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Abstract: Land surface temperature (LST) is an important parameter for mirroring the water–heat
exchange and balance on the Earth’s surface. Passive microwave (PMW) LST can make up for the
lack of thermal infrared (TIR) LST caused by cloud contamination, but its resolution is relatively
low. In this study, we developed a TIR and PWM LST fusion method on based the random forest
(RF) machine learning algorithm to obtain the all-weather LST with high spatial resolution. Since
LST is closely related to land cover (LC) types, terrain, vegetation conditions, moisture condition,
and solar radiation, these variables were selected as candidate auxiliary variables to establish the
best model to obtain the fusion results of mainland China during 2010. In general, the fusion LST
had higher spatial integrity than the MODIS LST and higher accuracy than downscaled AMSR-E
LST. Additionally, the magnitude of LST data in the fusion results was consistent with the general
spatiotemporal variations of LST. Compared with in situ observations, the RMSE of clear-sky fused
LST and cloudy-sky fused LST were 2.12–4.50 K and 3.45–4.89 K, respectively. Combining the RF
method and the DINEOF method, a complete all-weather LST with a spatial resolution of 0.01◦ can
be obtained.

Keywords: land surface temperature; all-weather; fusion; random forests; downscaling; DINEOF

1. Introduction

Land surface temperature (LST) is an important indicator of energy balance and
material exchange on the surface of the Earth, and has been widely used in many fields [1–5].
With the advancement of remote sensing technology and the stimulus of strong application
demands, the number of Earth observation satellites has increased rapidly, producing a
massive amount of satellite data [5]. Various advanced LST products can be generated
from these satellite data [6]. However, due to cloud contamination, and defects of the
retrieval algorithms, advanced remote sensing (RS) products derived from single sensors
are suspected to have spatial incompleteness, temporal discontinuity, and inconsistent
physical meanings [7]. In contrast, the spatial integrity and data quality of the same
products derived from multisensory observations may be complementary. For example,
satellite-retrieved LST includes thermal infrared (TIR) LST and passive microwave (PMW)
LST. The TIR LST data have high spatial resolution (e.g., 1 km for Moderate Resolution
Imaging Spectroradiometer (MODIS) LST) and high retrieval accuracy (approximately
0.3–2 K), but there are many missing values in the data due to clouds [8–13]. PMW radiation
can penetrate clouds, but PMW LST data have a relatively low spatial resolution (e.g.,
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25 km for Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E)
LST) and relatively low accuracy (approximately 3–6 K) [14–16]. Therefore, the TIR LST
data and the PMW LST data are complementary in terms of spatiotemporal completeness
and data accuracy. Therefore, the fusion of TIR and PMW LST data has become a promising
method for obtaining high-quality all-weather RS products [17,18].

Current TIR and PMW LST fusion methods include the cloud proportional weighting
method, the temperature spatiotemporal interpolation method, the temporal component
decomposition method, the Bayesian maximum entropy (BME) method, the machine
learning method, and the hybrid method [19–28]. Although the ML method has high
requirements for computing power and storage capacity, compared with other methods, it
has excellent performance and generalization ability [29]. As the ML method is good at
characterizing the relationship between environment variables and dependent variables, it
is often used to simulate the relationship between LST and other variables [30–32]. With
the latest developments and innovations in the computing field, the cloud computing capa-
bilities, high-performance computing capabilities and storage capabilities have increased,
which facilitates and supports data fusion using ML methods [33]. In this context, it is
of great significance to improve the efficacy and flexibility of ML methods to generate
advanced RS products on the regional or global scale.

The random forest (RF) model proposed by Breiman is a commonly used method in
ML and has been widely used due to its high accuracy and flexibility [34]. The RF method
can effectively use auxiliary data to improve the accuracy of fusion results, but the tradi-
tional RF method often does not consider the spatial information of RS data [35]. However,
because RS variables often have spatial heterogeneity, the potential relationship between
the independent and dependent variables in RF can vary spatially [36,37]. Therefore, for
RS data, models built using regression approaches that ignore the spatial structure of RS
data may not have sufficient predictive prowess.

Therefore, we sought to add spatial information to the RF model for spatial calibration,
to compare this model with a model without spatial information to select the best RF model,
and finally to predict all-weather LST data with high spatial resolution.

2. Study Area and Data
2.1. Study Area

Frequent cloud coverage in China has limited the application of TIR LST in this region.
Therefore, mainland China was chosen as the study area, and its location is shown in
Figure 1. Its background is the true color image. The terrain of China is highly complex,
and its ecosystems range from glaciers and deserts to grasslands, wetlands, tropical rain
forests, lakes, and oceans, which leads to large spatial temperature differences within its
territory [38]. Furthermore, its climate is mainly wet monsoon and dry seasons, which
leads to drastic temperature changes between seasons [39].
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Figure 1. The locations of the study area and two verification regions ((a) TP and (b) HRB). The
locations of the two verification regions are indicated by two red rectangles, and the locations of sites
are marked in (a,b) with green circle symbols.

Two verification regions were chosen in the Tibetan Plateau (TP) region and the Heihe
River Basin (HRB) region, respectively. The verification region in the TP is located near the
city of Naqu. The elevation range of this verification region ranges from 2752 m to 6994 m
and the average slope is 5.26◦. Its land cover (LC) is mainly savanna and grassland. The
verification region in the HRB is located on the border of Qinghai Province and Gansu
Province. Its surface elevation is 1056–5314 m. The average slope of the Qilian Mountains
in the southwest and the plains in the northeast is 7.27◦ and 1.03◦, respectively. Its LC types
include cropland, forest, sparse grassland, and barren land. The locations of the TP and
HRB regions are indicated by two red rectangles in Figure 1, and the locations of in situ
measurement sites are marked in Figure 1a,b with green circle symbols.

2.2. Data

Daily AMSR-E brightness temperature (BT) and MODIS LST were used as the main
data. To obtain the PMW LST data required for the RF fusion process, LC data, snow
cover data, elevation data, desert distribution data, and normalized difference vegetation
index (NDVI) data were required in the selected PMW LST generation method [40]. As
LST is regulated by LC type, terrain, and vegetation, the data corresponding to these
factors are needed during the RF fusion process [41]. In addition, longitude and latitude
belong to spatial information and can reflect the moisture condition from coastal to inland
areas, while latitude maps can reflect the difference in solar radiation [42]. The study by
Hengl et al. [43] proved that considering the latitude and longitude when using the ML
algorithm can strengthen the spatial interaction in the training process of the trees and
improve spatial nonstationarity. The downward shortwave radiation (DSR) represents the
difference in solar radiation at different latitudes, so DSR data can also reflect the difference
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in spatial position to a certain extent. Therefore, the data used in the RF fusion process also
included longitude, latitude, and DSR data. In addition, the in situ data from the HRB and
TP regions were used as reference data to verify the accuracy of the selected model.

2.2.1. Satellite Data

AMSR-E is a microwave sensor on board an Aqua satellite. The AMSR-E BT data
were obtained from the National Snow & Ice Data Center (NSIDC) (https://nsidc.org/)
(Last accessed on 4 June 2021). The data included the BT data for six different frequencies
(6.9, 10.7, 18.7, 23.8, 36.5, and 89.0 GHz) in two polarization channels (horizontal and
vertical polarization).

MODIS is an important sensor onboard the Terra and Aqua satellites. The AMSR-
E and MODIS sensors on the Aqua satellite observe the Earth’s surface simultaneously,
at approximately 1:30 p.m. local time in the daytime and 1:30 a.m. local time at night.
The MODIS data were provided by the Level-1 and Atmosphere Archive & Distribution
System (LAADS) Distributed Active Archive Center (DAAC) (https://ladsweb.modaps.
eosdis.nasa.gov/) (Last accessed on 4 June 2021), which contains MODIS LST products,
LC products, snow products, and NDVI products. The MODIS LST product (MYD11A1)
was derived from two MODIS thermal infrared channels (31 and 32) using the generalized
split-window algorithm [44], which contains daily daytime and nighttime LST, quality
control (QC), and transit time information. The QC information was used to identify high-
quality MODIS LST pixels. LST pixels that were displayed as “LST produced”, “good data
quality”, “average emissivity error ≤ 0.02”, and “average LST error ≤ 1 K” in the QC layer
were considered high-quality pixels and used in this study. The transit time information
for each pixel was used to match the pixel with the in situ data. In addition, the spatial
information and latitude and longitude data can also be acquired from this LST dataset.
The LC data generated according to the International Geosphere-Biosphere Programme
(IGBP) classification system in the MODIS LC product (MCD12Q1) was used for this study.
This LC type data were used for the PMW LST generation and RF fusion process. In the RF
fusion process, LC type data were simply synthesized into 5 types, namely soil, vegetation,
water, ice and snow, and buildings. The MODIS snow cover product (MYD10C1), which
represents the percentage of snow area in the entire grid area, provides the snow data
required by the PMW LST generation process. The NDVI data provided by the MODIS
vegetation index product (MYD13A2) product were used in the PMW LST generation
process, and also used in the RF fusion process as vegetation-related information.

The elevation data was the Shuttle Radar Topography Mission (SRTM) dataset, which
is a global elevation dataset collected by the radar onboard the space shuttle Endeavour in
February 2000. The data were downloaded from http://srtm.csi.cgiar.org/srtmdata/ (Last
accessed on 4 June 2021). These elevation data and the slope data generated based on these
elevation data were used for the PMW LST generation process.

The desert distribution data required during the PMW LST generation process were
the China desert distribution vector data and were downloaded from the Cold and Arid
Region Science Data Center (http://westdc.westgis.ac.cn) (Last accessed on 12 October
2018). The data needed to be converted into raster data for use [45].

The DSR data were obtained from the Global Land Surface Satellite (GLASS) products.
The GLASS DSR products are generated from the data of multiple polar-orbit satellites
(MODIS) and geostationary satellites (Geostationary Operational Environmental Satellite
(GOES) imager; Meteosat Second Generation (MSG) SEVIRI; Multi-functional Transport
Satellite (MTSAT)-1R imager) using an improved look-up table (LUT) method by radiative
simulation based on MODTRAN [46,47]. The DSR data were downloaded from the Na-
tional Earth System Science Data Center, National Science & Technology Infrastructure of
China (http://www.geodata.cn) (Last accessed on 4 June 2021), and were used in the RF
fusion process.

The basic information of the datasets used in this study is shown in Table 1. The
study period ranges from 1 January 2010 to 31 December 2010. The MYD11A1, MCD12Q1,

https://nsidc.org/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
http://srtm.csi.cgiar.org/srtmdata/
http://westdc.westgis.ac.cn
http://www.geodata.cn
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MYD10C1, MYD13A2, SRTM DEM, map of the desert distribution of China, and GLASS
DSR were uniformly converted into geographical latitude/longitude coordinates and
resampled to a spatial resolution of 0.01◦.

Table 1. Basic information of the datasets used in this study.

Dataset Variables Spatial Resolution/Map Scale Temporal Resolution

AMSR-E BT 0.25◦ 1/2 day

MYD11A1 LST, Time, QC, Longitude,
Latitude 1 km 1/2 day

MCD12Q1 LC 500 m 1 year
MYD10C1 Snow Cover 0.05◦ 1 day
MYD13A2 NDVI 1 km 16 day

SRTM DEM Elevation 3” -
Map of the desert distribution

of China Desert Distribution - -

GLASS DSR DSR 0.05◦ 3 h

2.2.2. In Situ Measurements

In order to evaluate the fused LST, a land–atmosphere interaction observations dataset
from the TP region [48], and the Automatic Weather Stations dataset (AWS) from the Heihe
region [49] were used.

The land–atmosphere interaction observations dataset was downloaded from the
National Tibetan Plateau Data Center (https://doi.org/10.11888/Meteoro.tpdc.270910)
(Last accessed on 4 June 2021) [48]. It includes the four-component radiation, multi-layer
soil temperature, humidity and soil heat flux, and other observations. In this study, the
data from the BJ site of Nagqu Station of Plateau Climate and Environment and Nam Co
Monitoring and Research Station (NAMORS) for Multisphere Interactions were selected as
the verification data. The LC types of BJ and NAMORS sites are alpine meadow and alpine
steppe, respectively.

The AWS dataset was obtained from Watershed Allied Telemetry Experimental
Research (WATER), which was provided by the Heihe Plan Data Management Center
(http://www.heihedata.org/) (Last accessed on 12 October 2018) [49]. The observation
items included the four-component radiation, the multi-layer soil temperature, soil mois-
ture, soil heat flux, and other observation. The data from the Arou (AR) and Yingke (YK)
sites were selected as the verification data in the study. The LC types of AR and YK sites are
alpine meadow and cropland, respectively. The basic information about these verification
sites is presented in Table 2. The locations of these sites are marked with green circle
symbols in Figure 1a,b.

Table 2. Basic information about the verification site.

Site Latitude Longitude Elevation (m) Land Cover

BJ 31◦22′N 91◦54′E 4509 Alpine meadow
NAMORS 30◦46′N 90◦59′E 4730 Alpine steppe

AR 38◦03′N 100◦27′E 3033 Alpine meadow
YK 38◦51′N 100◦25′E 1519 Cropland

The radiation data, including the surface longwave upwelling and downward radia-
tion, were used in the verification process to calculate in situ temperature data, and the
temperature data were calculated by using the Stefan–Boltzmann law, as shown in the
following equation:

Ts =

[
F↑ − (1− εb)F↓

σεbb

]1/4

(1)

https://doi.org/10.11888/Meteoro.tpdc.270910
http://www.heihedata.org/
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In the equation, Ts is the calculated in situ temperature data; F↑ and F↓ are the
surface longwave upwelling radiation and the surface longwave downward radiation,
respectively; σ is the Stefan–Boltzmann constant (5.67× 10−8 Wm−2K−4); and εbb is the
surface broadband emissivity, which was computed from the ASTER GED product [50] by
using the following equation according to Cheng, et al. [51]:

εbb = 0.197 + 0.025ε10 + 0.057ε11 + 0.237ε12 + 0.333ε13 + 0.146ε14 (2)

In the equation, ε10–ε14 are the surface narrowband emissivity data of ASTER bands
10–14, respectively.

The time resolution of these radiation measurements in the TP and HRB regions was
1 h and 30 min, and the radiation measurements with the closest observation time to
the transit time of MODIS were selected for the verification process. Therefore, the time
difference between the field observation and satellite overpass in the TP region was no
more than 30 min, and the time difference in the HRB region was less than 15 min.

3. Methodology
3.1. PMW LST Data Generation

In this study, the LUT-based AMSR-E LST retrieval algorithm proposed by Zhang and
Cheng [40] was used to generate AMSR-E LST data. The main idea of this algorithm is to
establish a comprehensive classification system of environmental variables (CCSEV). The
data in the SRTM DEM, MCD12Q1, map of the desert distribution of China, and MYD10C1
datasets represent these factors for the establishment of the CCSEV. Then, the AMSR-E BT
and the upscaled MODIS LST obtained by simple averaging were subjected to stepwise
regression, and the retrieval formula for each CCSEV class was established separately. The
accuracy (root mean square error (RMSE)) of the AMSR-E LST retrieved by this method
was 2.65–3.48 K during the daytime and 2.15–2.94 K at nighttime. For the specific content
of the LST retrieval algorithm, please refer to Zhang and Cheng [40].

The AMSR-E LST data were used in RF to achieve the fusion with the MODIS LST data.
The AMSR-E LST data as PMW data represent the true situation of the cloudy-sky land
surface. In order to obtain high spatial resolution all-weather LST, the AMSR-E LST data
were downscaled to a spatial resolution consistent with the MODIS LST. A downscaling
method based on the geographic weighted regression (GWR) model was used. This method
sets a series of intermediate resolution levels between the initial resolution of 0.25◦ and
the target resolution of 0.01◦, and then uses the GWR model to establish the relationship
between the LST and the scale conversion factor at each level in turn, and gradually
downscales the AMSR-E LST from 0.25◦ to 0.01◦. In this method, its scale conversion factor
is usually NDVI data and elevation and slope data. Therefore, the NDVI data in MYD13A2,
the elevation data in SRTM DEM, and the slope data generated by the elevation data were
used. For more details on the GWR method, please see Zhang, et al. [52]. The downscaled
AMSR-E LST data were generated by the above two methods.

3.2. LST Fusion Based on RF Method

LST is affected by many complex factors, so the selection of the best independent
variable combination is crucial for LST fusion. Theoretically, the spatiotemporal pattern of
LST is related to terrain, LC, soil moisture, and incoming solar radiation [41]. Therefore, in
this study, elevation, NDVI, LC, longitude and latitude, and DSR were selected as candidate
variables. The spatial distribution of LST is related to the topographical fluctuations in
the study area, so elevation is a necessary predictor [53–55]. Since the vegetation-covered
area accounts for 97.4% of the total area within the study area, which was calculated by LC
data, NDVI data were also used as a necessary predictor to further describe the vegetation
characteristics. Considering that the impact of LC on LST can be studied, LC was also
selected as a candidate indicator [56].

RF, an integrated ML algorithm that evolved from the bagging algorithm, can be
used for regression and classification research [34]. As a nonlinear method, RF consists of
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many decision trees. These decision trees are constructed from a randomly selected subset
to lower the correlation between different decision trees [57,58]. The final output of the
RF model is obtained by combining the results of all decision trees. The RF model has
few parameter settings, fast training speed, high prediction accuracy, and can accurately
capture the nonlinear interaction between variables [59]. In addition, the RF method is
also an effective method to predict missing data, which can maintain accuracy even when
most of the data are absent [60]. Thus, the RF method was chosen to accurately express the
nonlinear relationship between LST and the important factors affecting it, and to achieve
the purpose of using only clear-sky data to predict all-weather LST. However, because the
input in the RF method is a series of values that does not contain spatial information, this
method lacks the spatial information contained in the RS data. Longitude and latitude
belong to spatial information and also reflect the difference of soil moisture and solar
radiation, so its inclusion will likely improve the results of the fusion. DSR represents the
differences in solar radiation at different latitudes, and it can also be used to characterize
differences in spatial position.

Therefore, in this study, the candidate variables for the RF model include elevation,
NDVI, LC, longitude and latitude, and DSR. Among them, elevation, NDVI, longitude
and latitude, and DSR were directly used as independent variables, and LC was used to
segregate data into different data bins. Four RF models composed of different candidate
variables were tested, of which models ii-iv considered spatial information, as follows: (i)
downscaled AMSR-E LST, elevation, and NDVI are the independent variables, clear-sky
MODIS LST is the dependent variable; (ii) based on model i, latitude and longitude are
added as independent variables; (iii) based on model ii, data are separated into different
bins according to the LC type, and an RF model trained for each bin separately; (iv) based
on model i, DSR is added as an independent variable, data are separated into different bins
according to the LC type, and an RF model trained for each bin separately. Table 3 shows
the variable selection status of the four candidate RF models. The RMSE was used as an
indicator to select the best RF model among the four candidate models. The best selected
RF model was used to achieve LST data fusion and thus predict all-weather LST data.

Table 3. Variable selection status of candidate RF models.

Variable Model i Model ii Model iii Model iv

Downscaled
AMSR-E LST

√ √ √ √

Elevation
√ √ √ √

NDVI
√ √ √ √

Longitude and
Latitude

√ √

DSR
√

LC
√ √

The most complicated model, model iii, was used as an example, and the flowchart
for implementing model iii is shown in Figure 2. The process can be divided into training
and prediction; before the training process begins, the input data were selected according
to the availability of MODIS LST (using QC information as an indicator, see Section 2.2.1
for details). The steps in the training process were as follows:

(1) Separate MODIS LST, downscaled AMSR-E LST, NDVI, elevation, and longitude and
latitude data to different bins according to LC type in the MODIS LC data;

(2) Use stratified random sampling to divide the input data of each bin into two parts:
80% of inputs from each bin were randomly selected as the training data, and the
remaining 20% of inputs from each bin were reserved as verification data;

(3) Train the RF model separately for each LC type;
(4) Use the corresponding RF model to predict LST of each LC type separately in the

remaining 20% of inputs;
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(5) Calculate the RMSE value of the predicted LST and the remaining MODIS LST, which
was used to select the best RF model.

Figure 2. The flowchart for implementing model iii.

The steps of the prediction process are as follows:

(1) Separate the downscaled AMSR-E LST, NDVI, elevation, and longitude and latitude
data into different bins according to different LC type;

(2) Use the RF model obtained from the training process to predict all-weather LST. See
Section 4.1 for the selection results of the best RF model.

4. Results
4.1. Comparison of RF Model Results

Four RF models were used to fuse the daytime LST data for the year 2010. Figure 3
shows the training results of the RF models. The R2 values of the four RF models were
between 0.6 and 1, while the R2 values of models ii and iii were both close to 1. The RMSE
of the four RF models was between 1.5 K and 6 K, among which the RMSEs of models
ii and iii were relatively low (between 1.5 K and 3 K), and the RMSEs of models i and
iv were relatively high (between 2.5 K and 6 K). Model i, which did not consider spatial
information, had the worst effect, including the lowest R2 value and the highest RMSE.
Models ii and iii, containing longitude and latitude information, performed relatively
well. Compared to model ii, model iii performed best because it not only considered the
effects of NDVI, elevation, and latitude and longitude, but also modeled different models
for the data corresponding to different LC types. This may be because the temperature
generation mechanism varies with the LC type, and thus modeling each LC type separately
will slightly improve the accuracy of the fusion result. Since the DSR data in model iv can
only represent changes in latitude, their accuracy is lower than that of model iii. Therefore,
model iii was selected as the final model to fuse the MODIS and AMSR-E LST data.
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Figure 3. The R2 and RMSE of the fusion results obtained by the four RF models.

4.2. The Effect of the Fused LST

The effect of the fused LST was investigated from two aspects: qualitative analysis
and quantitative verification. We adopted days of the year to represent the twelve months
for MODIS LST. Spatial patterns of MODIS LST during daytime and nighttime are shown
in Figures 4 and 5, respectively. Severe data loss was observed on each day due to the
impact of cloud contamination. Figures 6 and 7 show the spatial patterns of the fusion
results corresponding to these MODIS LST data. Compared with MODIS LST, the spatial
integrity of the fusion results was greatly improved, except for some blank areas caused
by the orbit gap of the AMSR-E sensor. In addition, in terms of time, the magnitude of
LST data in these images gradually increases from January to July, and gradually decreases
from August to December. In space, the LST in northeast China and the Qinghai–Tibet
Plateau is relatively low, while the LST in south China and the desert areas in northwest
China is relatively high. This indicates that the magnitude of LST data in the fusion results
is consistent with the general spatiotemporal variations of LST.
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Figure 4. Spatial distributions of MODIS LST during daytime of the 17th, 107th, 196th, and 291st
days of the year 2010, representing different months.

Figure 5. Spatial distributions of MODIS LST during nighttime of the 17th, 107th, 196th, and 291st
days of the year 2010, representing different months.
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Figure 6. Spatial distribution of the fusion LSTs for daytime of the 17th, 107th, 196th, and 291st days
of the year 2010, representing different months.

Figure 7. Spatial distribution of the fusion LSTs for nighttime of the 17th, 107th, 196th, and 291st
days of the year 2010, representing different months.

Lastly, we tested the fused LST using the reserved 20% MODIS LST data (Figure 8).
We found that the nighttime RMSE was smaller than the daytime RMSE, with the daytime
RMSE around 2 K, and the nighttime RMSE around 1 K.
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Figure 8. The RMSE of the fusion results.

4.3. Verification Using In Situ Measurements
4.3.1. LST Verification

The in situ temperature data calculated by the surface longwave upwelling and
downward radiation were used in the verification process. For comparison, both MODIS
LST data and fused LST were verified. Figure 9 shows the scatter plots of the in situ
temperature and MODIS LST. The RMSE of MODIS LST was 3.20 K, 4.44 K, 2.18 K, and
2.53 K at the BJ, NAMORS, AR, and YK stations, respectively.

Figure 9. The scatter plots of the in situ temperature and MODIS LST at each site.

The scatter plots of the in situ temperature and fused LST are provided in Figure 10.
At the BJ, NAMORS, AR, and YK stations, the RMSE of clear-sky fused LST was 3.18 K,
4.50 K, 2.12 K, and 2.64 K, which was similar to the RMSE of MODIS LST, indicating similar
accuracy of the clear-sky fused LST and MODIS LST. The RMSE of cloudy-sky fused LST
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was 3.92 K, 4.89 K, 3.87 K, and 3.45 K, respectively. The accuracy of cloudy-sky fused LST
was lower than that of clear-sky fused LST. This is because the accuracy of PMW LST is
relatively low under conditions of cloud coverage [20]. However, these cloudy-sky RMSE
values can be compared with the cloudy-sky RMSE values of previous machine learning
methods. A neural network retrieval method proposed by Aires, et al. [61] has an RMSE
value of about 3.1–5 K under cloudy conditions in mid-latitude regions [62]. The machine
learning method based on artificial neural network (ANN) models used by Shwetha and
Kumar [23] has RMSE values of 2.9–6.2 K for cloudy sky during daytime, and 2.1–3.3 K
for cloudy sky during nighttime. In addition, the bias indicates that the cloudy-sky fused
LST at all sites was lower than the in situ temperature, which may be related to the slightly
deeper thermal sampling depth of the PMW radiation during PMW data collection [14].

Figure 10. The scatter plots of the in situ temperature and the fused LST at each site.

4.3.2. The Daily Variation of the Fusion LST

The daily variation of fused LST at all sites during 2010 is shown in Figure 11. For
reference, the daily variations of the in situ temperature and MODIS LST are also included
in this figure. In each figure, the trend of the fused LST time series is close to the trend
of the in situ temperature time series and MODIS LST time series, and is consistent with
the correct annual LST trend. Therefore, it can be concluded that the LST fused by the RF
method can capture the correct time variation of the LST at each site. The deviation of the
daytime fused LST is relatively large, which can also be explained by the slightly deeper
thermal sampling depth of PMW radiation [14].



Remote Sens. 2021, 13, 2211 14 of 22

Figure 11. The daily variations of the fused LST, in situ temperature, and MODIS LST at each site: (a) daytime, (b) nighttime.

5. Discussion
5.1. Improvement of Integrity

As shown in Figures 6 and 7, due to the orbital gap of the AMSR-E sensor, the fused
LSTs still have missing values. To further improve the effectiveness of the fusion results,
the data interpolating empirical orthogonal function (DINEOF) method was used. The
DINEOF method was proposed by Beckers and Rixen in 2003 and is often used to deal
with the problem of missing data [63]. Compared with traditional interpolation methods,
the DINEOF method requires fewer input parameters and has higher computational
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efficiency [64]. This method has been used in many studies and reliable results have been
obtained with it [64–71].

Figures 12 and 13 show the spatial distributions of the complete all-weather LST in
different months, indicating that the DINEOF method effectively improves the integrity of
the fusion result. In addition, in order to further evaluate the performance of the DINEOF
method for filling LST values in the satellite orbit gap, the in situ temperature data were
used to verify these complete all-weather LST data, shown in Figures 12 and 13. The scatter
plot of the in situ temperature and the all-weather LST data is shown in Figure 14. The
RMSE of all-weather LST was 3.97 K, which was similar to the average RMSE of the fused
LST (3.57 K), indicating that by combining the RF fusion method and the DINEOF method,
the complete all-weather LST with high spatial resolution can be generated.

Figure 12. Spatial distributions of the complete all-weather LST during daytime of the 17th, 43rd, 75th, 107th, 139th, 163rd,
196th, 227th, 259th, 291st, 317th, and 345th days of the year 2010, representing different months.
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Figure 13. Spatial distribution of the complete all-weather LST during nighttime of the 17th, 46th, 76th, 103rd, 141st, 164th,
196th, 228th, 260th, 292nd, 318th, and 346th days of the year 2010, representing different months.

Figure 14. The scatter plot of the in situ temperature and the all-weather LST data.



Remote Sens. 2021, 13, 2211 17 of 22

5.2. Factors Affecting the Fusion Results
5.2.1. Effects of Missing Value Proportion

It can be seen from Figure 8 that the RMSE of the fusion results varies with the date,
which may be related to the missing value proportions. Figure 15 shows the scatter plot of
missing value proportions and RMSE, and highlights that RMSE has a positive relationship
with the missing value proportions. For dates with a large missing value proportion, the
accuracy of the fusion result was generally low, and vice versa.

Figure 15. The scatter plot of missing value proportions and RMSE: (a) daytime; (b) nighttime.

5.2.2. Variable Importance Measure

To investigate the contribution of the input variables in the selected models to the
fusion results, the variable importance measures provided by the RT method were used. As
shown in Figure 16, downscaled AMSR-E LST and latitude had a significant effect on the
LST estimates, while NDVI and elevation had the least effect on the LST estimates, except
for snow and ice, as well as the water LC type. This can be attributed to the contribution
already made by NDVI and elevation data during the PMW LST downscaling process.
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Figure 16. The variable importance plots.

5.3. Accuracy Comparison with Downscaled AMSR-E LST

Methods for obtaining complete high-resolution LST can be divided into two cate-
gories: kernel-driven methods, which downscale LST through auxiliary data to obtain
high-resolution LST; and fusion-based methods, which predict all-weather high-resolution
LST by integrating information from different sensors [72]. In this study, the downscaled
AMSR-E LST was a high-resolution LST obtained by the kernel-driven method; the fused
LST is an all-weather high-resolution LST predicted by the fusion-based method.

In order to explore the necessity of the RF fusion process, MODIS LST was used as
verification data to verify the fusion results and the downscaled AMSR-E LST. Figure 17a,b
are the scatter density plots of the fusion results and the downscaled AMSR-E LST, respec-
tively, where the first row is daytime data and the second row is nighttime data. It can
be seen from Figure 17 that the scatter points of the fusion results are closely distributed
around the 1:1 line, whereas the downscaled AMSR-E LSTs are more scattered during both
the daytime and nighttime. In addition, the RMSE was obtained and compared to the
reserved 20% MODIS LST. The RMSE of the daytime and nighttime LST data obtained
by directly downscaling the PMW LST was 5.75 K and 3.48 K, respectively. The RMSE
of the daytime and nighttime LST obtained by fusing the TIR and PMW LST data was
significantly reduced by 62.21% and 71.87%, respectively, and its RMSE was 2.17 K and
0.98 K. Therefore, in order to obtain more accurate all-weather high-resolution LST, the
process of fusing TIR and PMW LST data with the RF method is necessary.
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Figure 17. Scatter density plot: (a) MODIS LST and fused LST; (b) MODIS LST and downscaled
AMSR-E LST. The first row is daytime data and the second row is nighttime data.

6. Conclusions

In this study, the RF model was used to fuse MODIS and AMSR-E LST in mainland
China during 2010. The RF model performed best when LC type, terrain, vegetation
conditions, moisture conditions, and solar radiation were considered. The magnitude of
LST data in the fusion result is consistent with the general spatiotemporal variation of LST.

In order to further evaluate the effectiveness of the RF model, the in situ measurements
obtained from the central TP region and upper and middle reaches of the HRB region
were used to verify the fused LST. The RMSE of clear-sky fused LST and cloudy-sky fused
LST were 2.12–4.50 K and 3.45–4.89 K, respectively. According to the fused LST images
of China on the 15th day of each month in 2010 and the time series of fused LST at the
verification sites, we found that the fused results of the RF model accurately reflected the
spatiotemporal change trend of LST. To further improve the usability of the all-weather
LST, the DINEOF method was used to obtain a complete all-weather LST. By exploring
the relationship between the RMSE and the missing value proportions, we found that
high RMSEs usually corresponded to a large missing value proportion and vice versa.
With reference to the variable importance measures, it can be seen that the downscaled
AMSR-E LST and latitude have the most significant impact on LST estimation. Compared
with the high-resolution LST obtained through downscaling of AMSR-E data, the fusion
method of estimating LST had higher accuracy, indicating that it is necessary to use the RF
fusion method. The proposed method effectively fuses TIR and PMW LST data, thereby
generating all-weather LST data with high spatial resolution.
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