
sometimes cannot detect the targets, see flybys 7 and 8.

However, even with the SVM method, the results show non-uniform detection pattern,
particularly on class 2. This is the case since the class 2 target is a more standard plastic-
type that can be found in structures of houses or agriculture, making easier to be detected
outside the target areas. In flyby 7 and flyby 8 it is possible to identify anomalies in class
1 and class 2 results in the SVM method. Both flybys show the presence of “land” in the
identification of the targets, which are included in class 0. This class is not a water target
related class but instead a “non-marine litter” class. This fact may suggest the appearance
of unknown artefacts of class 0 that were wrongly classified as class 2 in flyby 7 and class 1
in flyby 8.

Overall, the RF and SVM methods show potential to be able to detect marine litter,
i.e., plastic samples using hyperspectral imaging on-board an aircraft at a reasonable 600 m
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altitude, with 0.70–0.80 precision values and few false positives. The model trained from
the previous flight days allowed to classify most of targets correctly, but the presence of
submerged target pixels made it more difficult for the methods to classify all the target
pixels accurately, making extremely challenging the distinction between the different types
of plastic that constituted each target.

6. Conclusions and Future Work

There is an urgent need to understand and monitor marine litter concentrations in the
oceans. This work focused on the development of a remote hyperspectral imaging system
for detecting and classifying marine litter. The work was conducted to perform analysis
of marine litter samples from a known marine litter hotspot (Porto Pim Bay, Faial Island,
Azores, Portugal). First, samples were collected and analyzed in an outdoor environment to
retrieve the reference spectra for each of the samples. The second step was the development
of the hyperspectral imaging setup to put on-board two aircraft: the F-BUMA, a manned
aircraft, and Grifo-X, an UAV. The payload was the same for both platforms, which allowed
data acquisition at different altitudes.

The final test trials took place in Porto Pim Bay, Faial Island, from 16th to 25th of
September. Although due to atmospheric conditions it was not possible to compare
the results with Sentinel 2 data, the results are promising. The results show similarities
between the absorption bands obtained in the laboratory with the field trials results. It is
also possible to observe that the difference in the flight altitude between the two aircraft
does not affect the spectral response absorption bands of the plastics.

Concerning the automated detection and classification of the targets using supervised
machine learning methods. Two different algorithms (RF, SVM) were implemented and
a model was trained to identify the three targets. The methods have shown the ability to
automatically detect the targets, the recall rate of the detection still needs to be improved,
particularly studying better the effects of the partial water submerged objects.

In future work, we would like to focus on the development of novel deep learning
implementations for the automated detection of marine litter samples using unsupervised
methods. We will pay attention to the development of spectral unmixing techniques to
study the pixel coverage effects in the determination of the type of plastic material. Future
system applications include using man pilot aircraft equipped with hyperspectral imaging
systems to perform regular flights and therefore provide a service to detect and monitor
marine litter concentrations near coastal areas, offshore aquaculture farms, or in locations
subject to large concentrations, e.g., Atlantic gyro, that currently are not sufficient covered
by satellite.
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Appendix A. Dataset Campaign Spectral Characterization Results

Appendix A.1. F-BUMA Flight Data

In Figure A1 it is possible to observe the waterfall image from the flight, with
500–600 m altitude.

Figure A1. Waterfall image of the flyby analyzed from the 18/9 afternoon F-BUMA flight.

In Figure A2 is possible to see the spectral response (in normalized radiance) for all
the three targets, compared with laboratory results for the wet samples.
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Figure A2. Results for the 18/9 F-BUMA afternoon flight, analyzing 3 different pixels (bright pixel-afternoon 1, a medium
pixel-afternoon 2 and a dark pixel-afternoon 3) for each material, and comparing them to the laboratory results.

Appendix A.2. Grifo-X Flight Data

In Figure A3 is possible to see the results for this flight, with 25–35 m altitude.
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Figure A3. Waterfall image of the flyby analyzed from the 25/9 Grifo-X flight 1.

In Figure A4 is possible to see the obtained results for all the targets.

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Wavelength (nm)

0

0.2

0.4

0.6

0.8

1

R
a

d
ia

n
c

e
 n

o
rm

a
li

z
e

d
 

b
e

tw
e

e
n

 0
 a

n
d

 1

White target

25/09 flight 1 (Grifo-X) 1

25/09 flight 1 (Grifo-X) 2

25/09 flight 1 (Grifo-X) 3

Laboratory morning

Laboratory afternoon

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Wavelength (nm)

0

0.2

0.4

0.6

0.8

1

R
a

d
ia

n
c

e
 n

o
rm

a
li

z
e

d
 

b
e

tw
e

e
n

 0
 a

n
d

 1

Rope target

25/09 flight 1 (Grifo-X) 1

25/09 flight 1 (Grifo-X) 2

25/09 flight 1 (Grifo-X) 3

Laboratory morning

Laboratory afternoon

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Wavelength (nm)

0

0.2

0.4

0.6

0.8

1

R
a

d
ia

n
c

e
 n

o
rm

a
li

z
e

d
 

b
e

tw
e

e
n

 0
 a

n
d

 1

Orange target

25/09 flight 1 (Grifo-X) 1

25/09 flight 1 (Grifo-X) 2

25/09 flight 1 (Grifo-X) 3

Laboratory morning

Laboratory afternoon

Figure A4. Results for the 25/9 Grifo-X first flight, analyzing 3 different pixels (bright pixel-1, a medium pixel-2 and a dark
pixel -3) for each material, and comparing them to the laboratory results.
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Figure A5 shows a comparison between the bright pixels for the 25/09 flight 1 with
Grifo-X, 20/09 F-BUMA flight and the laboratory morning results for all the target materials.

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Wavelength (nm)

0

0.5

1

R
a

d
ia

n
c

e
 n

o
rm

a
li

z
e

d

b
e

tw
e

e
n

 0
 a

n
d

 1

White target

25/09 flight 1 (Grifo-X)

20/09 flight (F-BUMA)

Laboratory - Morning

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Wavelength (nm)

0

0.5

1

R
a

d
ia

n
c

e
 n

o
rm

a
li

z
e

d

b
e

tw
e

e
n

 0
 a

n
d

 1

Rope target

25/09 flight 1 (Grifo-X)

20/09 flight (F-BUMA)

Laboratory - Morning

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Wavelength (nm)

0

0.5

1

R
a

d
ia

n
c

e
 n

o
rm

a
li

z
e

d

b
e

tw
e

e
n

 0
 a

n
d

 1

Orange target

25/09 flight 1 (Grifo-X)

20/09 flight (F-BUMA)

Laboratory - Morning

Figure A5. Comparison between the bright pixels for the 25/09 flight 1 with Grifo-X, 20/09 F-BUMA flight and the
laboratory morning results for all the target materials.

Figure A6 shows a comparison between the data from the same target (rope) at three
different situations: F-BUMA flight at 600 m altitude, Grifo-X flight at 20 m altitude and
using the laboratory setup.

1 
 

 
Figure A6. Comparison between the rope target results for F-BUMA flight (600 m altitude), Grifo-X flight (20 m altitude)
and laboratory setup, with focus in HySpex Mjolnir S-620 bands (970–2500 nm).
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