
remote sensing  

Article

Detect, Consolidate, Delineate: Scalable Mapping of Field
Boundaries Using Satellite Images

François Waldner 1,2,* , Foivos I. Diakogiannis 3,4, Kathryn Batchelor 5, Michael Ciccotosto-Camp 1,
Elizabeth Cooper-Williams 6 , Chris Herrmann 7, Gonzalo Mata 7 and Andrew Toovey 7

����������
�������

Citation: Waldner, F.; Diakogiannis,

F.I.; Batchelor, K.; Ciccotosto-Camp,

M.; Cooper-Williams, E.; Herrmann,

C.; Mata, G.; Toovey, A. Detect,

Consolidate, Delineate: Scalable

Mapping of Field Boundaries Using

Satellite Images. Remote Sens. 2021, 13,

2197. https://doi.org/10.3390/

rs13112197

Academic Editors: Karem Chokmani,

Yacine Bouroubi and Saeid

Homayouni

Received: 10 February 2021

Accepted: 27 May 2021

Published: 4 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 CSIRO Agriculture & Food, St Lucia, QLD 4067, Australia; m.ciccotostocamp@uq.net.au
2 European Commission Joint Research Centre, 21027 Ispra, VA, Italy
3 International Centre for Radio Astronomy Research, University of Western Australia,

Crawley, WA 6009, Australia; foivos.diakogiannis@icrar.org
4 CSIRO Data61, Kensington, WA 6155, Australia
5 CSIRO Health & Biosecurity, 147 Underwood Avenue, Floreat, WA 6014, Australia;

katheryn.batchelor@csiro.au
6 CSIRO Health & Biosecurity, Australian e-Health Research Centre, Royal Brisbane and Women’s Hospital,

Herston, QLD 4029, Australia; Liz.Cooper-Williams@csiro.au
7 CSIRO Agriculture & Food, 147 Underwood Avenue, Floreat, WA 6014, Australia;

Christopher.Herrmann@csiro.au (C.H.); gonzalo.mata@csiro.au (G.M.); Andrew.Toovey@csiro.au (A.T.)
* Correspondence: franz.waldner@ec.europa.eu

Abstract: Digital agriculture services can greatly assist growers to monitor their fields and optimize
their use throughout the growing season. Thus, knowing the exact location of fields and their
boundaries is a prerequisite. Unlike property boundaries, which are recorded in local council or title
records, field boundaries are not historically recorded. As a result, digital services currently ask their
users to manually draw their field, which is time-consuming and creates disincentives. Here, we
present a generalized method, hereafter referred to as DECODE (DEtect, COnsolidate, and DElinetate),
that automatically extracts accurate field boundary data from satellite imagery using deep learning
based on spatial, spectral, and temporal cues. We introduce a new convolutional neural network
(FracTAL ResUNet) as well as two uncertainty metrics to characterize the confidence of the field
detection and field delineation processes. We finally propose a new methodology to compare and
summarize field-based accuracy metrics. To demonstrate the performance and scalability of our
method, we extracted fields across the Australian grains zone with a pixel-based accuracy of 0.87
and a field-based accuracy of up to 0.88 depending on the metric. We also trained a model on data
from South Africa instead of Australia and found it transferred well to unseen Australian landscapes.
We conclude that the accuracy, scalability and transferability of DECODE shows that large-scale field
boundary extraction based on deep learning has reached operational maturity. This opens the door
to new agricultural services that provide routine, near-real time field-based analytics.

Keywords: agriculture; deep learning; Sentinel-2; semantic segmentation; instance segmentation

1. Introduction

Fields shape agricultural landscapes. As a result, their size and distribution can
inform about agriculture mechanization [1], human development, species richness [2],
resource allocation and economic planning [3–5]. Beyond their value as ecological and
economical indicators, precise knowledge of the field distribution can help stakeholders
across the agricultural sector monitor and manage crop production by enabling field-
based analytics [6]. Unlike property boundaries, which are recorded in local council or
title records, field boundaries are not historically recorded. As a result, digital services
currently ask their users to manually draw their field, which is time-consuming and creates
disincentives. The objective of this work is to provide hassle-free access to field boundary
data for unlocking field-based applications and insights to the Australian land sector. Given
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the structuring role of fields in agricultural systems, procurement of field boundary data is
essential for the development of modern digital agriculture services. Therefore, efficient
tools to routinely generate and update field boundaries are relevant for actors across the
data value chain so that they can generate value and useful insights.

Satellite, aerial and drone images are prime sources of data used to automatically
generate field boundaries. Aside from manual digitization based on photo interpretation,
field boundaries can automatically be extracted by four main types of methods. First, edge-
based methods rely on filters to emphasize discontinuities in images, that is, where pixel
values change rapidly [7–9]. Second, contour-based methods generate curves that move
within images to find object boundaries by minimizing some energy function [10]. Third,
object-based methods cluster pixels together (i.e., fields) based on their color similarity [9].
Finally, because not all edges are of interest, model-based methods are trained to recognize
specific image objects to emphasize certain edges and attenuate others. Models range
from simple logistic regression [11] to structured random forest [12], or more sophisticated
models such as convolutional neural networks [6,13–17]. Convolutional neural networks
have proven particularly accurate because they can learn discriminative hierarchical con-
textual features from the input images. Thus, the focus of this study is on convolutional
neural networks.

Several convolutional neural networks have been proposed to extract field bound-
aries. Their performance has been demonstrated in a range of cropping systems from
smallholder [17] to large-scale commercial cropping systems [6], with <1 m data [18]
to 3 m [16,17], 10 and 30 m data [6]. Typically, these convolutional neural networks are
trained to predict the presence or absence of field boundaries for each image pixel, i.e.,
they perform semantic segmentation. However, there is evidence that jointly predicting
the task of interest (boundaries) with related tasks (such as the field extent or the distance
to the closest boundary) improves prediction accuracy [19], a process known as multitask-
ing. In fact, in a previous study, we demonstrated that multitask learning maintained a
high accuracy level when transferred across resolutions, sensors, space and time with-
out recalibration [6]. Such high transferability informed clear guidelines to scale up to
larger landscapes. This paper capitalizes and expands on these past results to demonstrate
nationwide field boundary extraction.

Semantic segmentation models (and edge-based methods) do not necessarily yield
closed boundaries, and additional post-processing is required to define regions with closed
contours (and achieve instance segmentation). Examples of post-processing methods
include globalized boundary probability estimates, growing contours, thresholding or
object-based image analysis [6,17,20,21]. In addition, once boundaries are mapped, one
still needs ancillary information to define where the fields are. For instance, Yan and
Roy [7] and Graesser and Ramankutty [8] sourced that information from cropland and
type maps. While end-to-end instance segmentation methods could extract closed field
boundaries in one go, they have not been widely tested for field boundary detection. So
far, post-processing solves the problem of open boundaries.

In this paper, we introduce a new method based on deep learning field boundary
extraction and demonstrate its performance by extracting fields across Australia. Our
method is called DECODE in reference to its three processing steps: DEtection, COnsolidation
and DElinetation. Detection is achieved with a state-of-the-art deep convolutional neural
network that jointly predicts the extent of the fields, their boundaries and the distance to
the closest boundary from single-date images. Consolidation is achieved by averaging
single-date predictions over the growing season, thereby integrating temporal cues. Finally,
delineation of individual fields is done by post-processing the boundary mask using
hierarchical watershed segmentation. Our specific contributions are:

• A deep learning network, the FracTAL ResUNet, tailored for the task of semantic
segmentation of satellite images. In particular, our architecture is a multitasking
encoder–decoder network, with the same backbone structure as in Waldner and
Diakogiannis [6]. The main difference is that we changed the residual building blocks
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with atrous convolutions with the newest FracTAL ResNet building blocks. FracTAL
ResNet building blocks have been recently proposed as part of a change detection
network that demonstrated state-of-the-art performance [22];

• Two field-level measures of uncertainty to characterize the semantic (assigning labels
to pixels) and instance (grouping pixels together) uncertainty;

• A framework to report and compare field-based accuracy metrics.

Put together, these elements provide an accurate, scalable and transferable framework
to extract field boundaries from satellite imagery. To demonstrate the performance of
DECODE, we extracted 1.7 million fields across Australia using Sentinel-2 images. Two
FracTAL ResUNet models were compared: one trained with data of Australia (the target
domain), and the other with data of South Africa (the source domain). As this paper will
show, both models yielded accurate results in Australia, which is remarkable since no
adjustments were applied to the source-to-target case. This is evidence that our approach
generalizes well and can be transferred to other regions.

2. Materials and Methods

The DECODE method extracts field boundaries from satellite imagery in three sequen-
tial steps (Figure 1). The first step (detect) is a semantic segmentation step, where a
convolutional neural network, FracTAL ResUNet, assigns multiple labels (field presence,
boundary presence and distance to boundary) to image pixels (Section 2.1). The second
step (consolidate) averages model predictions obtained for different observation dates so
that temporal cues are integrated (Section 2.2). This creates consolidated model predictions
from which individual fields can be extracted. The third and final step (delineate) is an
instance segmentation step, where image pixels are grouped into individual objects (fields)
based on the consolidated network predictions (Section 2.3). During this process, two
uncertainty metrics—one that relates to the semantic segmentation step and the other
to the instance segmentation step—are computed for each field. Code is available on
https://github.com/waldnerf/decode (accessed on 3 May 2021).

2.1. Detect: Multi-Task Semantic Segmentation

Semantic segmentation has attracted significant interest in the fields of computer
vision and remote sensing, where automatically annotating images is common. In the next
paragraphs, we summarize the main contributions leading to this work and we refer to
Brodrick et al. [23] for a thorough introduction to convolutional neural networks.

The UNet architecture [24], which introduced the encoder–decoder paradigm, made
major breakthroughs in image semantic segmentation. The encoder encodes the input
image into feature representations at multiple levels through a series of convolutions,
activation functions (such as ReLU activations) and pooling layers. The decoder seman-
tically projects the discriminative features learnt by the encoder onto the pixel space to
derive a dense classification through a series of upsampling, concatenation and convolu-
tion operations. As networks became increasingly deeper, they became more difficult to
train due to vanishing (or exploding) gradients. Residual networks (ResNets) [25] miti-
gate this problem by introducing skip connections to allow gradient information to pass
through layers. As a result, information from the earlier parts of the network flows to
the deeper parts, helping maintain signal propagation. Pyramid scene parsing pooling
(PSP pooling) [26] was introduced to capture the global context in the image, which helps
models classify the pixels based on the global information present in the image. In PSP
pooling layers, the feature map is pooled at different scales before passing through a
convolution layer. Then, the pooled features are upsampled to make them the same size
as the original feature map. Finally, the upsampled maps and the original feature map
are concatenated and passed to the decoder. This technique fuses the features at different
scales, hence aggregating the overall context. Multitasking, where multiple tasks are simul-
taneously learned by a model, is another approach to improving generalization. The UNet,
residual connections, pyramid scene parsing pooling, and multi-tasking inference were

https://github.com/waldnerf/decode
https://github.com/waldnerf/decode
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combined in ResUnet-a and showed state-of-the-art performance on very high resolution
aerial images [19].

Figure 1. Field boundary mapping with the DECODE method. Fields are extracted from a stack
of single-date satellite images in three sequential steps: (1) semantic segmentation of fields, their
boundaries and their distance to the closest boundary with FracTAL ResUNet (detection), single-date
model outputs are time averaged (consolidation), and instance segmentation of fields by means
of hierarchical watershed segmentation (delineation). Here, Sentinel-2 images (blue, green, red,
near-infrared channels) were used as input to the FracTAL ResUNet model.
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In recent years, attention mechanisms have improved the success of various deep
learning models, and continue to be omnipresent in state-of-the-art models. One of those
attention mechanisms is self-attention, which quantifies the interdependence within the
input elements. Self-attention is a form of “memory” acquired during the training of a
network that helps emphasize important features in convolution layers. It was pioneered
in the task of neural machine translation [27] where it helped emphasize important words,
as well as their relative syntax between different languages, in long sentences. It has
been shown consistently to improve performance and it is now a standard in all modern
architectures e.g., [28]. Self-attention layers can be combined in multi-head attention layers
that jointly learn different representations from different positions. Among the attention
modules that have been proposed, the fractal Tanimoto attention layer is memory efficient
and scales well with the size of input features. It uses the fractal Tanimoto similarity
coefficient as a means of quantifying the similarity between query and key entries. FracTAL
ResNet blocks have a small memory footprint and excellent convergence and performance
properties that outperform standard ResNet building blocks; see [22] for more details.

In this paper, we introduce FracTAL ResUNet, a convolutional neural network that is
largely based on ResUnet-a [19] but where the atrous ResNet blocks are replaced by the
more efficient FracTAL ResNet blocks. In the next sections, we describe FracTAL ResUNet
in terms of its micro-topology (feature extraction units), macro-topology (backbone) and
classification head.

2.1.1. Architecture Micro-Topology

The founding block used for this paper is the FracTAL ResNet unit [22]. It consists
of the standard sequence one finds in residual building blocks enhanced by a FracTAL
unit (i.e., a channel and spatial self-attention layer). In the FracTAL ResNet, the order of
operations is as follows: the input layer (Xin) is first subjected to the standard sequence
of batch normalization, ReLU activation and 2D convolution operations. This sequence
produces an output layer (Xout). The input layer is also subject to the FracTAL unit that
produces a self-attention layer (A). The input, the output of the residual blocks and the
attention layer are fused together with a learnable annealing parameter (γ) initialized at
zero when training starts:

Xout = (Xin + Xout)� (1 + γA) (1)

Here, � designates elementwise multiplication. The summation (Xin + Xout) is what
one obtains by using a standard residual unit [29]. This residual output is emphasized
in an annealing way by the attention layer, A. This unit has excellent performance but a
small memory footprint, which is critical when dealing with deep architectures and large
training data sets.

2.1.2. Architecture Macro-Topology

The feature extraction units were inserted in an encoder–decoder scheme similar to
the UNet architecture used in Diakogiannis et al. [22] (Figure 2). The input of the encoder is
first processed by a normed convolution to bring the number of channels to the desired
number of features (without activation). These features are then subjected to a set of
FracTAL ResNet units. Between FracTAL ResNet units, the size of the spatial extent is
halved and the number of filters doubled. This is achieved with a normed convolution of
stride (s = 2; without activation). At the end of the encoder, we apply the pyramid scene
parsing pooling operator [30]. This operator provides context information at different
scales of the spatial dimensions of the input features (successively, 1, 1/2, 1/4, 1/8) and has
been shown to improve performance. In the decoder, features are upscaled using bilinear
interpolation followed by a normed convolution. At each level, the upscaled features are
first concatenated with the encoder features of the same level. Next, a normed convolution
brings these features to a desired size and the output is inserted into the next FracTAL
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ResNet unit. The final layer of the decoder, as well as the output of the first convolution
layer, are the inputs to the classification head.

Figure 2. Components of the FracTAL ResUNet architecture. The network macro-topology shows
how feature extraction units (convolution layers, FracTAL ResNet units and PSP pooling layers)
are applied to an image input with C channels, and with H and W pixels in y and x dimensions.
Here, d corresponds to the depth of the network and n f corresponds to the initial number of filters.
The micro-topology (FracTAL ResNet unit) shows the fusion process between the FracTAL and the
sequence of residual blocks. The conditioned multitasking classification head first predicts the
distance mask (without PSP Pooling), then uses this information to detect boundaries, and finally,
re-uses both estimates to predict the extent mask.

2.1.3. Classification Head

The classification head follows conditioned multitasking [6,19] and is identical to the
one presented in Diakogiannis et al. [22]. It first predicts the presence of field boundaries
(i.e., the boundary mask). Then, it balances the boundary mask and re-uses it to estimate the
distance to the closest field boundary (i.e., distance transform). Here, “balanced” means that
the number of output channels (e.g., of the distance mask) was changed to correspond to
the number of channels of the input features (usually 32). This scheme weights intermediate
prediction layers and feature layers equally, thereby counterbalancing the lesser number
of channels in the former. Finally, it re-uses both previous outputs to map the presence
or absence of fields (i.e., the extent mask). The number of features in each of these layers
was carefully balanced in each of these layers and, for the case of boundaries prediction, a
scaled sigmoid activation was introduced, as this sharpens the boundary predictions.

2.1.4. Evolving Loss Strategy

Our training loss was the fractal Tanimoto with complement loss [22]. Assuming
that p represents one of the predictions of the network (i.e., it is a fuzzy binary vector)
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and l represents the ground truth labels, then the fractal Tanimoto similarity coefficient is
defined through:

〈FT 〉d(p, l) =
1
d

d−1

∑
i=0
FT i(p, l) ∈ [0, 1] (2)

where:

FT d(p, l) =
1
2

(
T d(p, l) + T d(1− p, 1− l)

)
(3)

T d(p, l) =
p · l

2d(p2 + l2)− (2d+1 − 1)p · l
. (4)

Here d, represents the depth of the iteration in the fractal definition. The higher the
value of d, the finer the similarity between predictions and labels.

This similarity coefficient takes the value 1 when p = l (predictions are perfect) and
zero when p = 1− l (no correlation between predictions and ground truth labels). The loss
can be defined for minimization problems as the negative of this coefficient:

Ld(p, l) = 1− 〈FT 〉d(p, l) (5)

In this formulation, the loss function admits values in the range [0, 1]. As we optimized
three learning tasks jointly, the full loss function was defined as the average of the loss of
all tasks:

L̃d(p, l) =
1
3
[
Ld

extent(p, l) + Ld
boundary(p, l) + Ld

distance(p, l)
]

(6)

The training procedure we followed was the evolving loss strategy [22]: starting from
fractal depth d = 0 and an initial learning rate, lr=1.e-3, we increased the depth of the
fractal Tanimoto loss each time we reduced the learning rate (Section 2.5.2). This training
scheme helps avoid local minima by making the loss landscape steeper towards optimality.
It has been shown to improve all statistical metrics; for the case of intersection over union,
the improvement was ∼1% performance [22].

2.2. Consolidate: Time Averaging

The outputs of the deep-learning model are three semantic segmentation layers per
input image. The consolidate step aims at consolidating single-date predictions while
maintaining flexibility (the method still works with a single image). Averaging across
observations also significantly increases accuracy, especially when more than four observa-
tions are available [6].

2.3. Delineate: Hierarchical Watershed Segmentation

The outputs of the consolidate step are thus three consolidated semantic segmentation
layers but individual fields remain to be defined. We achieve instance segmentation by
post-processing the boundary mask using hierarchical watershed segmentation.

2.3.1. Hierarchical Watershed Segmentation

Watershed segmentation is one of the most popular image segmentation methods.
Consider a grey-scale image as a topographic surface; pixel values correspond to elevation.
Valleys appear in dark grays and mountain tops and crest lines appear in light grays.
Following the drop of water principle [31], watersheds are defined as groups of pixels from
which a drop of water can flow down towards distinct minima.

This intuitive idea has been formalized for defining a watershed of an edge-weighted
graph [32]. The graph G is defined as a pair (P, E) where P is a finite set and E is composed
of unordered pairs of distinct elements in P [33]. Each element of P is an image pixel, and
each element of E is called an edge. The graph G models the image spatial domain: P is
the regular 2D grid of pixels and E is the 4− or 8−adjacency relation. Spatial relations
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have different weights W that the dissimilarity between pixels, so that (G, W) is an edge-
weighted graph. A segmentation S of P is then defined as a subset of V such that the
intersection of any two distinct instances of S is empty, and the union of instances of S
equals V. Thus, one can obtain a sequence of nested segmentations, hence a hierarchy
of segmentations.

A hierarchy of watershed segmentations is a nested sequence of coarse to fine instances,
which can be shown as a tree of regions [32,34]. Therefore, coarser to finer image instances
or objects can be obtained by cutting the hierarchy lower or higher in the tree.

2.3.2. Closing Boundaries with Hierarchical Watershed Segmentation

Instance segmentation can be obtained by cutting hierarchical watershed segmenta-
tions into k regions at any level of the hierarchy [32]. The resulting segments will have
closed boundaries regardless of the threshold use to cut the hierarchy. In this paper, we
built a watershed hierarchy based on the boundary mask (Figure 3b,d–f). The weights of
the graph edges were measured by their dynamics [35]. The dynamics of a path that links
two pixels is the difference in altitude between the points of highest and lowest altitude of
the path (Figure 3a). In an image, the dynamics of two pixels is equal to the dynamics of
the path with the lowest dynamics (Figure 3c). Once the edge-weighted graph is generated
from the boundary mask, instances fields with closed boundaries can be generated by
cutting the graph at a specific dynamics (tb).

Before constructing the watershed hierarchy, we set another threshold (te) to binarize
the extent mask and define field pixels and non-field pixels. The value of non-field pixels
in the boundary mask is then changed to 1, which corresponds to the maximum confidence
of having a boundary. This step reduces the occurrence of very small fields. We finally
construct the watershed hierarchy and cut it at the desired level. Here, tb and te were
defined by trial and error and set to 0.2 and 0.4, respectively.

2.4. Defining Semantic and Instance Uncertainty

Two types of uncertainty can be characterized for each field: the uncertainty related to
the identification of the fields (semantic uncertainty) and the uncertainty related to their
delineation (instance uncertainty).

We propose to measure semantic uncertainty using the extent mask, which describes
the probability of a pixel to belong to a field. Semantic uncertainty is defined as the
average normalized difference between the extent probabilities of all pixels in a field and
the threshold value:

Us = 1−

[
1
n ∑n

j=1 pj

]
− te

1− te
(7)

where Us ranges between 0 and 1 and values close to 1 indicate a high uncertainty of the
detection process.

Fields must have closed boundaries. Confidence in these boundaries relates to the
uncertainty of the pixels making up these boundaries. We propose to measure instance
uncertainty using the concept of dynamics that was introduced previously. Pixels with
high dynamics were identified as boundary pixels with high confidence, and conversely for
low dynamics. Therefore, if cn defines the ensemble of boundary pixels of a specific field,
instance uncertainty can be derived from the boundary pixel with the lowest dynamics
(i.e., the weakest link between boundary pixels):

Ui = 1−
[
minj∈n cn

]
− tb

1− tb
(8)

where Ui ranges between 0 and 1 and values close to 1 indicate a high uncertainty of the
delineation process.
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Figure 3. Defining hierarchical segmentation with the dynamics criterion. (a) Dynamics of two
points along a path (the path is illustrative and does not relate to a path on the following figure
components), (b) boundary mask as produced by the model, (c) corresponding watershed built with
the dynamics criterion, (d–f) cuts of the segmentation hierarchy at different dynamics levels, (g) input
model image.

2.5. Experimental Design

We evaluated the DECODE method by extracting field boundaries across the Australian
grains zone (Figure 4) and trained a first FracTAL ResUNet model using data from Australia
(the target domain). We also trained a second model using data from South Africa (the
source domain) to assess its transferability. We note that the fields in these countries have
some similarity in size and shapes. To better understand how transferable models trained
on different domains are, we compared the following two cases:

• Target to target , where a FracTAL ResUNet model was trained and evaluated on data
from Australia (the target domain);

• Source to target, where a FracTAL ResUNet model was trained on data from South
Africa (the source domain) and evaluated in Australia.

While the source-to-source case (where a FracTAL ResUNet model was trained and
evaluated on data from South Africa) was not our primary focus, it provides an interesting
benchmark and is thus included in some analyses.
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2.5.1. Data and Study Sites

We had two study sites in South Africa: one in the “Maize quadrangle”, which spans
across the major maize-producing area; and the other in the Western Free State. These sites
cover 18 Sentinel-2 tiles: 14 tiles were used for training, two for validating and two for
testing. In practice, the two testing sites were only used to provide informative accuracy
measures. Two cloud-free images were available per tile, one early (aiming for February)
and the other late in the season (aiming for May; Table A1). They were partitioned into a
set of smaller images (hereafter referred to as input images) of a size of 256 × 256 pixels
because entire images cannot be process at once due to limited GPU memory. As in Waldner
and Diakogiannis [6], we kept the blue, green, red and near-infrared bands.

Figure 4. Study sites. (a) The two study sites in South Africa, the source domain; (b) the number of
cloud-free images per tile in the Australia, the target domain.

We sourced boundaries that were created by manually digitizing all fields throughout
the country based on 2.5 m resolution, pan-merged SPOT imagery acquired between
2015 and 2017. About 380,000 fields were available for training, 65,000 for validation and
35,000 for testing (Table 1). We rasterized field polygons at 10 m pixel resolution so as to
match Sentinel-2’s grid, providing a rich wall-to-wall data set. We finally created the three
annotated masks needed by FracTAL ResUNet during training: the extent mask (binary),
the boundary mask (binary; a 10 m buffer was applied), and the distance mask (continuous),
representing, for every within-field pixel, the distance to the closest boundary. Distances
were normalized per field so that the largest distance was always one. As boundaries are
updated every three years, discrepancies might exist between them and those seen on
Sentinel-2 images. While these discrepancies might be handled during the training phase,
their impact is far greater in accuracy assessment. Therefore, accuracy measures for the
source-to-source approach remain indicative.

Table 1. Number of training fields available for training, validation and testing in the source and
target domain.

Domain
Number of Fields

Training Validation Testing

Source—South Africa 380,034 65,522 36,499
Target—Australia 53,115 13,278 5555

In Australia, we downloaded 5302 cloud-free images across 269 tiles (Figure 4). Partial
images due to orbital tracks were discarded if complete images were also available from
other orbits. The median number of available images per tile was 14, ranging from a
maximum of 56 (55JEH and 55JEK) to a minimum of 1 (50HQH, 50JKM, 51HTC, 52JDL,
53HMB, 53HPA, 54HYC and 55HFU), totaling more than 500 million 10 m pixels.
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Field boundaries for training and testing in Australia were generated differently
because of their different requirements. On the one hand, training requires a large amount
of contiguous data representative of the variety of landscapes and can tolerate some level
of noise. On the other hand, testing requires fewer data points but quality control and
sampling design are critical. Therefore, field boundaries for training were generated by
a two-step process where operators edited objects generated by an image segmentation
method while field boundaries for testing were manually digitized. Field boundaries for
training were obtained from five tiles (55HEE, 55HDA, 54HXE, 53HNC and 50JPL) for
which two cloud-free dates were available. First, we extracted the first five components
of these images using principal component analysis and non-cropped areas were masked
using the Catchment-scale Land-Use of Australia Map (CLUM) [36]. Next, we extracted
field polygons using a meanshift segmentation algorithm [37]. To define the optimal
segmentation parameters, Bayesian optimization [38] was used to minimize over- and
under-segmentation, which were measured by comparison of the segmentation outputs to
200 randomly drawn fields. The resulting polygons were then reviewed, deleted, added
or corrected manually using all of the Sentinel-2 images available as well as Google Earth.
Editing reduced the number of polygons by up to 80% depending on the tile, which
illustrates the challenge that lies in calibrating object-based methods. As a result, more
than 50,000 and 10,000 fields were available for training and validation, respectively. Test
data were manually digitized by photo-interpreting Sentinel-2 images (Table 1). To define
the sampling locations, Sentinel-2 tiles were split into chips of 2.5 by 2.5 km and their
respective crop proportions were computed based on CLUM. Then, we randomly selected
one of these chips per tile. Tiles where all chips had less than 10% cropping were ignored.
Finally, photo-interpreters labelled 176 well-distributed chips (Figure A1), resulting in 5555
test fields.

2.5.2. Model Training

FracTAL ResUNet models were trained by feeding input images (with the shape
256 pixels× 256 pixels× 4 spectral bands) to the network and comparing their three output
masks (extent, boundary and distance) to the reference masks generated as explained in
the previous section. In all experiments, our models had the following hyperparameters:
32 initial filters, a depth of 6, a width of 1, and a PSP pooling depth of 4. We also set the
depth of the FracTAL attention layer to 5. We initialized the model weights using Xavier
initialization [39] and used Adam as the optimizer because it achieves faster convergence
than other alternatives [40]. We followed the parameter settings recommended in Kingma
and Ba [40]. Training was initiated with the standard Tanimoto loss (d = 0). Then, we
increased the depth d of the fractal Tanimoto loss each time we reduced the learning rate
(when training converges). We chose the following sets of values for the various learning
rate (lr) reduction steps: {lr : 0.001, d = 0}, {lr : 10−4, d = 10}, {lr : 10−5, d = 20},
{lr : 10−6, d = 30}.

Data augmentation artificially inflates the variance of training data, which boosts
the ability of convolutional neural networks to generalize. Indeed, convolutional neural
networks, and specifically UNets, are not equivariant to spatial transformations such as
scaling and rotation [41]. Therefore, during training, we flipped the original images (in the
horizontal and vertical reflections) and randomly modified their brightness. This means
the network never exactly saw the same data during training. We also performed temporal
data augmentation as we used the same labels for multiple image dates.

2.5.3. Large-Scale Instance Segmentation

Instance segmentation was performed per tile to minimize memory usage and allow
distributed computing. To combine fields from multiple overlapping tiles into a seamless,
continuous data layer, we implemented the following two rules. First, all fields touching
the tiles’ bounding box were discarded because they were most likely incomplete. Second,
in overlap areas between tiles, we retained the field with the lowest instance uncertainty.
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2.5.4. Accuracy Assessment

When characterizing the accuracy of extracted field boundaries, both the geometric
and thematic accuracy must be assessed. Thematic accuracy is computed at the pixel
level and is expressed by common metrics derived from the error matrix. Here, we report
the overall accuracy, the users’ accuracy, the producers’ accuracy [42] and Matthews’
correlation coefficient (MCC; [43]) of the extent mask.

Geometric accuracy is computed at the instance level and can be broken down into
four components parts—similarity in shape, label, contour and location, each depicting
a specific view of the similarity between reference and extracted fields. We report six
geometric accuracy metrics:

1. The boundary similarity, which compares the boundary of a reference object coinci-
dent with that of a classified object [44]. Boundary similarity calculates the percentage
of the target field boundary that coincides with the extracted field boundary:

Sboundary =

(
lintersection

pTi

)k
(9)

where lintersection is the length of the point set intersection between the boundaries of
the target and extracted fields, and k is +1 when lintersection is less than or equal to pTi ,
and −1 otherwise.

2. The location similarity, which evaluates the similarity between the centroid position
of classified and reference objects [44]. Location similarity is evaluated first, by
calculating the Euclidiean distance between corresponding the centroids of the target
and extracted fields, and then by normalizing it by the diameter of a combined area
circle (cac),i.e., the diameter of a circle whose area corresponds to the sum of the areas
of the target and extracted fields:

Sboundary = 1−
d(CTi ; CEj)

Dcac
(10)

where d is a function that computes the Euclidian distance between the centroids of
the reference field (Ti) and the corresponding extracted field(s) (Ej), and Dcac is the
diameter of the combined area circle.

3. The oversegmentation rate, which measures incorrect subdivision of larger objects
into smaller ones:

Sover = 1−
∣∣Ti ∩ Ej

∣∣
|Ti|

(11)

where |·| is an operator that calculates the area of a field from E or T and ∩ is the
intersection operator.

4. The undersegmentation rate, which measures incorrect consolidation of small adja-
cent objects into larger ones [45]:

Sunder = 1−
∣∣Ti ∩ Ej

∣∣∣∣Ej
∣∣ (12)

5. The intersection over union, which evaluates the overlap between reference and
classified objects;

SIoU =

∣∣Ti ∩ Ej
∣∣∣∣Ti ∪ Ej
∣∣ =

∣∣Ti ∩ Ej
∣∣

|Ti|+
∣∣Ej
∣∣− ∣∣Ti ∩ Ej

∣∣ (13)

6. The shape similarity, which compares the geometric form of a reference object with
that of the corresponding classified object(s) [44]. Shape similarity is based on the
normalized perimeter index (NPI) and the concept of an equal area circle (eac), which
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is a circle with an area equal to the area of an object (here a field). The NPI of an object
is in fact the ratio between the perimeter of the equal area circle and the perimeter of
the object (NPI = peac/pobject). Here, shape similarity compares the geometric form
of a target field with that of the corresponding extracted field(s):

Sshape =
NPIEj

NPITi

k

(14)

where k is given the value +1 when
NPIEj
NPITi

is less than or equal to 1.0, and the value

–1 otherwise.

All of these metrics were defined to range between 0 and 1; the closer to 1, the more
accurate. If an extracted field Ej intersected with more than one field in T, metrics were
weighted by the corresponding intersection areas.

As object-based metrics are available for all reference fields, we introduce the concept
of the Area Under the Probability of Exceedance Curve (AUPEC) to facilitate comparison
between methods and provide a synoptic summary of a method’s performance. Probability
of exceedance curve is a common type of chart that gives the probability (vertical axis)
that an accuracy level (horizontal axis) will be exceeded. To illustrate this concept, let us
consider a probability of exceedance of 50% for an accuracy level of 0.9. This indicates that
every second reference field has an accuracy value of at least 0.9. As perfectly extracted
fields have an accuracy value of 1, perfect segmentation for the full reference data set
should yield a probability of exceedance of 100% for an accuracy of 1 and a probability
of exceedance of 100%. It follows that the area under the probability of exceedance curve
summarizes the distribution of accuracy of the reference data. An area under the probability
of exceedance curve close to 1 indicates that nearly all extracted fields were error-free for
the metric considered, and conversely for values close to 0.

3. Results

To extract fields in Australia, we trained two FracTAL ResUNet models: one model
with data from South Africa (source-to-target) and the other with data from Australia
(target-to-target). Training lasted for 72 h per model, using 24 nodes equipped with 4 P100
GPUs and 16 GB of memory each. Optimal training was achieved after 254 epochs for
the model trained on data from South Africa (MCC = 0.85) and 161 epochs for the model
trained on data from Australia (MCC = 0.87). Inference for Australia ran for 5 days on 16
to 24 nodes, each having 4 P100 GPUs and 128 GB of memory. About 1.7 million fields
(>1 ha) were extracted with both methods (Figure 5).

Figure 5. Field distribution across Australia obtained with the source-to-target approach.
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We then assessed the pixel-based accuracy of both models in the target domain
(Table 2). Overall, the source-to-target and target-to-target approaches yielded similar
accuracy levels (0.87). The target-to-target approach yielded larger producers’ accuracy
than the source-to-target approach (0.83 vs. 0.78) but this was achieved at the expense of
the field class (0.90 vs. 0.94). Users’ accuracy for both approaches and classes was >0.85.

Table 2. Pixel-level assessment of the extent mask produced by FracTAL ResUNet. (a) Error matrix
for the source-to-target approach and (b) for the target-to-target approach. Both approaches detected
fields at the pixel level with similar accuracy.

(a) Source-to-target

Actual

Field Non-field

Predicted
Field 4,791,026,300 815,729,900 0.854

Non-field 318,970,725 2,833,865,625 0.899

0.938 0.776 OA = 0.870
MCC = 0.733

(b) Target-to-target

Actual

Field Non-field

Predicted
Field 4,610,109,200 627,107,300 0.880

Non-field 499,887,825 3,022,488,225 0.858

0.902 0.828 OA = 0.871
MCC = 0.734

Visual inspection of the extent, boundary and extent masks confirmed the good
performance of the source-to-target approach across a range of cropping regions (Figure 6).
The model showed great confidence in detecting fields regardless of the fragmentation
levels. Most errors were observed in southern Queensland and central and northern
New South Wales, which were stricken by drought during the period of interest. As a
result, separability with other natural vegetation classes was reduced. Checker-board
artifacts in the semantic segmentation outputs were largely avoided thanks to our specific
inference method.

We then evaluated object-based accuracy based on six metrics (boundary similarity,
intersection over union, location similarity, oversegmentation rate, shape similarity and
undersegmentation rate). We compared the source-to-target and the target-to-target ap-
proaches based on the probability of exceedance curves and their associated areas under
the curves (Figure 7a). Even though they are not directly comparable, we also included the
accuracy metrics for source-to-source results for reference.

Extracted fields were very similar to reference fields across metrics and approaches.
In particular, they had high location similarity and over/undersegmentation rates. For
example, 75% of the extracted fields reached an over/undersegmentation rate of at least
0.75. Shape similarity was the poorest metric, with 50% of the fields yielding to a similarity
of 0.6. Surprisingly, the source-to-target approach outperformed the target-to-target ap-
proach for most metrics (Figure 7b). The largest differences in areas under the probability
of exceedance curves were observed for boundary similarity (0.89 vs. 0.79). The larger size
of the source training set data might have exposed the model to a larger diversity of cases,
leading to improved accuracy. Poor performance in the source-to-source case was likely
due to discrepancies between the observation date and the reference. While the shape and
undersegmentation errors seemed relatively evenly distributed, oversegmentation and
location errors tended to decrease in low rainfall zones (more inland) where pasture fields
are less prevalent (Figure 8). The undersegmentation rate and intersection over union
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increased as field size grew larger. The other accuracy metrics did not indicate any strong
relationship with field size (Figure A2).

Figure 6. Semantic segmentation outputs in a range of Australian cropping regions (5 km × 5 km).
These outputs were obtained for the source-to-target case, that is, a FracTAL ResUNet trained on
South African data and applied across Australia.



Remote Sens. 2021, 13, 2197 16 of 24

Figure 7. Object-based accuracy measures. (a) Probability of exceedance curves by metric; (b) area
under the probability of exceedance curves by metric. Interpretation of the area under the proba-
bility of exceedance curves differs from the interpretation of the metrics themselves as it conveys
information about their distribution for the validation set. As perfectly extracted fields have an
accuracy value of 1, perfect segmentation for the full reference data set should yield a probability of
exceedance of 100% for an accuracy of 1 and a probability of exceedance of 100%.

Figure 8. Distribution of median object-based accuracy metrics. Points indicate the centroids of the
validation sites.

Again, visual assessment confirmed the results of the quantitative accuracy assessment
(Figure 9). Our method showed good performance across agricultural landscapes. For
instance, it delineated fields with high fidelity and accuracy, even in the more complex
landscapes (e.g., South Australia and Queensland). It also successfully retrieved fields
with interior boundaries (e.g., lakes, tree lines, buildings) and in areas where crop cover



Remote Sens. 2021, 13, 2197 17 of 24

was sparse (New South Wales and Queensland). This suggests that our method still yields
good results in the absence of peak season images. Nonetheless, the large number of small
fields (<10 ha) suggests that a non-negligible proportion of those is erroneous. Confidence
in the extracted fields can also rapidly communicate the uncertainty related to the field
extraction process (Figure 10).

Figure 9. Instance segmentation outputs in a range of Australian cropping regions (5 km × 5 km).
These outputs were obtained for the source-to-target case, that is, a FracTAL ResUNet model trained
on South African data and applied across Australia.
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Figure 10. Semantic and instance uncertainty across a range of cropping regions.

4. Discussion
4.1. Methodological Advancement and Their Relevance

In this paper, we taught machines to delineate field boundaries according to spatial,
spectral and temporal properties. To demonstrate the performance of our method, DECODE,
we have processed >200 billion Sentinel-2 pixels across the Australian grains zone from
which we extracted about 1.7 million fields. As input images are single-date observations,
field boundaries can be updated at any time in the season according to users’ needs.

Convolutional neural networks have pushed the boundaries of boundary detec-
tion [46]. In this paper, we addressed the problem of satellite-based delineation of field
boundaries as multiple semantic segmentation tasks, resulting in excellent performance
both at the pixel level and the field level. This is because neural networks learn to discard
edges that are not part of field boundaries and to emphasize those that are using spectral
and multilevel contextual features that are relevant for multiple correlated tasks. As such,
it confirms the results of previous studies that evaluated deep-learning for field boundaries
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extraction (e.g., Waldner and Diakogiannis [6], Masoud et al. [16], Persello et al. [17]) but
our contribution is unprecedented in scale. While our results show clear improvement
over previous work, direct and fair comparison may be difficult for two main reasons.
First, there are several differences in the experimental setup, such as the imagery data
(resolution, spectral bands, multi-sensor, multi-date), the training set (size, proportion),
the landscape complexity and fragmentation, or the extent of the area of interest. Second,
field boundary extraction, unlike more land-use/land-cover classification tasks, lacks a
shared protocol for evaluation. As a result, the variety of metrics reported, regardless of
their merit, undermines comparison. This highlights the need for common data sets as
well as a shared set of evaluation metrics to allow systematic method benchmarking.

FracTAL ResUNet demonstrated excellent generalization and transfer properties. The
greater accuracy level shown by the source-to-target approach over the target-to-target
approach clearly evidences its excellent transferability. We believe that three factors help
explain this behavior. First, learning from multiple, correlated tasks is pivotal to minimize
over-fitting and achieve high generalization. Using this strategy, we showed in an earlier
contribution that models could generalize and transfer across space, time and resolution [6].
Second, we included target-domain images and source-domain images when computing
the standardization parameters. Third, we performed data augmentation in space and
associated labels to multiple images. On top of the usual geometric augmentations (rota-
tions, zooms), labels were associated with two images acquired at different dates, thereby
covering a wide range of growing conditions. Pretraining the model and then refining it
with target-domain data from the target domain, i.e., transfer learning, is likely to further
improve its performance and out-of-domain robustness [47]. Nonetheless, our approach
successfully minimized over-fitting, a prevalent problem in deep learning.

Boundaries retrieved by FracTAL ResUNet are also likely to be sharper than those
obtained by other models due to the fact that the scaled sigmoid layers used in the multi-
tasking classification head were largely avoided thanks to our specific inference method;
see [22] for more details. Other similar approaches could lead to similar effect [48]. Several
features could further improve DECODE. First, larger amounts of training data from more
diverse locations could be used. Second, models trained in the source domain could be
fine-tuned with target-domain data to better accommodate domain differences. Finally, the
instance segmentation thresholds (te and tb) could be optimized using, for instance, a Pareto
frontier approach; see [6]. However, this procedure can result in significant computing
costs. Convolutional neural networks set the new standard for field boundaries’ extraction.

4.2. Managing, Communicating and Reducing Uncertainty

In any artificial-intelligence application, uncertainty is the only certainty. Here, we
devised two new metrics (semantic and instance uncertainty) to communicate confidence
in the extracted field boundaries. These can for instance serve as a visual aid for end users
or be propagated down to derivative products. Here, we leveraged instance uncertainty to
merge fields extracted from adjacent, overlapping tiles. Semantic and instance uncertainty
provide transparency to users of the product.

With its 10 m spatial resolution, Sentinel-2 can be used to map a large range of field
sizes. The absence of strong correlations between object-based metrics and field size
suggests that much of Australia’s cropping region is above Sentinel-2’s minimum size
requirements. However, delineation of fields is only accurate if there is sufficient separation
between fields’ interior and their edges. Field boundary delineation thus relies on man-
made features such as roads and tree lines. In the absence of such features, adjacent fields
with the same crop type and growing patterns may not display sufficient differences to be
accurately delineated. For example, we observed that field boundaries were less accurate
in areas where pastures are more prevalent in the crop rotation. The increased error rate
for small fields can be mitigated by artificially enlarging the input data during inference.
As our algorithm was trained with zoom in/out operations, it tolerates similar zoom
levels during inference. By zooming in, the ratio of the area occupied by small fields to
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the total input image size (256 × 256 pixels) will increase, leading to improved detection
abilities. While this approach might improve algorithmic performance, it further increases
the computational cost of the inference process. Access to very high spatial resolution
imagery will also be critical to reduce these scale impediments.

4.3. Perspectives

In demonstrating the fitness of deep-learning algorithms to retrieve individual fields
from satellite imagery, our work shows that semantic segmentation combined with mul-
titasking is state-of-the-art, and that this technology has reached operational maturity.
Indeed, data sets extracted with this technology are now available for mainland Aus-
tralia [49] (CSIRO’s ePaddocks™ product) and this is being replicated in Europe [50]
(e.g., Sentinel Hub’s ParcelIO). Besides facilitating field-based agricultural services, greater
availability of field boundary data will support applications such as crop identification
and land-use mapping [51–55] and yield estimation [56–59], as well as the collection of
reference data [60]. Our work also points toward further research directions. Foremost
amongst these is the quantification of the model sensitivity to training set size and labelling
errors. Evidence-based responses to those questions would for instance help address
the lack of adequate labeled images in smallholder cropping systems. Indeed, these sys-
tems are not only challenging because of their small field size. They also display large
variations in color, texture, and shape, and often have weak boundaries. Other agricul-
tural systems, such as intensively managed dairy systems with sub-field strip grazing
or rangeland systems, also provide research challenges. To what extent can a model pre-
trained in a data-rich contexts extract field boundaries in smallholder farming systems?
Marvaniya et al. [61] presented a first attempt to address this problem. A third direction
is to benchmark end-to-end object detectors, for which no post-processing is necessary.
While there is some evidence that end-to-end object detectors may perform better [62], they
often require longer training epochs to converge, and deliver relatively low performance
at detecting objects, especially small ones. Finally, models that exploit spatial, spectral
and temporal features altogether (i.e., 3D convolutions) are worth exploring. However,
they require preprocessed, consistent time series as input. They also have a very large
GPU memory footprint, making their effective implementation a challenging task. These
additional requirements might reduce their practicality and, therefore, their uptake.

5. Conclusions

We presented DECODE, a method that extracts fields and their boundaries from satel-
lite imagery based on spatial, spectral and temporal information. DECODE is based on a
novel convolutional neural network, FracTAL ResUNet, which is applied to the cloud-free
Sentinel-2 images that are available across the season. Then, these predictions are time-
averaged and individual fields are retrieved from these consolidated predictions by means
of hierarchical watershed segmentation. By extracting field boundaries across Australia,
we demonstrated that our method is accurate and scalable, and that it not only generalizes
well but also transfers well to unseen regions. Indeed, a model trained with images of
South Africa and transferred to Australia achieved accuracy levels similar to or larger than
a model specifically trained for Australian conditions. This ability to transfer to unseen
areas paves the way to wider availability of field boundary data as it alleviates the problem
of collecting training labels.
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Appendix A

Table A1. Available cloud-free images in the source domain.

Tile Dates Split

T34HBH 20190327, 20190824 Train
T34HBJ 20190625, 20190903 Validation

T34HCH 20190406, 20190908 Train
T34HCJ 20190506, 20190824 Train

T34HDH 20190615, 20190809 Train
T34HEH 20190418, 20190821 Test
T35JLJ 20190301, 20190425 Train
T35JLK 20190301, 20190510 Train
T35JLL 20190301, 20190430 Train
T35JMJ 20190301, 20190505 Test
T35JMK 20190331, 20190505 Train
T35JML 20190326, 20190510 Train
T35JNJ 20190427, 20190517 Train
T35JNK 20190226, 20190427 Train
T35JNL 20190226, 20190427 Train
T35JPJ 20190226, 20190502 Train
T35JPK 20190226, 20190417 Validation
T35JPL 20190226, 20190328 Train

Figure A1. Distribution of the validation sites in the target domain.

Figure A2. Object-based accuracy binned scatter plots
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