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Abstract: Climate change and its impact on agriculture are challenging issues regarding food produc-
tion and food security. Many researchers have been trying to show the direct and indirect impacts
of climate change on agriculture using different methods. In this study, we used linear regression
models to assess the impact of climate on crop yield spatially and temporally by managing irrigated
and non-irrigated crop fields. The climate data used in this study are Tmax (maximum temperature),
Tmean (mean temperature), Tmin (minimum temperature), precipitation, and soybean annual yields,
at county scale for Mississippi, USA, from 1980 to 2019. We fit a series of linear models that were
evaluated based on statistical measurements of adjusted R-square, Akaike Information Criterion
(AIC), and Bayesian Information Criterion (BIC). According to the statistical model evaluation, the
1980–1992 model Y[Tmax,Tmin,Precipitation]92i (BIC = 120.2) for irrigated zones and the 1993–2002
model Y[Tmax,Tmean,Precipitation]02ni (BIC = 1128.9) for non-irrigated zones showed the best fit for
the 10-year period of climatic impacts on crop yields. These models showed about 2 to 7% significant
negative impact of Tmax increase on the crop yield for irrigated and non-irrigated regions. Besides,
the models for different agricultural districts also explained the changes of Tmax, Tmean, Tmin,
and precipitation in the irrigated (adjusted R-square: 13–28%) and non-irrigated zones (adjusted
R-square: 8–73%). About 2–10% negative impact of Tmax was estimated across different agricultural
districts, whereas about −2 to +17% impacts of precipitation were observed for different districts.
The modeling of 40-year periods of the whole state of Mississippi estimated a negative impact of
Tmax (about 2.7 to 8.34%) but a positive impact of Tmean (+8.9%) on crop yield during the crop
growing season, for both irrigated and non-irrigated regions. Overall, we assessed that crop yields
were negatively affected (about 2–8%) by the increase of Tmax during the growing season, for both
irrigated and non-irrigated zones. Both positive and negative impacts on crop yields were observed
for the increases of Tmean, Tmin, and precipitation, respectively, for irrigated and non-irrigated
zones. This study showed the pattern and extent of Tmax, Tmean, Tmin, and precipitation and their
impacts on soybean yield at local and regional scales. The methods and the models proposed in
this study could be helpful to quantify the climate change impacts on crop yields by considering
irrigation conditions for different regions and periods.
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1. Introduction

Global climate change and its impacts on food production are burning issues. The
Intergovernmental Panel on Climate Change (IPCC) reported in 2019 that the global mean
surface temperature has increased by 0.87 ◦C, and the mean land surface air temperature
has increased by 1.53 ◦C based on data recorded from 1850–1900 to 2006–2015 [1]. Climate
change has already been affecting food security through increasing temperature, changing
precipitation patterns, and larger frequency of some extreme events, such as extremely
high temperatures, drought, flooding, tornadoes, etc. [2], which are considered as a threat
to sustainable global crop production [3].
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Climate change has significantly impacted on crop yields, which has been discussed
in several studies [4–10]. Agriculture is a key response of climate change [2], although
the impacts are not widely visible in agricultural production, because of the technological
improvements in the farming systems. The necessity of studies related to climate change
impacts on crop yield at regional, national and global scales has been recognized and
emphasized by scientists [5,6,11,12].

The driving factors of temperature and precipitation are mainly monitored to identify
the climate change impact on crop yields. The increases of rainfall changes, temperature
changes, water scarcity, etc., have significant negative impacts on crop yield, as mentioned
in the IPCC Climate Change and Land report [2]. Compared to temperature change that
is more robust at a global scale, precipitation change is more relevant to local scales [13].
Lobell et al. (2011) also mentioned both positive and negative impacts of precipitation
across regions and less historical variability in some places [14]. High temperature is
gradually decreasing crop yields by encouraging weed and pest proliferation, whereas the
increase in precipitation variability increases the likelihood of crop failures during the crop
growing season and ultimately causing total production declines [15].

Crop yield responses to climate change may differ based on crop types and geo-
graphical regions. In some regions, climate change showed a positive impact on rice
yield whereas negative impacts on soybean and maize yields [13]. Hence, simulation-
based studies showed that one degree centigrade increase of temperature can reduce the
yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%, globally [9].
Lobell et al. (2011) predicted yield response models which showed global maize and wheat
production declined by 3.8% and 5.5%, respectively [14]. Lobell and Field (2007) also
showed a decrease of 1.3% yield of soybean crop per 1-degree centigrade increase of tem-
perature globally [7]. Asseng et al. (2015) estimated a global wheat yield reduction of
about 6% for each degree centigrade temperature increase, which could be varied based
on locations and growth periods [16]. On the other hand, it is reported that crop yield
increases with precipitation increase up to a certain limit for nearly all crops and coun-
tries [14]. However, based on time series statistical models [17], an about 20% reduction
of precipitation can cause a −3.9% and −2.9% yield loss reported from the field scale and
country scale data, respectively. As a climatic variable, precipitation can only explain a
yield variability of 7% for maize, 17% for sorghum, and 18% for soybean in the Great Plain
regions of the United States [10].

Different methodologies were used by researchers to assess the impacts of climate
change on crop yields. To note, Lobell et al. (2010) proposed both statistical models and
process-based crop models to predict yield responses to changes in temperature and pre-
cipitation [17]. Deryng et al. (2014) made a global gridded crop model to assess global and
local climate changes [18]. Asseng et al. (2015) proposed a point-based field experiment
with artificial heating and wheat yield simulation for climate change impacts [16]. Fur-
thermore, Lobell and Field (2007) mentioned that crop yield models are scale-dependent,
and global empirical/statistical models cannot reliably predict responses at sub-global
scales [7]. Other possible uncertainties in a global crop yield response model are crop
zone shifting in a multi-folding cropping system, decrease of crop zones due to natural
and anthropogenic causes, and the variable timing (start of the season) of the growing
season for different regions, etc. Therefore, in this study, we propose statistical multilinear
2-parameter, 3-parameter, 4-parameter and 5-parameter regression models to assess the
climate change impacts on crop yield. These models will quantify the extent and patterns
of crop yield change that could be caused by the maximum temperature (Tmax), mean
temperature (Tmean), minimum temperature (Tmin) and the average precipitation change
at regional scale.

In this study, we focused on one specific crop of soybean, which is mostly grown in
the United States of America (USA) and has a great contribution to the US total agricultural
production. We propose some significant regional soybean yield response models, which
could explain the variability of crop yield due to climatic impacts. In this study, we
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aim to model and estimate the climate change impacts on crop yield at the regional
scale by considering the irrigation status. This study will help draw the attention of the
policymakers at regional and local levels for the necessary adaptations to climate change
and thus enhance crop production and meet the food demand.

2. Materials and Methods
2.1. Study Area

Mississippi is one of the important agricultural states in the USA. Soybean is cultivated
as a major crop in Mississippi. According to the 2020 USDA state agriculture overview
of Mississippi, there is about 54 bu/acre soybean production, a total of 111,240,000 Bu,
which has a value of 119,026,800 dollars ($) (https://www.nass.usda.gov/Quick_Stats/
Ag_Overview/stateOverview.php?state=MISSISSIPPI) (accessed on 8 June 2021).

The state of Mississippi is divided into nine agricultural districts by the United States
Department of Agriculture (USDA) (Figure 1). The agricultural districts are Upper Delta
(district code: 10), North Central (district code: 20), Northeast (district code: 30), Lower
Delta (district code: 40), Central (district code: 50), East Central (district code: 60), South-
west (district code: 70), South Central (district code: 80), and Southeast and Coastal (district
code: 90). Each agricultural district consists of a number of counties. Hence, we collected
the irrigation status at county level from the USDA survey report. Among the 82 coun-
ties of Mississippi, only 6 counties received irrigation facilities for soybean cultivation in
1992. Later on, 10 in 2002, 12 in 2012, and 15 in 2019, respectively, were irrigated counties
(Figure 1).

2.2. Data Collection and Processing

We defined a general soybean crop season for Mississippi starting from April and
ending in September based on the report of NASS (National Agricultural Statistics Ser-
vice) USDA (October 2010) (https://www.nass.usda.gov/Publications/Todays_Reports/
reports/fcdate10.pdf, accessed on 1 July 2020). We calculated average seasonal climate data
for each year based on the crop growth period. The yearly irrigation data for the study area
from 1980 to 2019 are collected from the Census of Agriculture, NASS, USDA (https://www.
nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapter_1_State_
Level/Mississippi/, accessed on 1 July 2020). We considered a county is irrigated if it
contains 40% or more irrigated croplands. In this study, we assumed this percentage is
the minimum requirement to determine the county-level irrigation status for this region.
Hence, the higher the percentage of the irrigation status of the crop zone for a county, the
better reliability of the models for the irrigated zones.

The soybean crop yield (bushel/acre) data for the period of 1980–2019 are also
collected from the USDA NASS (https://quickstats.nass.usda.gov/, accessed in 1 July
2020) and are then converted into unit kg/acre according to the USDA conversion unit
(1 bushel = 27.2 Kilograms) for soybean yields. The monthly data for climatic parame-
ters, e.g., maximum temperature (Tmax), mean temperature (Tmean), minimum tem-
perature (Tmin), and precipitation, are collected from NOAA’s National Climatic Data
Center (NCDC) (https://ncdc.noaa.gov/data-access/land-based-station-data, accessed
on 1 August 2020), which gives public access to national historical weather data and meta-
data. More details of these data can be found at (ftp://ftp.ncdc.noaa.gov/pub/data/cirs/
climdiv/, accessed on 1 August 2020).

https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=MISSISSIPPI
https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=MISSISSIPPI
https://www.nass.usda.gov/Publications/Todays_Reports/reports/fcdate10.pdf
https://www.nass.usda.gov/Publications/Todays_Reports/reports/fcdate10.pdf
https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapter_1_State_Level/Mississippi/
https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapter_1_State_Level/Mississippi/
https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapter_1_State_Level/Mississippi/
https://quickstats.nass.usda.gov/
https://ncdc.noaa.gov/data-access/land-based-station-data
ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/
ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/
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Figure 1. The irrigated and non–irrigated zones in Mississippi, USA from 1980 to 2019. Nine
agricultural districts categorized by USDA.

2.3. Statistical Modeling

We applied a multilinear regression approach to model the impacts of climate change
on the crop yields. We used the SAS 9.4 software for linear regression.

A general multilinear regression model (Equation (1)) is designed for different number
of parameters to systematically analyze the impacts of climate change on crop yield. The
modeling approach is shown in Figure 2, and the arrow direction shows the variable
selection patterns for each model. The regression model is summarized using Equation (1).

Yij = aij + ∑ bijXij, (1)

where the dependent variable Yij is the crop yield at the ith location for j variables, aij is the
intercept of the model, bij are the coefficient values for the ith location for j variables, and Xij
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is the dependent variable for the ith location for the j variables (Tmax, Tmean, Tmin, and
precipitation). For two-parameter, three-parameter, four-parameter, and five-parameter
models, the value of j is one, two, three, and four, respectively.

We used the adjusted R-square, AIC (Akaike’s Information Criterion), and BIC (Sawa’s
Bayesian Information Criterion) to evaluate model performance and select the best regres-
sion models among the two-parameter models, three-parameter models, four-parameter
models, and five-parameter models.

Figure 2. The model architecture of multivariate linear regression. The two–parameter, three–
parameter, four–parameter, and five–parameter models are considered.

The adjusted R-square was used to compare models with different number of ex-
planatory variables, as mentioned by Li and Meng [19]. This parameter could be used
to identify the best model by minimizing the variability of the dependent variables with
respect to the independent variables. AIC is used to find the maximum likelihood estimates
of the parameters for statistical models, which is free from the ambiguities inherent in
the application of the conventional hypothesis testing procedure [20]. AIC estimates a
measure of the differences between a given model and a true model, and the best model
is typically identified by the lowest value of AIC [19,21–24]. BIC is a criterion for the best
model identification developed by Sawa [25]. It reduces the maximum likelihood selection
of a model and penalizes the complexity of a model with many parameters. The algorithms
used for the adjusted R-square, AIC, and BIC are Equations (2)–(4), respectively.

Adjusted R2 = 1 − (N − 1)·
(N − P)·

∑(y − ŷ)2

∑(y − y)2 (2)

AIC = N· ln
(

SSE
N

)
+ 2P (3)

BIC = N· ln
SSE

N
+

2(P + 2)Nσ2

SSE
− 2N2σ4

SSE2 (4)

where y is the actual crop yield, ŷ is the predicted crop yield, y is the average of the crop
yield. N is the total number of observations, P is the number of parameters with intercept,
SSE (sum square error) is the error variance of the fitted model, σ is a constant positive
term to reduce the biasness of the model. Compared to AIC, BIC added a stronger penalty
term for additional parameters in the model selection. BIC seems better than AIC as a
maximum likelihood indicator for selecting nested models [26].

The best models are usually inferred based on some statistical measurements from a
specific dataset [27]. Therefore, if the data are finite and noisy, we may only need to focus
on a well-justified criterion to find the best model. In addition, the best model will help
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quantify the uncertainty, and give a framework to go beyond inferences. Hence, this study
modeled the uncertainty of climate change impacts on crop yield and drew inferences
about the impacts of future climate change on crop yields.

3. Results
3.1. Trend Analysis

The trend of temperature for irrigated and non-irrigated zones is shown in the
Figures 3 and 4, respectively. In both zones, the temperature data are showing an in-
creasing trend. The ranges of Tmin, Tmean, Tmax at the 95% confidence limits for the
irrigated zone are between 63 to 66 ◦F, 74 to 76 ◦F, and 84 to 87 ◦F, respectively. Similarly,
for the non-irrigated zones, the ranges of Tmin, Tmean, Tmax are between 62 to 64 ◦F, 74
to 75 ◦F, and 85 to 86 ◦F, respectively. The trends for Tmin, Tmean, and Tmax, both for
irrigated and non-irrigated zones are evaluated from the Mann–Kendal test (mentioned in
the Supplementary Table S1). This study found a monotonic increasing trend for Tmin, and
Tmean, but no trend was observed for Tmax for the irrigated zone. In the non-irrigated
zones, the Tmin showed a continuous increase, no trend for Tmean, and a decreasing trend
for Tmax.

Figure 3. Trends for (a) seasonal minimum temperature, (b) mean temperature, and (c) maximum
temperature, for the irrigated zones of the Mississippi State from 1980 to 2019.

The precipitation pattern for the irrigated and non-irrigated zones is displayed in
Figure 5. The range of average precipitation at the 95% confidence limit is about 3.8 to
4.5 inches for the irrigated zones, and about 4 to 4.5 inches for the non-irrigated zones. This
study found both positive and negative impacts of seasonal precipitation on crop yields
in different periods (e.g., −1.8 to +1.5%) and agricultural districts (e.g., −2 to +17%) for
irrigated and non-irrigated zones (Tables 1–3), respectively, from 1980 to 2019. Based on
the Mann–Kendal test, this study found a monotonic increasing trend for precipitation in
both irrigated and non-irrigated zones, which is significant at p values less than 0.00001.
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Figure 4. Trends for (a) seasonal minimum temperature, (b) mean temperature, and (c) maximum
temperature, trend for non–irrigated zones of the Mississippi State from 1980 to 2019.

Figure 5. Trends for seasonal precipitation change for (a) irrigated zones and (b) non–irrigated zones
of the Mississippi State from 1980 to 2019.

The soybean yields for both irrigated and non-irrigated regions of Mississippi in-
dicated an increasing trend from 1980 to 2019 (Figure 6). The Mann–Kendal test also
showed a significant continuous increasing trend for soybean yield in the irrigated and
non-irrigated zones at the 0.00001 probability level. Due to technological improvements in
the agricultural system, the soybean yield has significantly increased from 1980 to 2019.
Hence, the reduction in soybean yield due to climate change is not widely observable. We
may only notice the yearly crop loss that is caused by frequent climatic events, such as
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droughts, flooding, etc. However, the continuous climate change impacts on the crop yield
become hidden.

Table 1. The results of the best temporal linear and multilinear models for each 10-year period from time series of 1980–2019
for the irrigated and non-irrigated counties of Mississippi.

Model Name Intercept
Model Slope for Different Parameters Adjusted

R-Square BIC AIC
Tmax Tmean Tmin Precipitation

Y[Tmax,Tmin,Precipitation]92i 264.87 −6.36 5.04 −4.80 0.65 120.2 117.7
Y[Tmax,Tmean]02i 114.50 −8.40 8.43 . . 0.37 318.2 316.1
Y[Tmax,Tmin]12i −82.04 −2.04 . 4.57 . 0.12 456.1 453.9
Y[Tmax,Tmin]19i 143.52 −4.80 . 4.89 . 0.29 357.5 355.3

Y[Tmax,Tmean,Tmin,Precipitation]92ni 68.50 −4.54 6.51 −2.23 -0.42 0.20 2737.0 2734.9
Y[Tmax,Tmean,Precipitation]02ni 119.74 −6.20 5.82 . 0.63 0.39 1128.9 1126.8
Y[Tmean,Tmin,Precipitation]12ni −5.69 . −4.34 5.67 0.95 0.28 1004.3 1002.1
Y[Tmax,Tmean,Tmin,Precipitation]19ni 75.79 −4.34 2.97 1.70 1.20 0.17 728.8 726.5

In the model names, the notation 92 is for the time 1980 to 1992; 02 is for 1993–2002; 12 is for 2003 to 2012; and 19 is for 2013 to 2019 and “i”
is for irrigated zone and “ni” is for non-irrigated zone.

Table 2. The results of the best linear and multilinear models from the time series of 1980–2019 for irrigated and non-irrigated
agricultural districts in Mississippi.

Model Name Intercept
Model Slope for Different Parameters Adjusted

R-Square BIC AIC
Tmax Tmean Tmin Precipitation

Y[Tmax,Tmin]AG10i 20.51 −4.64 . 6.38 . 0.28 886.9 884.8
Y[Tmax,Tmean,Tmin]AG40i −175.04 −4.88 3.55 5.63 . 0.26 1053.4 1051.2
Y[Tmin,Precipitation]AG50i −210.18 . . 3.61 3.43 0.13 225.8 223.3

Y[Tmax,Tmean,Precipitation]AG10ni 116.91 −7.17 7.10 . −2.72 0.73 89.1 86.1
Y[Tmax,Tmean,Precipitation]AG20ni 8.49 −4.61 5.46 . 1.49 0.20 1310.0 1307.9
Y[Tmax,Tmean]AG30ni 40.42 −4.17 4.63 . . 0.15 1218.0 1216.0
Y[Tmax,Tmean,Tmin]AG40ni 72.87 −4.72 7.42 −3.10 . 0.09 432.7 430.4
Y[Tmax,Tmean,Precipitation]AG50ni −130.17 −3.26 5.72 . 2.41 0.22 1114.0 1111.8
Y[Tmax,Tmean,Precipitation]AG60ni 16.36 −10.11 11.89 . −1.71 0.30 964.3 962.1
Y[Tmax,Tmean,Precipitation]AG70ni −35.22 −9.86 12.25 . −1.82 0.36 799.6 797.4
Y[Tmax,Tmin,Precipitation]AG80ni 16.53 −3.88 . 5.57 −2.26 0.29 580.7 578.4
Y[Tmax,Tmean]AG90ni 124.33 −1.48 0.35 . . 0.08 650.2 648.1

In the model names, the notations AG10, AG20, AG30, AG40, AG50, AG60, AG70, AG80, and AG90 are for the agricultural district codes 10,
20, 30, 40, 50, 60, 70, 80, and 90, respectively; the notation “i” is for irrigated zone and “ni” is for non-irrigated zone in an agricultural district.

Table 3. The results of the best multilinear models from the time series of 1980–2019 for the irrigated and non-irrigated
zones in Mississippi.

Model Name Intercept
Model Slope for Different Parameters Adjusted

R-Square BIC AIC
Tmax Tmean Tmin Precipitation

Y[Tmax,Tmean,Tmin,Precipitation]MSi −144.86 −3.93 2.96 4.48 1.48 0.24 2218.3 2216.2

Y[Tmax,Tmean]MSni 53.55 −4.47 4.77 . . 0.14 7486.6 7484.6

In the model names, the notation MS is for Mississippi State; the notation “i” is for irrigated zones and “ni” for non-irrigated zones in the
Mississippi State.
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Figure 6. Trends for seasonal soybean yield change for (a) irrigated zones and (b) non–irrigated
zones of the Mississippi State from 1980 to 2019.

3.2. Regional Crop Modeling for a 10-Year Period

We first used a 10-year period to model the climatic impacts on crop yields. The best
models for irrigated and non-irrigated regions for each 10-year periods are reported in
Table 1. The detailed results of the models are summarized in Supplementary Tables S2
and S3 for irrigated and non-irrigated zones, respectively.

For the 1980–1992 period, the model Y[Tmax,Tmin,Precipitation]92i (adjusted R-square:
65%) and Y[Tmax,Tmean,Tmin,Precipitation]92ni (adjusted R-square: 20%) are the best
models to explain climate impacts in this period, for the irrigated and non-irrigated zones,
respectively. Both models have the lowest BIC values compared with other models in
this period. According to the model Y[Tmax,Tmin,Precipitation]92i, the covariance matrix
shows that the increase of Tmax and precipitation for each crop season has a significant
negative impact but a positive impact is observed for the Tmin increase on the crop yields.
In contrast, for the non-irrigated zones, the model Y[Tmax,Tmean,Tmin,Precipitation]92ni
also shows the same impacts on crop yield except for Tmin, which has a negative impact
on crop yield for this period.

For the 1993–2002 period, the model Y[Tmax,Tmean]02i (adjusted R-square: 37%)
and Y[Tmax,Tmean,Precipitation]02ni (adjusted R-square: 39%) are the best models for the
irrigated and non-irrigated zones, respectively. Both models have the lowest BIC values
compared with other models in this period. According to model Y[Tmax,Tmean]02i, a
negative impact of Tmax and a positive impact of Tmean are reportable for irrigated zones.
In contrast, the model Y[Tmax,Tmean,Precipitation]02ni shows a negative impact of Tmax
but positive impacts of Tmean and precipitation, respectively, for the non-irrigated regions.

For the 2003–2012 period, the model Y[Tmax,Tmin]12i (adjusted R-square: 12%) and
Y[Tmean,Tmin,Precipitation]12ni (adjusted R-square: 28%) are the best models. Both models
have the lowest BIC and AIC values among the other models in this period. The covariance
matrix of the model Y[Tmax,Tmin]12i shows that the increase of Tmax has a negative
impact, but an increase of Tmin has a positive impact on crop yields for the irrigated zones.
Otherwise, the covariance matrix of the model Y[Tmean,Tmin,Precipitation]12ni shows a
negative impact of Tmean but positive impacts for Tmin and precipitation on crop yields
for the non-irrigated zones.
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For the 2013–2019 period, the model Y[Tmax,Tmin]19i (adjusted R-square: 29%) and
Y[Tmax,Tmean,Tmin,Precipitation]19ni (adjusted R-square: 29%) are the best models for
irrigated and for non-irrigated zones, respectively. Both models have the lowest BIC and
AIC values compared with other models in this period. From the model Y[Tmax,Tmin]19i, a
negative impact of Tmax and a positive impact of Tmin on irrigated crop yield are reported.
However, from the model Y[Tmax,Tmean,Tmin,Precipitation]19ni, positive impacts for
Tmean, Tmin, and precipitation but a negative impact for Tmax on non-irrigated crop
yields are observed.

From each of the 10-year models, we always found the negative effect of Tmax
increase and both positive and negative impacts for Tmean and Tmin, respectively. We
found negative and positive impacts of precipitation on the crop yield for 1980–1992, and
1993 to 2019, respectively. This study showed the variation of climate change impacts on
crop yield based on the temporal scale.

3.3. Local Crop Modeling for Agricultural Districts in Mississippi

Based on the agricultural districts, the best models for crop yield response to climatic
change are summarized in Table 2, and the detailed modeling results are shown in the
Supplementary Tables S4 and S5 for irrigated agricultural and non-irrigated agricultural
zones, respectively. Among the nine agricultural districts of this study area, Upper Delta,
Lower Delta and Central districts were irrigated zones.

In Upper Delta, Y[Tmax,Tmin]AG10i (adjusted R-square: 28%) and Y[Tmax,Tmean,
Precipitation]AG10ni (adjusted R-square: 73%) are the best models to show climatic impacts
on the irrigated and non-irrigated zones, respectively. Both models have the lowest AIC
and BIC values compared to the other models for this Upper Delta region. Likewise, the
best models for other agricultural districts were chosen.

The model Y[Tmax,Tmin]AG10i showed a negative impact of Tmax and a positive
impact of Tmin in the irrigated zone of Upper Delta region. Similarly, from the best model
of the Lower Delta irrigated zones, a negative impact of Tmax increase on crop yield was
observed. No impacts of Tmax increase were observed for the Central irrigated zones.

On the other hand, the model Y[Tmax,Tmean,Precipitation]AG10ni indicated negative
impacts of Tmax and precipitation, but a positive impact of Tmean for the non-irrigated
Upper Delta regions. Similar climate change impacts were observed for the East Central,
Southwest, and South Central non-irrigated crop zones.

The negative impact of Tmax increase on crop yield was noticed for other non-irrigated
agricultural zones of North Central, Northeast, Lower Delta, Central, Southeast and
Coastal, etc.

3.4. Regional Crop Modeling for the Whole Mississippi State

In Mississippi, the best models for crop yield response to climatic change are sum-
marized in Table 3. The detailed model results are mentioned in the Supplementary
Table S6. The model Y[Tmax,Tmean,Tmin,Precipitation]MSi (adjusted R-square: 24%) and
Y[Tmax,Tmean]MSni (adjusted R-square: 14%) are explaining the best climate impacts for
irrigated and for non-irrigated zones, respectively. Both models have the lowest AIC,
and BIC values compared to the other models for Mississippi. According to the model
Y[Tmax,Tmean,Tmin,Precipitation]MSi, a negative impact of Tmax but a positive impact
of Tmean, Tmin, and precipitation were reported for the irrigated zones of Mississippi.
However, the model Y[Tmax,Tmean]MSni showed a negative impact of Tmax but a positive
impact of Tmean for the non-irrigated regions in Mississippi.

4. Discussion

Global warming has a significant negative impact on crop production [2,7,15]. Based
on geographical locations, crops respond differently to climate changes [13]. This study
monitored soybean crop and evaluated the impacts of climate change on the soybean
production in Mississippi by considering irrigated and non-irrigated zones. Different
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temporal periods, such as six years [28], thirty years [29], and 46 years [10] have been used
by researchers to identify the effects of climate on crop yield. This study used a 40-year
period to monitor changes of Tmax, Tmean, Tmin, and precipitation and their impacts on
soybean yields.

Temperature (e.g., Tmax, Tmean, Tmin) is a dominant factor for crop yield model-
ing. The increase of Tmax could cause damage to the crop yields [6,30]. A temperature
increase in a crop zone directly increases the soil temperature, which may affect the plant
growth indirectly. Other possible negative impacts of a temperature increase may be
observable in the soil moisture content (i.e., the water holding capacity of soil), elevated
carbon-dioxide (which disturbs the plant growth due to its presence in excessive amounts),
multifold cropping system, and extensive agrochemicals use, etc., which also require a
proper soil-water management system. This study showed that the increase of Tmax in the
growth season can significantly reduce the soybean yield by 2–8% which is greater than the
previous study results [7,9]. The current scenario needs attention to maintain a sustainable
crop growth environment in both irrigated and non-irrigated zones. The general relation-
ship between temperature or precipitation and crop yield was mapped (Supplementary
Figures S1 and S2). Irrigated areas with lower maximum temperature typically had smaller
residuals, while areas with higher maximum temperature had larger residuals; similar
trends were observed in non-irrigated zones, which was not as apparent as the irrigated
zones. The trends for minimum or mean temperature and precipitation were not obvious,
which indicated that the modeling of climate impacts needs to be explored in alternative
periods and from place to place.

Precipitation showed both significant positive and negative impacts on crop yield. This
study identified the regional impacts of precipitation on crop yield. This study showed
the variability about −2 to 17% of precipitation impacts on the crop yield in different
agricultural districts. The crop yield reduction due to precipitation variability was also
mentioned in another study [30]. Albeit, the negative impacts of temperature increase
compared to precipitation is prominent in this study. However, another study showed that
crops could be more sensitive to precipitation changes than temperature changes [31].

This study reported a significant increasing trend for soybean production for the state
of Mississippi, which is also aligned with the local scale study of the Mississippi Delta [32].
The improvement in soybean production in this region is due to the increase in crop zone
area for soybean cultivation, availability of better agrochemicals (e.g., fertilizers, pesti-
cides, etc.), better seed quality, increase in irrigation facilities, availability of agricultural
instruments to reduce manual labor, and so on. However, the decreases of crop yield due
to climatic impacts were reported even with agronomic adjustments, such as addition of
improved technologies and farm field management system, etc. [13]. Some factors, such
as elevation, latitude and longitude, and related evapotranspiration may also influence
the variability of climatic impacts on the crop yield [13]. Irrigation facilities could reduce
the climate change impacts, and more crop production may result from irrigated fields
compared with non-irrigated fields. Hence, more soybean production is estimated in the
irrigated zones compared with the non-irrigated zones, which is similar to the results
mentioned by Kukal and Imrak [33].

It is a matter of concern that future global warming will have severe impacts on crop
production [34,35] and is also recognized as a threat to sustainable crop growth [13]. This
study supported that the seasonal rainfall variability and seasonal temperature change
have negative impacts on the crop yield [2,15,36–39]. The modeling results showed the
significant negative impacts of Tmax, but positive impacts were observed for the increase
of Tmean and Tmin. Hence, the increase of the daily Tmin will increase the daily Tmean
and eventually could result in extreme events [40], which might negatively impact the
crop yield in some situations [41]. The possible impacts of temperature change during the
growing season, such as plant growth phases, pollination, maturity and harvesting, etc.,
ultimately could result in a reduced crop production [41].
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This study gave an insight about the climate change impacts on crop yield and quanti-
fied the impacts on a regional scale. This study also showed the variability associated with
the agricultural districts and state level crop yield modeling in response to climate change,
which implies the necessity of future climate projection with higher spatial resolution [31].
Compared to global-scale modeling, regional and local modeling would be more reliable
for crop yield responses. A local and regional model could provide high precise estimations
of climate change impacts by reducing the uncertainty found in global models. The shifting
of cropping areas is more identical in local modeling, which is a drawback for a global
model [7]. It is also important to periodically assess the impacts of climate change on crop
yields [14].

Therefore, this study could be a baseline for evaluating the impacts of climatic uncer-
tainty on crop yield on temporal, local, and regional scales. Hence, spatial characteristics
across topographically diverse regions is important to examine the climate change impacts
on crop yield. [42]. The methods used in this study to assess climate change impacts on
crop yield can be applicable to other regions and crops. The results of this study will
provide insights for both researchers and the policymakers for climate change adaption.

5. Conclusions

This study estimated the climatic impacts on crop yield at local and regional scales
with a decadal modeling approach. This study significantly complements the uncertainty
and relationship between climate change and crop yield that could not be found at a global
scale. The study modelled the climatic impacts on soybean yield from 1980 to 2019 by
emphasizing the temperature and precipitation changes. About 2–8% reduction of soybean
yield was estimated for an increase in the maximum temperature in irrigated and non-
irrigated regions and within both short periods (i.e., a 10-year period) and relatively long
periods (i.e., a 40-year period). The variability in precipitation showed the yield change
about −2 to +17%. This study provided a baseline to show the pattern and extent of climate
change and its impacts on local and regional crop yields.

Except for Tmax, precipitation and Tmean/Tmin showed diverse impacts on crop
yields, spatially and temporally. In Mississippi, the impact of precipitation was not signifi-
cant in 10-year modeling, but significant positive impacts were observed from the 40 years
modeling for the irrigation zones; however, across different non-irrigated zones, from 1980
to 2019, precipitation showed positive effects in some non-irrigated zones but negative
effects in other non-irrigated zones. Tmean and Tmin even showed more heterogeneous ef-
fects across different irrigation/non-irrigation zones and periods. Therefore, to maintain a
sustainable food production, we draw the attention of researchers and policymakers to con-
sider the climate change impacts on crop yield and make decisions across different spatial
extents for both short-term and long-term goals, to adapt future climate change impacts.

Supplementary Materials: The Supplementary Materials are available online at https://www.
mdpi.com/article/10.3390/rs13122249/s1. Figure S1. Seasonal minimum temperature (a), mean
temperature (b), and maximum temperature (c), trend for Irrigated zone of Mississippi states from
1980 to 2019; Figure S2. Seasonal minimum temperature (a), mean temperature (b), and maximum
temperature (c), trend for Non-irrigated zone of Mississippi states from 1980 to 2019; Figure S3.
Seasonal Precipitation change for Irrigated (a) and Non-irrigated (b) zone of Mississippi states from
1980 to 2019; Figure S4. Seasonal Soybean Yield change for Irrigated (a) and Non-irrigated (b) zone
of Mississippi states from 1980 to 2019; Figure S5. The grid map of Climatic variables, such as
minimum temperature (a), mean temperature (b), maximum temperature (c), Precipitation (d), and
residuals from best yield model for the irrigated zone of Mississippi; Figure S6. The grid map of
Climatic variables, such as minimum temperature (a), mean temperature (b), maximum temperature
(c), Precipitation (d), and residuals from best yield model for the non-irrigated zone of Mississippi.
Table S1. The results of Mann-Kendal test for the Tmin, Tmean, Tmax, Precipitation, and Yield
from time series of 1980–2019 for irrigated and non-irrigated zones of Mississippi; Table S2. The
results of linear and multilinear models for each 10-year period from time series of 1980–2019 for
irrigated counties in Mississippi; Table S3. The results of linear and multilinear models for each
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10-year period from time series of 1980–2019 for non-irrigated county of Mississippi; Table S4. The
results of linear and multilinear models for time series of 1980–2019 for irrigated agricultural districts
of Mississippi; Table S5. The results of linear and multilinear models for time series of 1980–2019
for non-irrigated agricultural districts of Mississippi; Table S6. The results of linear and multilinear
models for irrigated and non-irrigated zone of Mississippi of 1980–2019 period.
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