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Abstract: On 29 December 2020, an earthquake with a magnitude of M 6.4 hit the central part
of Croatia. The earthquake resulted in casualties and damaged buildings in the town of Petrinja
(~6 km away from the epicenter) and surrounding areas. This study aims to characterize ground
displacement and to estimate the location of damaged areas following the Petrinja earthquake using
six synthetic aperture radar (SAR) images (C-band) acquired from both ascending and descending
orbits of the Sentinel-1 mission. Phase information from both the ascending (Sentinel-1A) and
descending (Sentinel-1B) datasets, acquired from SAR interferometry (InSAR), is used for estimation
of ground displacement. For damage mapping, we use histogram information along with the RGB
method to visualize the affected areas. In sparsely damaged areas, we also propose a method based on
multivariate alteration detection (MAD) and naive Bayes (NB), in which pre-seismic and co-seismic
coherence maps and geocoded intensity maps are the main independent variables, together with
elevation and displacement maps. For training, approximately 70% of the data are employed and
the rest of the data are used for validation. The results show that, despite the limitations of C-band
SAR images in densely vegetated areas, the overall accuracy of MAD+NB is ~68% compared with
the results from the Copernicus Emergency Management Service (CEMS).

Keywords: Petrinja earthquake; synthetic aperture radar; damage detection; coherence; intensity

1. Introduction

Earthquakes are among the most destructive natural disasters on Earth. They are
mainly unpredictable in terms of time and location. The most highlighted point about
earthquakes is that, even though they only shake the Earth for a few seconds, the conse-
quences left behind potentially last for a long time. Human loss, direct damage to buildings
and infrastructures, and indirect damages such as fires, liquefaction, and landslides are just
a few examples of the impacts of a moderate to severe earthquake [1–7]. People located
near seismically active areas are one of the most vulnerable elements during catastrophic
earthquakes, and disaster prevention plans implemented by organizations and construction
companies can increase the resiliency of a society. Resilience includes both pre-disaster and
post-disaster actions. Although pre-disaster plans may reduce the risk of seismic exposure,
post-disaster actions also play an important role [8–11]. Remote sensing technology is a
powerful tool not only to monitor environmental changes before a disaster but also to
facilitate disaster responses in order to increase post-disaster resiliency. Remote sensing
technology can provide various solutions and answers in disaster situations. For example,
immediately after a severe earthquake, the main question is “where should the search and
rescue teams go first?”. Along with innovative damage assessment techniques in terms of
loss/consequences [12,13], remote sensing techniques also can provide efficient damage
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maps for large areas in a much shorter time than a field survey operation. Accordingly, the
rescue teams can speed up the rescue operations, prioritizing the most affected areas [14,15].
Even in the “recovery” stage of a disaster, remote sensing time series analysis can provide
valuable information of the recovery process from both a spatial and temporal point of
view [16–18]. Both optical and synthetic aperture radar (SAR) remote sensing are useful
and affordable tools for damage mapping and displacement characterizations in a large
area [19]. In the SAR remote sensing domain, Matsuoka and Yamazaki proposed a method
based on the intensity of pre-event and post-event ERS (European Remote Sensing) images,
in which differential intensity and correlation coefficients of the images were the two main
indicators to differentiate between collapsed and intact buildings in Kobe city, Japan, after
the M 7.2 Kobe earthquake in 1995 [20]. Following the damage detection study on Kobe,
the same authors showed the feasibility of the developed method for damage detection
after the M 6.3 Bam earthquake (2003) in Iran [21]. As sensors were developed to gather
data in different polarizations with finer resolution, more advanced techniques for different
seismic events were proposed. For example, machine learning techniques were applied for
damage detection only using one post-event SAR image, despite challenges, and difficul-
ties [22,23]. Miura et al. provided a discriminant analysis for the Haiti earthquake (2010)
using pre-event and post-event high-resolution SAR images to demonstrate their capability
in use [24]. Karimzadeh and Matsuoka investigated the damage of buildings in Amatrice
town, Italy, following the M 6.2 Amatrice earthquake (2016) using dual-polarized (HH and
HV, and VV and VH) and ascending–descending datasets [8,25]. Karimzadeh et al. pro-
posed a sequential SAR coherence method to monitor a specific area using coherence values
for a long time to differentiate climatic and seismic changes before and after the Kerman-
shah earthquake, Iran, in 2017 [26]. Adriano et al. investigated collapsed buildings after the
M 7.5 Sulawesi earthquake and tsunami (2018) using ensemble learning and multi-source
data including SAR data from Sentinel-1 and ALOS-2 (the Advanced Land Observing
Satellite) [27]. Karimzadeh and Matsuoka provided a weighted overlay method using SAR
data and LiquickMap data of the Japanese seismic network to detect liquefaction-related
damages after the M 6.6 Hokkaido Eastern Iburi earthquake (2018) [28]. Hajeb et al. used
texture parameters such as homogeneity, dissimilarity, and entropy for damage detection
in the town of Sarpol-e Zahab after the Kermanshah earthquake using several machine
learning algorithms such as random forest (RF) and support vector machine (SVM) [29].
SAR remote sensing is not limited to seismic damage detection; long-term damages to
infrastructures (e.g., dams or roads) due to land subsidence can be also monitored with
sub-centimeter accuracy [30–32]. More recently, gray level of co-occurrence matrix (GLCM)
texture analysis was used together with multi-layered set of images for damage detection
after Tohoku earthquake (2011) [33]. For the same earthquake (i.e., Tohoku earthquake),
co-polarization coherence analysis of ALOS-1 images were used to introduce a new index
for more accurate damage mapping [34].

Damages after the Petrinja earthquake are sparse and observed in various locations
that indicate that damage observations through medium resolution SAR images (e.g.,
Sentinel-1) are challenging. Accordingly, there are two main aims of this study as follows:
1- dual path histogram-based building damage assessments and RGB (red, green and
blue) coherence visualization of the damaged area in Petrinja town and its surrounding
areas and 2- introducing a damage classification method using coherence-intensity maps,
and multivariate alteration detection (MAD) transformation, which is based on canonical
correlation analysis (CCA) that produces a set of change maps in a linear combination
mode. From the produced change map for a sparsely damaged area, the map with the
lowest correlation is selected as the final map for naïve Bayes (NB) classification together
with ground displacement and elevation values.

2. Study Area and Materials

On 29 December 2020 at 11:19 UTC, a powerful M 6.4 earthquake hit the central part
of Croatia with at least 7 casualties, dozens of injuries, and tens of thousands of people
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displaced in the towns of Petrinja and Glina [35,36]. Figure 1 shows the epicenter of the
earthquake near the towns of Glina and Petrinja; the mechanism of the movement was a
right lateral strike-slip. Most of the heavily damaged buildings were reported from Petrinja,
Glina, and Sisak; 2902 buildings were possibly damaged or destroyed out of a total of
~40,000 buildings, based on the Copernicus report and OpenStreetMap [37]. This event
was initiated by a foreshock in the same region, with a magnitude of 5.2 just one day before
the main shock. After the main shock, about 500 aftershocks with a NW–SE trend (with a
40 km radius) were recorded in the study areas until 21 January 2021, in which the range of
the aftershocks varies from M 1 to M 4.5. Most of the aftershocks occurred northwest of the
main shock (Figure 1a). The Pokupsko fault (purple line in Figure 1), 75 km in length in the
NW–SE direction, is the causative fault, which is consistent with the focal mechanism of the
earthquake obtained from the United States Geological Survey (USGS). The felt intensities
on the European macroseismic scale MMI (modified Mercalli intensity) in Petrinja and
Glina were 7.5 and 7, respectively [35]. Peak ground acceleration (PGA) and peak ground
velocity (PGV) in Petrinja are 73.66% g and 49.75 cm/s, respectively. However, the PGA
and PGV values near the epicenter reached 121.19% g and 89.13 cm/s, respectively. The
earthquake occurred in a hilly topographic location, and its depth was 13.5 km, which is
rather shallow. The last earthquake in the Pokupsko–Petrinja area occurred in 1996 (M 6)
in Ston; a historical event took place in 1909, which is known as the Pokupsko earthquake,
with a seismic depth of 14 km [38]. PAGER (Prompt Assessment of Global Earthquake for
Response), as an initial indicator of economic and human loss, reported that the probability
of human loss of between 10 and 100 people is 35% while the estimated economic losses
are 0% to 3% of the total gross domestic product (GDP) of Croatia.

In this study, we used two types of SAR datasets from both ascending (track 146) and
descending (track 124) orbits of C-SAR (wavelength = 5.6 cm) satellites—Sentinel-1A and
Sentinel-1B. The revisit cycles of Sentinel-1A and Sentinel-1B are each 12 days, but if we
consider both of them together, the revisit cycle can be reduced to 6 days. Here, we aim to
use SLC (single look complex) images with IW (interferometric wide) swath, which contain
altitude and orbit information of the SAR images in the slant range. The acquired images in
both ascending and descending orbits are dual-polarized (VV and VH). The incidence angle
of the ascending master image is 39.473◦, and the absolute differential incidence angles for
the master image with two slave images—6 December 2020 and 30 December 2020—are 0◦

and 0.001◦, respectively. For the descending dataset, the incidence angle of the descending
master image is 39.371◦ and the absolute differential incidence angles for the master image
with two slave images—11 December 2020 and 4 January 2021—are 0.001◦ and 0.004◦,
respectively. The temporal baseline of the acquired images from both the ascending and
descending orbits is 12 days; the relative post-earthquake image from the ascending orbit
was taken 1 day after the earthquake, while the post-earthquake descending image was
taken 5 days after the earthquake. It must be noted that, due to the inherent limitations
of the C-band in vegetated areas and temporal gaps, the correlation of the pre-seismic
and co-seismic SAR pairs might decrease, especially for the descending dataset. A larger
temporal gap might deteriorate the quality of damage mapping, since human activities
such as establishing temporal shelters and tents increase in the affected area. Detailed SAR
footprints and parameters are given in Table 1 and Figure 1.

Table 1. Detailed information of C-SAR sentinel-1 images used in this work. “B”, “T”, “m”, “A”, and “D” denote spatial
baseline, temporal baseline, master image, ascending orbit, and descending orbit, respectively.

Date Mode (θ)◦ Polarization Orbit T (days) Doppler Diff. (Hz) B (m)

6 December 2020 IW 39.472 VV VH A 12 10.23 6
18 December 2020 (m) IW 39.473 VV VH A - - -

30 December 2020 IW 39.472 VV VH A 12 18.18 105
11 December 2020 IW 39.372 VV VH D 12 2.34 39

23 December 2020 (m) IW 39.371 VV VH D - - -
4 January 2021 IW 39.375 VV VH D 12 15.35 67
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respect to the main shock, coherence, and atmospheric noises. However, assuming that 
the M 6.5 event is the only significant ground movement during the two acquisitions, we 
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Figure 1. (a) Location of the study area together with main shock (blue beach ball), aftershocks (yellow circles), and the
earthquake fault (purple line); location of (b) Petrinja and (c) Glina.

Interferometric analysis was performed using two SAR images (12-day) for both
ascending and descending datasets. Interferometric analysis is used to calculate how much
the ground has displaced in the line-of-sight (LOS) due to the earthquake. As shown in
Figure 2, the co-seismic interferograms with a “butterfly” shape for ascending track 146) T
146) and descending track 124 (T 124) confirm the characteristics of strike-slip movements.
The movement is extended approximately 25 km in the E–W direction. The quality of the
interferograms of T 146 and T 124 is different because of temporal changes with respect
to the main shock, coherence, and atmospheric noises. However, assuming that the M 6.5
event is the only significant ground movement during the two acquisitions, we estimated
that the ground across the Pokupsko fault moved approximately 40 cm in the look direction
of the satellite (Figure 2a,b). Despite the inherent limitations of the C-band (wavelength
~5.6 cm) SAR images in green areas, the interferometric fringes of the co-seismic pairs are
visible in both the ascending and descending datasets (~4 fringes).
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3. Methods

This study focuses on two aspects: a) visualization of the study area; b) classification
of the affected buildings. We propose a framework for damage characterization after the
M 6.4 earthquake using the analyzed Sentinel-1A and Sentinel-1B intensity images and
RGB color composites of differential SAR coherence values as the first step and then a
classification method based on MAD and NB techniques (Figure 3). The visualization
part is a semi-automated approach for fast and effective illumination of different aspects
of the changes in the earthquake-stricken area based on backscattering coefficient (σ0)
coherence values [25,26]. Here, information on collapsed and damaged buildings was
obtained from the Copernicus emergency management service (EMS) for Petrinja and
Glina, which was combined with the building information from OpenStreetMap (OSM) as
an input for damage evaluation.
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3.1. Visualization

The visualization of the study area is based on auxiliary information (e.g., OSM), SAR
backscattering, and SAR coherence.

3.1.1. SAR Backscattering

Sentinel-1 SAR images are single-look complex (SLC) images gathered by a side
looking sensor, which represents the data in real and imaginary portions of the SLC data in
order to preserve amplitude and phase information. For change visualization, two SAR
images (or more) must have the same size and pixel number. For exact pixel matching,
one of these images must be selected as a master image and the other images are the slave
images [39–41]. Since the SAR geometry is different, the range coordinate is the slant
range and the azimuth coordinate is satellite movement direction. These coordinates are
not consistent with geographic coordinates. SAR images are described by considerable
distortions in range direction (mainly because of topographic changes). Thus, image
calibration and coordinate system conversion from the SAR coordinate system to the
geographic coordinate system is necessary. The coordinate transformation is possible with
a backward technique that uses a digital elevation model (DEM) to convert the positions.
The Doppler frequencies, pulse transmission time of the SAR image, the position, and the
velocity vectors of both sensor and backscatter elements are used for calibration as follows:

Rs = S− P (1)

fD =
2 f0 ×

(
vp − vs

)
× Rs

c× |Rs|
(2)

where Rs is the slant range, S and P are the positions of the satellite and backscatter, vs
and vp are the velocity of the satellite and backscatter element, c is the speed of light,
f0 is the frequency of the carrier, and fD is the processed Doppler frequency. Once the
processed Doppler frequency is achieved, during the geocoding processing, the results
can be converted into the required reference systems. Finally, the derived SAR brightness
values (β0) can be converted to the backscattering values using a simple equation between
β0 and local slope (local incidence angle) as follows:

σ0 = β0 × sin(α) (3)

where σ0 is the radar backscattering coefficient, β0 is the brightness value, and α is the
local incidence angle in the SAR imaging direction. The σ0 can be expressed as a calibrated
linear value or decibel value. Accordingly, in the rest of the text, the σ0 is σ0

dB. In this study,
we express the outcomes in decibel values as follows:

σ0
dB = 10× log10 σ0 (4)

The level of noise (speckle) in the produced maps was reduced with the noise-removal
technique called Refined Lee Filter (RLF), which is based on the standard Lee filter [38,39].
In the RLF technique, the K-nearest neighbor (KNN) algorithm adjusts the number of pixels
used for filtering in each moving window [42].

3.1.2. RGB Coherence Visualization and InSAR Deformation

The SAR coherence visualization is based on the estimation of interferometric phase
correlation of two pairs (pre-seismic and co-seismic). The phase cross-correlation of two
SAR images in different times (e.g., time 1 and time 2) for the same pixel is called “SAR
coherence” in which high coherence values indicate that the features have not been changed
during that period [43,44]. In contrast, low coherence values represent considerable changes
during that period. Since the last decade, coherence methods have been among the pre-
ferred damage detection techniques because of the availability of the repeated SAR imagery
systems and coherence sensitivity to the changes. Fielding et al. [44] showed the feasibility
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of the differential SAR coherence technique (pre-seismic coherence and co-seismic coher-
ence) for building damage detection after the Bam earthquake (2003) using three Envisat
ASAR images. Yun et al. [45] showed damage concepts after the Gorkha earthquake (2015)
using coherence analysis as a “damage proxy map” with ALOS-2 and Cosmo-SkyMed SAR
images. More recently, Karimzadeh et al. [26] improved change monitoring methods using
coherence analysis of Sentinel-1 SAR images as a “Sequential SAR coherence” method for
continuous monitoring of changes before and after the Kermanshah earthquake (2017).
Overall, for large areas, the detection of damage using coherence is a superior method, but
at least three SAR images from the same track with the same geometry are needed. The
coherence method provides additional information. If the temporal gap is short, the results
of the changes are highly associated with the event (e.g., earthquake), but if the temporal
baseline of the two images is considered large, other changes (e.g., vegetation growth)
might be reflected in the final coherence map. The interferometric phase correlation mea-
sures the coherency of the complex phase values of two SAR acquisitions. It varies between
0 and 1 and is a measure of the quality of the generated interferogram. The coherence (γ)
of two zero-mean circular Gaussian variables, a and b, can be defined as follows:

γ =
E〈ab∗〉√

E〈aa∗〉E〈bb∗〉
(5)

where a represents the relative complex values of the master image and b represents the
relative complex values of the slave image for interferometric analysis, * represents the
complex conjugates of the images, and E is the expectation operator. To achieve the pure
phase of changes, the topographic phase is removed using a 30 m digital elevation model
(DEM) of the Shuttle Radar Topography Mission (SRTM) and atmospheric effect noise
was also reduced using atmospheric models [46–48]. Usually, the coherence of vegetated
areas is low because of the growth of leaves and random movements of the foliage of
trees due to environmental effects such as wind. In contrast, urban areas are constant and
movement due to short-term effects (e.g., wind) is not possible. Thus, we always expect
higher coherence values from urban areas. Here, we applied multitemporal coherence
analysis using both ascending and descending datasets (VV polarization) for visualization
of the affected area. We produced a differential coherence map using one pre-seismic
coherence and one co-seismic coherence map for each dataset:

γdi f f = γpre − γpost (6)

For RGB visualizations, we defined three parameters. The first parameter is normal-
ized “forward change”, which means that the changes are related to an event. The second
parameter is normalized “reverse change”, which means that the changes are related to
post-event activities such as human activities and vegetation growth. The third parame-
ter is “constant”, which means that there are no changes. These concepts are defined as
follows [25]:

Forward change =
γpre − γpost

γpre + γpost
(7)

Reverse change =
γpost − γpre

γpost + γpre
(8)

Constant =
γpost + γpre

2
(9)

Once the three parameters are calculated from Equations (7)–(9), they are assigned to
“red”, “green”, and “blue” channels, respectively.

To extract the displacement map, first, the generated interferograms are filtered by
an adaptive method based on the local scene coherence and Goldstein filter [49]. The
technique filters incoherent areas more than coherent areas to increase the visibility of the
deformation fringes and reduces the level of noise from temporal and spatial baselines. As
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shown in Figure 2, the deformation signals are repetitive color bars, which indicate that
the phase of the interferograms was repeated from 0 to 2π several times. When the phase
exceeds 2π, the phase starts again from 0 to form another fringe. The phase unwrapping
process resolves the ambiguity of interferograms for 2π. However, the errors during the
phase unwrapping process must be treated. Here, the MCF (minimum cost flow) algorithm
is used to improve the quality of the unwrapped displacement maps, in which all pixels
with coherence values lower than the “Unwrapping Coherence Threshold” are ignored [50].
The obtained phase values are converted to the displacement values. Each 2π color bar
(fringe) corresponds to half of the wavelength of the satellite in the range direction, which
should be calibrated and geocoded at the final stage.

3.2. Classification

For damage or post-disaster classifications, different studies have been carried out [8–
29]. As an alternative, MAD and NB techniques are deployed in this study to classify
collapsed/damaged buildings from intact/moderately damaged buildings. Here, a dif-
ferential change detection technique is carried out for two stacked (3 bands) images (pre-
seismic and co-seismic) that contain 4 bands (differential backscattering map, pre- and
post-seismic maps, and pre- and co-seismic coherence maps) for both ascending and de-
scending datasets using the MAD algorithm [51]. When analyzing the changes, after partial
normalization, pixel values with small differences represent little to no change and areas
with large changes have large differential pixel values. The stacked images are assumed as
follows:

X = [X1, X2, . . . , Xk] Y = [Y1, Y2, . . . , Yk] (10)

where k is number of layers in the stacked images (X and Y) and the differential maps can
be calculated as follows:

X−Y = [X1 −Y1, . . . , Xk −Yk] (11)

The MAD algorithm can produce a set of change maps from Equation (11), where k
is the maximum number of bands in the first (pre-seismic) and second (co-seismic) input
images. The MAD change maps have two aspects: (1) there are differences between the
pair of linear combinations of bands from the first stacked image and bands from the
second stacked image, chosen to maximize the correlation; (2) each MAD change map
is orthogonal to the others. Thus, the MAD algorithm is a statistical method that can
use different modalities and bands to produce a single multiband change map, sorted by
increasing correlation. The lowest MAD correlation together with a DEM and displacement
map are chosen for NB classification. NB is a probabilistic machine learning model based
on Bayes’ theorem. The NB model considers the presence of an object/feature in a class as
unrelated to the presence of any other object. For example, a building might be considered
in a “collapsed” class if it has large differential coherence, a large differential backscattering
coefficient, and a large displacement value (close to the epicenter). Even if these parameters
depend on each other or upon the existence of the other buildings, all of these properties
independently contribute to the probability that this building is a “collapsed” building and
that is why it is called “naive”. Its naïve forms can be formulated as follows:

P(A|B) = P(B|A)P(A)

P(B)
(12)

where the probability of A occurring can be found, given that B has occurred. Here, B is
the evidence, P(B) is the prior probability of the prediction, A is the hypothesis, and P(A)
is the prior probability of the class. Despite the simple structure of the NB model, it is
known to outperform some other advanced classification methods [52]. Here, two classes
of buildings are defined as “not collapsed” with label “0” and as “damaged/collapsed”
with label “1”. Since the number of buildings in class “0” and “1” is not equal (most of the
buildings are in class 0), an equal number of buildings for each category should be selected
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for training and validation. The model is trained by assuming that the distribution of the
quantitative values of the variables (e.g., coherence values, elevation, and displacements)
follows a normal distribution, which does not allow zero probabilities for the classes.

4. Results
4.1. Visualization Results

Figure 4a–f shows the refined backscattering SAR images of the study area in decibel
values. Darker areas show that the roughness of the surface was likely very low because of
the mirror-like reflection mechanism that causes the lower backscattering values. Figure
4g shows the damage distribution in Petrinja based on auxiliary information gathered by
the Copernicus emergency management service (EMS). However, the damage concept
in the post-event backscattering maps is not clear by visual inspection. This is mainly
because of two reasons: (a) sparse distribution of the damaged or collapsed buildings in
different locations of the study area and (b) the spatial resolution of the Sentinel-1 images.
Although the changes in the built-up areas are not visible in SAR backscattering maps, the
histograms are helpful for the interpretation of seismic changes. A histogram of a series of
SAR images for an event presents useful information such as backscattering coefficients
and coherence in different polarization modes. Tabulating the frequency of occurrence
of each σ0 value within the images provides statistical information, as shown in Figure
4h,i in their symmetrical shapes. If a large number of pixels in the map have the same
σ0 values, the histogram information might not be the best way to recognize the content
of the SAR intensity data. As shown in Figure 4h,i, for both ascending and descending
datasets (VV polarization), the pre-event backscattering histograms (red and green) are
similar in shape and height because, before the event, there was no significant change (e.g.,
flood, rain, earthquake, etc.) in the built-up areas. In contrast to the pre-event images, the
histograms of the post-event images (blue) show that changes in the urban areas due to
earthquakes can be reflected in the height of the post-event histograms. The mean values
as univariate statistics for the two pre-event images of the ascending orbit are −5.2 (dB)
and −5.5 (dB), respectively, while the mean value for the post-event image is −4.9 (dB).
The difference in mean value between the pre-event images is almost two times smaller
than the difference in mean value between one pre-event and post-event image. For the
descending dataset, the situation is the same.

Figure 5a,b shows pre-seismic and co-seismic coherence maps for the Sentinel-1 as-
cending dataset, and Figure 5c,d show pre-seismic and co-seismic coherence maps for
the Sentinel-1 descending dataset (differential coherence for ascending and descending
datasets are available in Figure S1 in the electronic supplement to this article). In the pre-
seismic coherence maps, the brighter areas show higher stability, likely in the urban areas,
while the darker areas are associated with lower coherence values due to vegetation and
other reasons. In the co-seismic coherence maps, the stability shows some perturbations.
Although the higher coherence values are still related to the urban area, due to earthquake
damage, heavy rains, etc., the level of coherency is decreased considerably compared to the
pre-seismic maps. A coherence decay due to the earthquake is expressed above as γdi f f ,
which is an initial indicator of changes that can be used for damage visualization. For
pre-seismic coherence maps of ascending and descending datasets in the urban areas (red
polygons in Figure 5a–d), the mean coherence values are 0.55 and 0.59, respectively. The
standard deviation of the pre-seismic coherence maps for both ascending and descending
datasets is 0.14. For co-seismic coherence maps of ascending and descending datasets,
the mean coherence values are 0.49 and 0.45, respectively. The standard deviation of the
pre-seismic coherence maps for both ascending and descending datasets is 0.16. The mean
coherence decay (γdi f f ) for ascending and descending datasets is 0.06 and 0.1, respectively.
The higher mean coherence decay for the descending dataset does not mean that the dam-
age visualization in descending γdi f f will perform better than ascending γdi f f . It could be
related with the post-seismic images of the descending dataset (2021.01.04), which were
obtained 5 days after the main event. It is likely that the heavy rains and other human
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activities during these 5 days will deteriorate the coherency of the pure damages. As shown
in Figure 4f, there are some water accumulated areas in the northeast of Petrinja, which con-
firms the precipitation in the post-seismic descending image. Figure 5e,f show histograms
of the pre-seismic and co-seismic ascending and descending datasets, respectively. The
shape and amplitude of the pre-seismic histograms for ascending and descending pairs
(red and blue) are very similar, but for co-seismic histograms of ascending and descending
pairs (green and gray), the black double arrows show that the peak coherence retreat in the
descending dataset is considerably higher than that of the ascending dataset. Labeling the
pre-seismic and co-seismic coherence maps of ascending and descending datasets as band
1, band 2, band 3, and band 4, details of the statistical multivariate analysis are given in
Table 2.
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Figure 4. SAR intensity images of the study area. (a,b) are the pre-event ascending images; (c) is the post-event ascending
image; (d,e) are the pre-event descending images; (f) is the post-event descending image; (g) is the building damage map
of Petrinja from the Copernicus emergency management service (EMS); (h,l) are histograms of urban areas of ascending
and descending images, respectively. The red star shows the location of the main shock. The height of the bell-shaped
histograms of the post-seismic images are relatively smaller than those of pre-seismic images.
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Table 2. Multivariate statistics of the SAR coherence values.

Covariance Band 1 Band 2 Band 3 Band 4

Band 1 0.018 0.010 0.007 0.008
Band 2 0.010 0.024 0.009 0.012
Band 3 0.007 0.009 0.019 0.012
Band 4 0.008 0.012 0.012 0.026

Correlation
Band 1 1 0.478 0.393 0.385
Band 2 0.478 1 0.453 0.511
Band 3 0.393 0.453 1 0.553
Band 4 0.385 0.511 0.553 1

Eigenvector
Band 1 0.403 0.542 0.451 0.581
Band 2 0.611 0.431 −0.306 −0.588
Band 3 0.602 −0.687 0.397 −0.084
Band 4 0.316 −0.216 −0.737 0.554
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Figure 6a shows the damage reference map, which is a combination of the Copernicus
damage map and building inventories of OSM. Figure 6b,c are RGB damage of Petrinja
and Glina from Equations (7)–(9) for ascending and descending orbits. For the descending
RGB map (Figure 6c), because of the rather larger temporal gap between the event and
post-event image, the red pixels are more than the RGB damage map of the ascending
dataset (Figure 6b). The green areas mainly represent the vegetation growth/change, but
since the built-up areas are masked by the OSM map, the number of green pixels in Figure
6b,c is very low; blue (or purple) pixels are abundant in the study area, which implies that
most of the buildings are not affected by the earthquake. As shown in Figure 7a,b, mean,
maximum, and minimum InSAR displacement (cm) for the entire study area from T146
and T124 are −0.006, 0.43, −0.35, 0.007, 0.40, and −0.19, respectively. A cross comparison
of InSAR displacement deduced from T146 and T126 is shown in Figure 7c. The mean
displacement value of intact (or slightly damaged) buildings is insignificant; for T146 and
T124, it is −0.07 (cm) and +0.07 (cm), respectively, while the mean displacement values of
collapsed (or damaged) buildings for T146 and T124 are−0.17 (cm) +0.18 (cm), respectively.
Mean railway and road displacements for T146 and T124 are −0.036, −0.013, 0.024, and
0.009, respectively. Further statistical information are given in Table 3.
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Table 3. Multivariate statistics of the InSAR displacement values.

Covariance Band 1 Band 2

Band 1 0.002 −0.001
Band 2 −0.001 0.001

Correlation
Band 1 1 −0.75
Band 2 −0.75 1

Eigenvector
Band 1 0.81 −0.58
Band 2 0.58 0.81

4.2. Classification Results

Once the MAD map is extracted from multivariate analysis (Figure 8a–c), the NB
algorithm classifies the features in a probabilistic way. Thus, an assumed function can
be expressed by the independent variables to explain the outcome in a functional state.
Here, we have three independent variables (i.e., displacement map, digital elevation map,
and MAD map). To create the abovementioned structure, first, the independent variables
of each building were extracted from geographic coordinates. Second, the dependent
variables are assigned for each building. Dependent variables are assigned in a binary
mode in which the “intact” or “slightly damaged” buildings are considered as “0” and
“collapsed” or “damaged” buildings are considered as “1”.
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The total number of buildings used in this study is 47,982, in which 44,603 buildings are
categorized as “intact” or “slightly damaged” buildings, and 3379 buildings are categorized
as “collapsed” or “damaged” buildings. However, because of the coverage of the study
area and uncertainties of correct identification of the “slightly damaged” or “damaged”
categories, we randomly selected 384 buildings from the “intact” and “collapsed” categories.
The training set is balanced, in which 50% of the selected buildings are labeled “0” and
50% of the selected buildings are labeled as “1”. The total number of the training set is
~ 70% of the total collapsed and intact buildings in Petrinja and Glina. The overall (OA)
accuracy of the building classification for the proposed method using MAD and NB is 67%,
while for the collapsed buildings, the OA is 61%. We also applied only NB and support
vector machine (SVM) algorithms, with only differential coherence values of ascending and
descending datasets (without the elevation and displacement values) as input variables.
The OA for plain NB and SVM was 64% and 63%, respectively. The OA of the collapsed
category for the algorithms was 56% and 57.5%, respectively.

5. Discussion

In this study, deformation pattern and damage maps are presented for the Petrinja
earthquake. Since the damaged area is not concentrated in a specific region, as with
previous earthquakes studied in [25,26], NB and MAD techniques were used to explain
the classification of the damaged buildings. MAD and NB are selected for the scattered
damages case study based on empirical tests with four bands. Other indices such as
principal component analysis (PCA) and optimum index factor (OIF) were also tested
before the classification. The MAD was suitable for our purposes since it is a simpler
technique that uses a set of several change maps to generate change maps with differences
between pairs of linear combinations of bands to maximize the correlation. Classification
algorithms such as SVM were also tested, along with NB, for the study area.
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6. Conclusions and Future Directions

We conclude that SAR remote sensing products including SAR histograms and RGB
coherence combination are effective for rapid damage mapping. The preliminary infor-
mation presented in this study for the affected roads, along with visualization maps of
the affected buildings, can be used for fast and appropriate disaster response. The major
outcomes and highlights of damage visualization and classification are as follows:

1. Detection of sparsely damaged areas is generally challenging using single path SAR
imagery because the extent of damage in a specific search area is small. The proposed
method utilized Sentinel-1 ascending and descending datasets together to optimize
the damage classification results. We conclude that the simultaneous use of ascending
and descending datasets makes the proposed method applicable to sparsely damaged
areas after an earthquake occurs.

2. The accuracy evaluation showed that the combined method together with MAD and
NB are effective for sparse damage detection. Comparing the classification results of
the proposed method with SVM results, we also conclude that although SVM showed
good performance in densely damaged areas (e.g., the Sarpol-Zahab earthquake) [29],
for sparsely damaged case studies such as the Petrinja earthquake, NB is more suitable
because it is not sensitive to irrelevant pixel values in sparsely damaged areas. NB
is also highly scalable, with a number of variables that produce better results with
multivariate datasets. However, NB is not superior for damage classification in
densely damaged areas, because it assumes that all features are independent, which
is a “naive” assumption in real-world implementation of damage mapping.

3. This study presented a binary (0-1) damage detection using dual path SAR imagery
which is not fully compatible with physical damage scales such as European macro-
seismic scale 98 (EMS-98). In EMS-98 physical conditions of side walls, rooftops,
etc., are taken into account to categorize the damage states into several classes [53].
However, due to limitations of both SAR and optical remote sensing techniques,
damage expression is a bit different than those of EMS-98. In order to create a more
meaningful connection between damage scales (e.g., EMS-98) and remote sensing
techniques, very high-resolution images are necessary. Since the SAR imagery is in-
herently side-looking, the relationship between damaged buildings and backscattered
signals can be explained more clearly if both ascending and descending orbits are
available. For optical imagery, if nadir-looking imagery is not effective enough to the
walls or other elements of buildings, pictometry might also help us to explain other
damage grades which are related with walls of buildings.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13122267/s1, Figure S1: Differential coherence maps of the study area for both ascending
(T 146) and descending (T 124) datasets. Yellow and red polygons are Petrinja and Glina, respectively.
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38. Stanko, D.; Markušić, S.; Korbar, T.; Ivančić, J. Estimation of the High-Frequency Attenuation Parameter Kappa for the Zagreb
(Croatia) Seismic Stations. Appl. Sci. 2020, 10, 8974. [CrossRef]

39. Meier, E.; Frei, U.; Nüesch, D. Precise terrain corrected geocoded images, chapter 7. In SAR Geocoding: Data and System; Schreier,
G., Ed.; Herbert Wichmann, Verlag GmbH: Karlsruhe, Germany, 1993.

40. Ulaby, F.T.; Dobson, C. HandBook of Radar Scattering Statistics for Terrain; Artech House: Norwood, MA, USA, 1989.
41. Leberl, F.W. Radargrammetric Image Processing; Artech House Inc.: Norwood, MA, USA, 1995; p. 595.
42. Lee, J.S. Digital Image Enhancement and Noise Filtering by Use of Local Statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980,

PAMI-2, 165–168. [CrossRef]
43. Yommy, A.S.; Liu, R.; Wu, A.S. SAR Image Despeckling Using Refined Lee Filter. In Proceedings of the 2015 7th International

Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2015; pp. 260–265.
44. Fielding, E.J.; Talebian, M.; Rosen, P.A.; Nazari, H.; Jackson, J.A.; Ghorashi, M.; Walker, R. Surface Ruptures and Building Damage

of the 2003 Bam, Iran, Earthquake Mapped by Satellite Synthetic Aperture Radar Interferometric Correlation. J. Geophys. Res.
Solid Earth 2005, 110. [CrossRef]

45. Yun, S.-H.; Hudnut, K.; Owen, S.; Webb, F.; Simons, M.; Sacco, P.; Gurrola, E.; Manipon, G.; Liang, C.; Fielding, E.; et al. Rapid
Damage Mapping for the 2015Mw 7.8 Gorkha Earthquake Using Synthetic Aperture Radar Data from COSMO–SkyMed and
ALOS-2 Satellites. Seismol. Res. Lett. 2015, 86, 1549–1556. [CrossRef]

46. Tamkuan, N.; Nagai, M. Fusion of Multi-Temporal Interferometric Coherence and Optical Image Data for the 2016 Kumamoto
Earthquake Damage Assessment. ISPRS Int. J. Geo Inf. 2017, 6, 188. [CrossRef]

47. Natsuaki, R.; Nagai, H.; Tomii, N.; Tadono, T. Sensitivity and Limitation in Damage Detection for Individual Buildings Using
InSAR Coherence—A Case Study in 2016 Kumamoto Earthquakes. Remote Sens. 2018, 10, 245. [CrossRef]

48. Hasanlou, M.; Shah-Hosseini, R.; Seydi, S.T.; Karimzadeh, S.; Matsuoka, M. Earthquake Damage Region Detection by Multitem-
poral Coherence Map Analysis of Radar and Multispectral Imagery. Remote Sens. 2021, 13, 1195. [CrossRef]

49. Goldstein, R.; Werner, C. Radar Interferogram Filtering for Geophysical Applications. Geophys. Res. Lett. 1998, 25, 4035–4038.
[CrossRef]

50. Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36,
813–821. [CrossRef]

51. Nielsen, A.A.; Conradsen, K.; Simpson, J. Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral,
Bitemporal Image Data: New Approaches to Change Detection Studies. Remote Sens. Environ. 1998, 64, 1–19. [CrossRef]

52. Karimzadeh, S.; Matsuoka, M.; Kuang, J.; Ge, L. Spatial Prediction of Aftershocks Triggered by a Major Earthquake: A Binary
Machine Learning Perspective. ISPRS Int. J. Geo Inf. 2019, 8, 462. [CrossRef]

53. Grünthal, G. European Macroseismic Scale 1998 (EMS-98); Conseil de l’Europe: Luxembourg, 1998.

http://doi.org/10.3390/rs11070886
http://doi.org/10.3390/geosciences8120487
http://doi.org/10.1007/s11069-020-03991-0
http://doi.org/10.1038/s41598-018-23650-6
http://doi.org/10.1038/srep37408
http://doi.org/10.3390/s20174751
http://doi.org/10.1016/j.isprsjprs.2019.01.008
http://doi.org/10.1109/JSTARS.2018.2818939
https://earthquake.usgs.gov/earthquakes/eventpage/us6000d3zh/shakemap/intensity
https://earthquake.usgs.gov/earthquakes/eventpage/us6000d3zh/shakemap/intensity
http://doi.org/10.3390/rs13061095
https://emergency.copernicus.eu/mapping/list-of-components/EMSR491
http://doi.org/10.3390/app10248974
http://doi.org/10.1109/TPAMI.1980.4766994
http://doi.org/10.1029/2004JB003299
http://doi.org/10.1785/0220150152
http://doi.org/10.3390/ijgi6070188
http://doi.org/10.3390/rs10020245
http://doi.org/10.3390/rs13061195
http://doi.org/10.1029/1998GL900033
http://doi.org/10.1109/36.673674
http://doi.org/10.1016/S0034-4257(97)00162-4
http://doi.org/10.3390/ijgi8100462

	Introduction 
	Study Area and Materials 
	Methods 
	Visualization 
	SAR Backscattering 
	RGB Coherence Visualization and InSAR Deformation 

	Classification 

	Results 
	Visualization Results 
	Classification Results 

	Discussion 
	Conclusions and Future Directions 
	References

