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Abstract: Ground-based weather radar data plays an essential role in monitoring severe convective
weather. The detection of such weather systems in time is critical for saving people’s lives and
property. However, the limited spatial coverage of radars over the ocean and mountainous regions
greatly limits their effective application. In this study, we propose a novel framework of a deep
learning-based model to retrieve the radar composite reflectivity factor (RCRF) maps from the
Fengyun-4A new-generation geostationary satellite data. The suggested framework consists of three
main processes, i.e., satellite and radar data preprocessing, the deep learning-based regression model
for retrieving the RCRF maps, as well as the testing and validation of the model. In addition, three
typical cases are also analyzed and studied, including a cluster of rapidly developing convective cells,
a Northeast China cold vortex, and the Super Typhoon Haishen. Compared with the high-quality
precipitation rate products from the integrated Multi-satellite Retrievals for Global Precipitation
Measurement, it is found that the retrieved RCRF maps are in good agreement with the precipitation
pattern. The statistical results show that retrieved RCRF maps have an R-square of 0.88-0.96, a mean
absolute error of 0.3-0.6 dBZ, and a root-mean-square error of 1.2-2.4 dBZ.

Keywords: deep learning; algorithm for retrieving radar composite reflectivity factors; Fengyun-4A
geostationary satellite

1. Introduction

Severe weather always shows the natural characteristics of strong intensity, abrupt-
ness, wide distribution, rapid development and evolution, along with large destructive
power, thus causing widespread concern [1]. A rapid and effective response to severe
weather events, such as strong wind, heavy precipitation and flash floods, is essential to
reducing the threats to people’s lives and property. The key to forecasting these sudden
disastrous weather systems is timely observations with a high spatial resolution, which
serves as the foundation of both situational awareness and forecast. As is well known,
the Doppler weather radar with high spatio-temporal resolution has become one of the
most effective tools for analyzing and nowcasting the meso- and micro-scale weather
systems. To date, based on the radar echo data, many well-established and robust methods
of monitoring, tracking and extrapolating for severe weather have been well-developed
and extensively applied [2-5]. Particularly, reflectivity factors, radial velocity and veloc-
ity spectrum width derived from the Doppler weather radar echo data can be utilized
to analyze the cloud and hydrometeor distribution of severe weather phenomena more
accurately and timely [6,7]. Furthermore, the convection initiation determined by the
threshold of radar reflectivity factor >35 dBZ can be used to forecast the occurrences of
severe weather events in advance [8-10]. In addition to the real-time weather analysis, the
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radar reflectivity data are also employed as initial conditions for high-resolution numerical
weather prediction (NWP) models to perform cloud analysis [11,12]. In variational data as-
similation systems, radar reflectivity can effectively initialize both model hydrometeors and
microphysics parameters associated with a microphysical scheme [13,14]. The assimilation
of radar reflectivity data into numerical weather prediction models effectively increases
the information of moisture and rainwater information in the cloud, further improving the
forecasts of location and intensity of convective weather systems [15,16].

However, most of the world still lacks the observational infrastructure of weather
radars, especially in ocean and mountainous regions. This is perhaps the most serious
disadvantage of relying on radars to monitor and forecast severe weather events in real-time.
In contrast, the geostationary (GEO) satellite imaging system can continuously capture
images of the Earth from space, and these images are already well applied for cloud cluster
tracking. Satellite observations, especially those from the current GEO meteorological
satellite with high-frequency observations for tracking convective clouds, can fill the
observation gaps of radar and monitor the rapid generation as well as development
of severe weather. Recently, with the rapid development of the latest technology, the
new- generation GEO meteorological satellites, such as Fengyun-4A, Himawari-8/9, GEO
Operational Environmental Satellite-R, have significantly enhanced their spatio-temporal
resolution and increased the spectral detecting channels [17-19]. Therefore, the GEO
satellites will play a more essential role in monitoring and nowcasting severe convective
weather [20-23]. Actually, the new-generation GEO meteorological satellites have already
been used in convective initiation nowcasting [24-26], dynamic structure analysis of super
typhoons [27], assimilating the infrared radiances to improve convective predictability,
precipitation estimation [28,29], and so on [30].

Note that, in recent years, significant progress has been made in deep neural network
(DNN) techniques, which is mainly attributed to the increased amount of available data,
better training and predicting model architectures, and the ease of implementation on
powerful, specialized hardware such as Graphics Processing Units (GPUs) [31,32]. For the
application in weather forecasts, the deep neural network techniques have already been
used to forecast the precipitation, severe weather and others based on the observation
of radar reflectivity data [33,34]. Some new Gate Recurrent Unit (GRU) models (such as
theTrajectory GRU and the Generative Adversarial-Convolutional GRU) beyond Long
Short-Term Memory were proposed for precipitation nowcasting [35,36]. Recently, a new
deep learning model named the MetNet was also proposed and developed to forecast
precipitation up to 8 hours in the future at the high spatial resolution of 1 km? and the
temporal resolution of 2 min. It has been revealed that the MetNet performs better than the
optical flow-based models [37].

In this investigation, a deep learning-based algorithm is developed to retrieve the radar
composite reflectivity factor (RCRF) maps from the observations of the new-generation
GEO satellite of Fengyun-4A. Based on the microphysical properties of cloud top, the RCRF
maps retrieved from satellite observations can provide the basic detection and diagnosis
data for severe weather in areas not covered by radar. Moreover, the RCRF maps provide
an excellent supplement to the existing real-time radar data. The fusion of RCRF maps
retrieved from the GEO satellite and radar data at different times makes it possible to
monitor the rapidly developing convective systems by reducing the time interval. In
addition, the RCRF maps retrieved from Fengyun-4A observations can provide a relatively
intuitive understanding on the geographical distribution of intensity of strong convective
systems and typhoon cyclones where the coverage of radar data is incomplete.

The remainder of this paper proceeds as follows. Section 2 introduces the GEO
satellite, the weather radar data and the precipitation rate data from the Global Precipitation
Measurement (GPM) mission. Section 3 describes the detailed algorithm for retrieving the
RCRF maps. Section 4 provides the validations and discussions about this new algorithm.
Finally, Section 5 presents the main conclusions of this study.
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2. Data
2.1. Interest Fields from Fengyun-4A AGRI

Fengyun-4A is China’s first new-generation GEO meteorological satellite, which
was successfully launched on December 11, 2016. It carries three new, advanced optical
instruments, namely the Advanced Geosynchronous Radiation Imager (AGRI), the Geosyn-
chronous Interferometric Infrared Sounder and the Lightning Mapping Imager. The nadir
point of Fengyun-4A /AGRI’s is located at 104.7°E, with the observation field covering the
East Asian, Australia, Indian Ocean, etc. The spatial resolution of the AGRI ranges from
0.5 km (visible channel) to 4 km (infrared channel) at the nadir point. In addition, regular
observations can be acquired by two different scanning operations of 15-min full disk and a
5-min Chinese continental domain. Compared with the previous Fengyun-2 GEO satellite,
Fengyun-4A has significantly enhanced its capabilities in weather warning and forecasting,
due to its increased radiation channels and spatio-temporal resolution [17]. Moreover, the
detection channels of Fengyun-4A are more sensitive to the cloud-top properties (such as
phase and particle size) that cannot be obtained by using the limited channel selection of
the previous Fengyun-2 [38].

Table 1 shows the sensitivity of interest fields to cloud-top properties from Fengyun-
4A /AGRI channels, which is used in models for retrieving the radar reflectivity factor.
These parameters are chosen because the radar reflectivity factor is closely related to the
cloud microphysical properties and hydrometeor distribution [39-41]. The visible channels
have a higher spatial resolution (0.5 km), but they are only applicable during the daytime,
while the infrared channels can provide full-time observations. For Fengyun-4A /AGRI, the
1.61 um channel at the near-infrared band shows a high sensitivity to the ice cloud phase
and cloud effective radius with a strong-absorbing effect. The visible channel at 0.65 pum is
a weakly absorbing channel sensitive to cloud optical thickness and cloud phase, especially
for strong convective clouds [42]. The absorption characteristics of cloud particles at 8.6,
10.8, and 12.3 um are significantly different for various cloud phases. Due to the different
absorption effects of liquid water cloud particles, the difference of brightness temperature
is smaller between 10.8 and 12.3 um than that between 8.6 and 10.8 um, but the situation is
opposite for ice cloud particles [43]. To further evaluate the potential application ability of
composite radar data, a comparison test between visible and infrared channels for model
sensitivity analysis is also proposed in this study.

abeldop; = abeldo x sec() 1)
where 0 is the solar zenith angle (8 < 70°).

Table 1. Fengyun-4A /AGRI interest fields for models retrieving the radar reflectivity factor.

No Interest Fields Physical Basis Model Index
1 BT 10.8um Cloud-top temperature
assessment
_ : : Model I
2 BTD 10.8-6.2um Cloud-top height relative to
tropopause
3 BTD 12.3+8.6-2x10.8pum Cloud-top glaciation/ phase
Modified albedo 0.65pum Cloud optical thickness
Model II
5 Albedo ratio 0.65/1.61pum Cloud-top glaciation /phase

2.2. Weather Radar Data

Based on the interpretation of backscattered echoes, the ground-based weather radars
detect convective systems, rainfall intensity and speed by receiving the emitted electro-
magnetic waves. The RCRF maps used in this study are derived from the China New
Generation Weather Radar System (data available at http://10.1.64.154/cimissapiweb/
apidataclassdefine_list.action accessed on 1 May 2021 [44]. Composite reflectivity is the
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maximum base reflectivity value that occurs in a given vertical column in the radar um-
brella. The China New Generation Weather Radars scan in several pre-defined volume
coverage patterns. In principle, the radars tilt a fixed elevation angle above the horizontal
plane and perform a 360° horizontal sweep, then change the elevation angle, and complete
another 360° sweep. Composite reflectivity can generate a plane view of the most intense
portions of thunderstorms and can also be compared with the base reflectivity to help
users to accurately determine the 3-D structure of a thunderstorm. Currently, the temporal
resolution of the operational weather radar data is 6 minutes.

2.3. GPM IMERG Data

The integrated Multi-satellite Retrievals for the GPM(IMERG) dataset based on a uni-
fied U.S. algorithm provides a high-quality precipitation product based on multi-satellite
observations. In this study, the IMERG dataset is primarily used to evaluate the perfor-
mance of retrieved RCRF in the areas not covered by radar. This gridded fusion dataset
has a temporal resolution of 30 minutes and a spatial resolution of 0.1° x 0.1° with the
maximum precipitation rate of 50 mm-h~!, covering the area between the latitudes of 60°S
and 60°N. Technically, by the inter-calibration, fusion and interpolation of several satellite
microwave precipitation products (such as NOAA Joint Polar Satellite System-Advanced
Technology Microwave Sounder, JPSS-ATMS), together with microwave-calibrated in-
frared satellite estimates (NOAA GOES-E/W), rain gauge analyses, and other potential
precipitation estimators, this uniform and gridded precipitation product is estimated at
fine spatio-temporal scales for Tropical Rainfall Measuring Mission and GPM eras over
the globe [45]. Note that the freely released IMERG V04A version data will be delayed
by about 3-4 months. Consequently, this time lag makes it impossible to support near-
real-time storm monitoring and nowcasting applications. However, we can still use this
high-quality precipitation dataset to validate the RCRF retrieved in this investigation. For
more details about IMERG data, please refer to https://disc.gsfc.nasa.gov/datasets/ GPM_
BIMERGHHL_06/summary?keywords="IMERG%20late" accessed on 1 May 2021 [46,47].

3. Methodology

To develop the retrieving method for RCRF maps, we explore a deep learning method
that consists of three modules, including data preprocessing, model training and RCRF
validating based on three independent datasets, i.e., a training dataset, a validation dataset
and a test dataset (Figure 1). The training dataset is used to train the model by optimizing
its learnable parameters with the back-propagation algorithm. To evaluate the performance
of model, the independent validation dataset is used to assert its ability to generalize well
to unseen data, i.e., to make sure that the model is not overfitting.
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Figure 1. Flowchart of the data preprocessing and the training module (left) and the RCRF map
validating module after training (right) of the deep learning model.

3.1. Training and Validation Data

To train and estimate RCRF maps by using multi-band infrared/visible observations
from Fengyun-4A/AGRI based on a deep learning algorithm, firstly we collected the
satellite observations and actual RCRF data for the same period to construct the training
and validation datasets. Because of the difference in spatial resolutions between Fengyun-
4A /AGRI (about 4.0 km) and the real radar reflectivity factor (about 1.0 km), we averaged
the radar reflectivity factor in the horizontal space to match each observed pixel of FY-
4A /AGRI. We collocated the simultaneous Fengyun-4A /AGRI and radar reflectivity factor
data from May to October in 2020 over a broad spatial coverage in China (70°E-135°E,
16°N-55°N). Since the ground-based weather radars conduct scanning mode within a
6-minute interval, the collocated datasets with an observation time difference should be
less than 3 minutes. On the one hand, it ensures that the matching data are one-to-one. On
the other hand, it also ensures that the cloud system movement is not obvious within 3 min.
The quality control processing for both satellite and radar data is also performed after data
matching. After that, we delete the radar echo samples in clear sky pixel determined by
Fengyun-4A / AGRI operational cloud mask products [48] and abandon the incomplete
satellite data with lost lines. The fully matched dataset randomly selects 70% of samples
for model training, 15% for model validation, and the remaining 15% for model testing
(Table 2). Since the radar echoes cover a small part of the ocean, this part of data is utilized
to validate the samples of the ocean part. The other part of data is treated as the samples of
the land part. The complete statistical validation results will be shown in Section 4.2.

Table 2. Temporal distribution of the samples for model training and validation.

Application Model I Model II
Month Training Validation Training Validation
May. 4284 918 1927 412
Jun. 4183 896 1882 403
Jul. 4257 912 1916 410
Aug. 4273 915 1923 412
Sept. 4194 898 1887 404

Oct. 4217 903 1898 406
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3.2. Network Architecture

As illustrated in Figure 2, the network architecture is evolved from the U-net [49].
The U-net has already been widely used in biomedical image segmentation [50,51]. This
study introduces a U-net-based regression model that consists of a contracting pyramid
structure (left side) and an expansive inverted pyramid one (right side). The contracting
structure follows the typical architecture of a convolutional network. It consists of the
repeated application of two 3 x 3 convolutions (unpadded convolutions), each followed
by a batch-normalization (BN) module, an activation function named rectified linear unit
(ReLU) and a 2 x 2 max pooling operation with a stride of 2 for down-sampling. At
each down-sampling step, the number of feature channels is doubled. Every step in
the expansive architecture consists of an up-sampling of the feature map followed by a
2 x 2 convolution (called an up-convolution) that halves the number of feature channels, a
concatenation with the correspondingly cropped feature map from the contracting structure,
and two 3 x 3 convolutions, each followed by a BN and a ReLU. At the final layer,a 1 x 1
convolution layer followed by a ReLU is used to map each 16-component feature vector to
the desired regression map. Finally, the network has 23 independent convolutional layers
and 1,765,440 free parameters in total. Note that the sizes of input data are 800 x 1280 x 3
for the infrared model (model I) and 800 x 1280 x 2 for the visible model (model II) in
this investigation.

S
61 64

. —%
256 256 *

Bottleneck

S
61 61 61 61

»

16 16 16 165 K5

3

L

oz 9

Connection

Conv Upsampling

Conv2x2 Convlx1
BN MaxPool2x2 e o
ReLU ReLU

Figure 2. A U-net regression architecture (example of 50 x 80 pixels in the lowest resolution). Each colored box corresponds

to a multi-channel feature map and the numbers of channels for the feature maps are denoted at the bottom of the box.

3.3. Model Training

The network training for the model uses the matched Fengyun-4A /AGRI and RCRF
maps based on the Adaptive Moment Estimation of Pytorch (Torch of Python version).
To minimize overhead and maximize the use of the Graphics Processing Unit memory,
we favor large input tiles over a large batch size to reduce the batch to a single image.
Accordingly, we use a high momentum (0.99), such that a large number of the previously
seen training samples determine the update in the current optimization step. In addition,
the learning rate is set to 0.00016. In this training model, the lost function is computed by a
pixel-wise root-mean-square error (RMSE, Equation (2)). Note that only the pixels covered
by radar echoes are used to estimate the lost function, as follows.
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1 Y 2
RMSE = N 1; (yl - ypred,i) 2)

Also, we introduce the pixel-wise mean absolute error (MAE) and the R-square (R?)
(Equations (3) and (4)) as the reference indicators to evaluate the training model.

N

MAE = Y \yi — Yprea,i| /N ®)
i=1
N 2 N
R = 1= Y (i~ Ypreas) / (i — 77’ @
i-1 i=1

where y; and y.4,; are the pixels of the true data and the retrieved RCRF maps, respectively;
y; is the average value of the true data. In order to prevent overfitting of the model, we
will stop the training step when the verified loss function no longer drops or even rises.

4. Validation and Discussions
4.1. Case Studies

Figure 3 shows the developing severe convective events covering a large area in China
(70°E-135°E, 16°N-55°N) at 08:00 UTC on June 5, 2020. The light blue areas are the regions
covered by radar echoes. Obviously, the blind areas of radar echoes significantly affect the
real-time monitoring capability on fast-developing severe weather systems that usually
propagate from the source to downstream. Particularly, some severe weather systems
frequently occur in the area without the coverage of radar echoes, such as part of the
Tibetan Plateau, Xinjiang, Inner Mongolia, Northeast China, and coastal areas. As shown
in Figure 3, a typical severe convective weather system occurred in the south region of the
Yangtze River and South China with heavy precipitation. In the overlapped region, the
retrieved radar reflectivity factors match well with the real radar maps. However, in the
region outside the coverage of radar echoes, the retrieved radar reflectivity factors also
agree well with the precipitation distribution from GPM IMERG data. Although there are
no matched samples from blind areas of radar echoes (such as the eastern Japan, the East
China Sea, the Tibetan Plateau and areas north of 50°N) for training, the deep learning
model can still retrieve a high-quality retrieved radar reflectivity factor as well as areas
covered by radar echoes. Thus, these results further demonstrate that the deep learning
method can retrieve radar reflectivity factors even in the regions without matched radar
samples. The radar reflectivity factors retrieved by infrared and visible models are almost
consistent. However, there are differences in details, especially in the severe convective
precipitation area (centered at 30°N, 130°E). The details of radar reflectivity factors from
convective precipitation predicted by the visible model are more obvious than those by the
infrared model.
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Figure 3. (a) RCRF maps (dBZ) retrieved from infrared channels, (b) visible channels and (c) ground-based radars, and (d)
the corresponding precipitation rate from the GPM IMERG data (mm-h~1) at 08:00 UTC on June 5, 2020. The light blue
areas are the regions covered by radar echoes.

In addition to convective systems, tropical cyclones are also one of the most destructive
disasters in nature [52]. Tropical cyclones originate and develop in ocean areas, which
cannot be detected by ground-based radars. Figure 4 shows the case of Super Typhoon
Haishen at 02:30 UTC on September 6, 2020. At that time, the spiral cloud systems around
the typhoon were affecting Japan and South Korea with heavy precipitation. The eye region
of the typhoon can be clearly seen from the RCRF maps retrieved by both infrared and
visible models mentioned above. In addition, it can be found that the radar reflectivity on
the right side of the typhoon is greater than that on its left side. Note that the RCRF maps
retrieved by the infrared model show a better agreement with the precipitation distribution
than that retrieved by the visible model. However, the RCRF maps retrieved by the visible
model show more details on the cloud systems of Super Typhoon Haishen. Such a situation
is primarily attributed to the finer texture of cloud systems that can be clearly seen by
the visible band with a higher spatial resolution. For capturing the characteristics of the
dynamic and intensity of the typhoon over the ocean area, it would be helpful to diagnose
and forecast the intensity and track of the typhoon by using the RCRF maps with a high
spatial (of 4 km) and temporal resolution (of 5-15 min).



Remote Sens. 2021, 13, 2229

9o0f17

40°N

35°N

30°N

40°N

3 35°N

1 30°N

25°N { 25°N ¢ T
0 -
b g B '. ’~ ’% b _ ) ..
o [‘ﬁm 20200906-0360 . ooy LUFC 20200806-03:00 -
115°E 125°E 130°E 135°E 115°E 120°E 125°E 130°E 135°E
40°N 40°N

35°N

30°N F

25°N F

I { 25°N ¢
(]

3 35°N

1 30°N L

4

- T 3

. ﬁ’nc 20200906-03:00

N F-UTC 20200506-03:00

20° : 20°
115°E 125°E 130°E 135°E 115°E 120°E 125°E 130°E 135°E
025 046 085 158 30 54 10 184 342 63 PR(mm/hr)
| | RCRF(dBZ)
6 12 18 24 30 36 42 48 54

Figure 4. A typical case of Super Typhoon Haishen at 3:00 UTC on September 6,2020. (a) RCRF maps (dBZ) retrieved from
infrared channels, (b) visible channels and (c) ground-based radars, and (d) the corresponding precipitation rate from the
GPM IMERG data (mm-h~'). The light blue areas are the regions covered by radar echoes.

The Northeast China cold vortex is a common disastrous weather system in the middle
and high latitudes of East Asia [53]. Attributed to the disasters induced by rainstorms,
thunderstorms, and tornadoes in the mesoscale vortex rain belts, the Northeast China
often suffers from great damage and casualties. However, neither Inner Mongolia nor the
northeastern provinces of China are fully covered by radar observations. Note that, due to
the sparse distribution of radar data in Northeast China, there are some problems in the
radar data mosaics in this area. However, this only accounts for a small part of the training
samples, and thus it will not affect the overall training effect. Figure 5 shows a typical
case of a Northeast China cold vortex that occurred on September 16, 2020. Under the
influence of the cold vortex, moderate rain, local heavy rain, and even rainstorm occurred
in the east and northeast parts of Inner Mongolia. Figure 5 clearly show the rain belt and
intensity distribution from the RCRF maps retrieved by the visible model. In contrast, the
value range of the retrieved RCRF maps retrieved by the infrared model is narrower. The
RCRF maps from infrared model are closer to the actual observation, while the results from
the visible model are higher than the observation. Although the radar mosaic is sparse in
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this area, the retrieved RCRF maps are consistent with the precipitation distribution. This
conclusion also indicates the robustness of deep learning algorithm.

50°N
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115°E
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ITC 20200916-03:00

35°N . : 35°N f .
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Figure 5. A typical case of a Northeast China cold vortex occurred on September 16, 2020. (a) RCRF maps (dBZ) retrieved
from infrared channels, (b) visible channels and (c¢) ground-based radars, and (d) the corresponding precipitation rate from
the GPM IMERG data (mm-h~1). The light blue areas are the regions covered by radar echoes.

Figure 6 presents a set of developing convective events monitored by the retrieved
RCRF maps over a time series. This rapidly developing convective system was generated
at 04:30 UTC on July 8, 2020, and was maintained for two and a half hours. Then, this
convective system entered the mature and stable stage. The retrieved RCRF (especially by
the visible model) and precipitation maps at 04:30 UTC show that the convective target-1
(marked by the red circles) has developed to a mature stage, but it only corresponds to
2-3 pixels on radar maps at that moment. Note that similar phenomena are observed for
convective target-2, target-3, and target-4. Therefore, it can be concluded that the retrieved
RCRF maps in Figure 6 agree with the structures of the precipitation fields very well during
the lifespan of this convective system. Particularly, the RCRF maps retrieved by the visible
model are more sensitive to the initial convection with long leading time.
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Figure 6. The occurrence and development for the case of a convective system occurring over North
China from 04:30 UTC to 08:00 UTC on July 8, 2020. The subplots at each row of the panel are RCRF
maps (dBZ) retrieved from (a) infrared channels, (b) visible channels, and (c) ground-based radar,
and (d) the corresponding precipitation rate from the GPM IMERG data (mm-h~1). The red circles
stand for target-1, the pink circles for target-2, the blue circles for target-3 and the black circles for
target-4. The light blue areas are the regions covered by radar echoes.

4.2. Statistical Results

In this section, we present the validation results of the RCRF maps retrieved by
the visible and infrared models over the land and ocean, respectively. As mentioned
in Section 3.1, 15% of labeled datasets are utilized for model validation. As shown in
Figure 7, the RCRF maps retrieved by both visible and infrared models over the land and
ocean are validated against the ground-based radar data. It is not surprising that more
samples concentrate around the 0 dBZ. Generally, the retrieved RCRF maps show a better
consistency with the actual situation over the ocean and land, particularly for the cases by
visible models.
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Figure 7. Comparisons of the RCRF maps between ground-based radars and deep learning-based retrieving model. The

color bar represents the occurrence frequency (in logarithmics scale) for the retrieved RCRF maps. (a) The infrared model

over the land, (b) the visible model over the land, (c¢) the infrared model over the ocean, (d) the visible model over the ocean.

Figure 8 presents the statistical indicators for the retrieved RCRF maps over two dif-
ferent regions (land and ocean) from May to October in 2020. It can be seen that the RCRF
maps retrieved by the visible model exhibit a better performance over the ocean area,
with an MAE of 0.3-0.62 dBZ and an RMSE of 1.6-2.3 dBZ. In contrast, the results from
the infrared model over the ocean have an MAE of 0.38-0.7 dBZ and a higher RMSE of
1.8-2.5 dBZ. However, the results from the infrared model over the land performs the
worst, with an MAE of 0.4-0.8 dBZ and an RMSE of 1.7-2.8 dBZ. Among them, the worst
case occurred in July with an MAE of 0.8 dBZ and an RMSE of 2.8 dBZ. Overall, the accu-
racy of the retrieved data is higher over the ocean than that over the land in May-July and
September. However, the situation in August is the opposite. In addition, the accuracies of
the retrieved data over the ocean and land are almost equal in October. One of the reasons is
that summer is the peak season for the occurrence and development of severe convections
in China. Due to the rapid development of convective systems, the uncertainty of the
spatio-temporal matching increases, leading to the relative errors of summer samples. The
mechanisms, duration, and spatio-temporal scales of summer precipitation are extremely
complicated. In addition, the topography is more complex over the land, where convective
systems in summer are mainly triggered by the unstable environment due to the obvious
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heating, while the situation is the opposite over the ocean. The complex topography of the
land surface together with the more homogeneous ocean surface contribute to the existing
differences between land and ocean.
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Figure 8. Validations on the RCRF obtained by the U-net regression-based retrieving algorithm, for land and ocean regions
during May-October, respectively.(a) pixel-wise RS, (b) pixel-wise MAE, (c) pixel-wise RMSE.

4.3. Validation Based on Precipitaiton Observations

To validate the retrieved RCREF results using rain/snow measurements, this study
also refers to some research on precipitation issues/surface observations [54,55]. The
precipitation rate maps have been obtained from the retrieved RCRF maps by using the
standard Z-R relationship (see Equation (5)).

Z =aR? (5)

where a =700, b = 1.38. The GPM IMGER datasets are the validating source.

Figure 9 shows a heavy precipitation process in Hubei, Jiangxi, Anhui and JiangSu
provinces at 02:00 UTC on July 27,2020 and the specific precipitation rate maps from the
retrieved RCRF maps by using standard Z-R relationship.
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Figure 9. Precipitation Rain rate (mm/h) maps at 02:00 UTC on July 27 of 2020, including (a)
PR retrieved from RCRF maps using infrared channels, (b) PR retrieved from RCRF maps using
visible/near-infrared channels, (c) PR from radar RCRF maps, and (d) PR from GPM IMGER data.

The original validating datasets are translated into precipitation rate by using standard
Z-R relationships. The matched GPM IMGER datasets are also selected as the validat-
ing source of precipitation rate maps. Table 3 presents the statistical indicators for the
precipitation rate data retrieved from retrieved RCRF maps by using the standard Z-R
relationship from May to October in 2020. From Table 3, it can be seen that the precipita-
tion rate maps retrieved by using the visible model exhibit a better performance with an
MAE of 0.247-0.339 mm/h and an RMSE of 0.506-0.701 mm/h, respectively. In contrast,
the results from the infrared model have an MAE of 0.259-0.452 mm /h and an RMSE of
0.543-0.991 mm/h, respectively. However, the precipitation rate maps retrieved by both
the visible model and infrared model exhibit the worst performance on August.

Table 3. Validations on precipitation rate from retrieved RCRF maps by using standard Z-R relation-
ship.

Application

Month Model I Model 11
MAE (mm/h) RMSE (mm/h) MAE (mm/h) RMSE (mm/h)

May. 0.259 0.543 0.251 0.552

Jun. 0.329 0.759 0.247 0.506

Jul. 0.385 0.776 0.274 0.524
Aug. 0.452 0.991 0.339 0.701
Sept. 0.394 0.813 0.265 0.517

Oct. 0.279 0.594 0.297 0.637

5. Conclusions

For severe weather monitoring and nowcasting, this study aims to investigate and
develop a unified retrieving algorithm for quantitatively estimating the RCRF maps by
China’s new generation GEO meteorological satellite Fengyun-4A /AGRI. A novel deep
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learning, U-net regression model, is used to estimate near-real-time RCRF maps. This
new algorithm is remarkably different from statistical regression methods, and its key
advantage is the powerful ability to capture non-linear associational patterns between
predictors and predictees, with multi-scale structural characteristics. This study also
proposes a comparison test between visible and infrared models for sensitivity analysis.
The results show that visible models exhibit a better performance over the ocean area
with an MAE of 0.3-0.62 dBZ and an RMSE of 1.6-2.3 dBZ. In contrast, the results from
the infrared model over the ocean have an MAE of 0.38-0.7 dBZ and a higher RMSE
of 1.8-2.5 dBZ. The worst case is results from the infrared model over the land with an
MAE of 0.4-0.8 and an RMSE of 1.7-2.8 dBZ. In addition to the advantages of spatial
resolution, another reason for the visible model over the infrared model may be that the
cloud optical thickness in the visible channel intuitively reflects the development of cloud
and convections.

Moreover, three typical cases including a cluster of rapidly developing convective
systems, a Northeast China cold vortex and the Typhoon Haishen, are analyzed and stud-
ied. The comparisons reveal that the proxy radar reflectivity obtained by the conversion of
Fengyun-4A /AGRI data can capture the strong precipitation signal in areas with insuffi-
cient coverage of radar echoes. The RCRF maps retrieved by the visible model are more
sensitive to the initial convections with long leading time.

As of this writing, the RCRF map-retrieving algorithm has been under the test of
the Feng Yun GEO Algorithm Test-bed [56], and will be integrated into the operational
Fengyun-4 operational products system. Ongoing improvements to the RCRF retrieving
algorithm will include the combination of both weather radar reflectivity data and precipi-
tation data. In the future, Fengyun-4B will add rapid-scan operation with a 1-min scanning
mode and a 1-km spatial resolution. It is thus believed that many potential errors will be
greatly reduced by using the higher spatio-temporal resolution data from the newer GEO
satellite instruments.
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