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Abstract: As an important land surface vegetation parameter, fractional vegetation cover (FVC)
has been widely used in many Earth system ecological and climate models. In particular, high-
quality and reliable FVC products on the global scale are important for the Earth surface process
simulation and global change studies. Recently, the FengYun-3 (FY-3) series satellites, which are the
second generation of Chinese meteorological satellites, launched with the polar orbit and provide
continuous land surface observations on a global scale. However, there is rare studying on the FVC
estimation using FY-3 reflectance data. Therefore, the FY-3B reflectance data were selected as the
representative data to develop a FVC estimation algorithm in this study, which would investigate the
capability of the FY-3 reflectance data on the global FVC estimation. The spatial–temporal validation
over the regional area indicated that the FVC estimations generated by the proposed algorithm
had reliable continuities. Furthermore, a satisfactory accuracy performance (R2 = 0.7336, RMSE
= 0.1288) was achieved for the proposed algorithm based on the Earth Observation LABoratory
(EOLAB) reference FVC data, which provided further evidence on the reliability and robustness of
the proposed algorithm. All these results indicated that the FY-3 reflectance data were capable of
generating a FVC estimation with reliable spatial–temporal continuities and accuracy.

Keywords: fractional vegetation cover; FY-3B reflectance data; random forest regression method

1. Introduction

Fractional vegetation cover (FVC), defined as the percentage of green vegetation
over the total statistical area seen from nadir, is an important biophysical parameter to
describe the growth state of land surface vegetation [1–3]. High-quality FVC products,
particularly over a global scale, are essential for the land surface process models and related
researches [4–6]. At present, remote sensing technology is capable of acquiring various
land surface observations efficiently and has become a feasible way for FVC estimations on
the regional and global scales.

Over the past decades, several FVC products have been generated using remote sens-
ing data (Table 1) [7,8]. Among these FVC products, a linear inversion model was built and
adopted to generate the POLarization and Directionality of the Earth’s Reflectances of Na-
tional Centre for Space Studies (CNES/POLDER) FVC product, which was only available
for years 1996, 1997, and 2003 [2]. The EUMETSAT Satellite Application Facility on Land
Surface Analysis (LSA SAF) FVC product covering Europe, Africa, and South America is
generated based on the spectral mixture analysis method [9]. Besides, the Carbon Cycle and
Change in Land Observational Products from an Ensemble of Satellites (CYCLOPES) and
European Space Agency/Medium Resolution Imaging Spectrometer (ESA/MERIS) FVC
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products are obtained using the neural network method with the sample data derived from
the PROSPECT + SAIL (PROSAIL) canopy radiative transfer model [10,11]. However, the
CYCLOPES FVC product shows a systematic underestimation (up to 0.2) in croplands [12],
and the MERIS FVC product has no longer been generated since 2012 [13]. The VGT
bioGEOphysical (GEOV) series FVC products (including GEOV1, GEOV2, and GEOV3)
are generated using the neural network, and the targeted FVC value in training samples
are extracted from the CYCLOPES FVC product [1,14,15]. Nevertheless, both the GEOV1
and GEOV3 FVC products present poor performances in spatial–temporal continuities
with a large amount of missing data [16]. Besides, there are high uncertainties over the low
FVC values of the GEOV2 FVC product [8]. Furthermore, the Global LAnd Surface Satellite
(GLASS) FVC product is generated using the Multivariate Adaptive Regression Splines
(MARS) and shows reliable spatial–temporal continuities and assessment accuracies [8,17].
However, the GLASS FVC product is obtained from the Moderate Resolution Imaging
Spectroradiometer (MODIS) reflectances, and the design lifespan of the MODIS operation
has been exceeded [18]. To maintain the continuity of the global FVC product and meet
the application requirements for related studies, it is significant to explore various Earth
observation data and develop a corresponding algorithm for a global FVC estimation.

Table 1. Information on the existing FVC products over a large/global scale [7,8].

Products Sensor Method Spatial
Resolution

Temporal
Resolution

Spatial
Coverage

Temporal
Coverage

CNES/POLDER POLDER Empirical
model 6 km 10 days Global 1996–1997, 2003

LSA SAF SEVIRI
The pixel
unmixing

model
3 km Daily

Europe, Africa,
South

American
2005–present

CYCLOPES SPOT VGT
Machine
learning
method

1/112◦ 10 days Global 1998–2007

ESA/MERIS MERIS
Machine
learning
method

300 m Month/10 days Global 2002–2012

GEOV1 FVC SPOT-
VEGETATION

Machine
learning
method

1/112◦ 10 days Global 1999–present

GEOV2 FVC
SPOT-

VEGETATION,
PROBA-V

Machine
learning
method

1/112◦ 10 days Global 1999–present

GEOV3 FVC PROBA-V
Machine
learning
method

300 m 10 days Global 2014–present

GLASS FVC MODIS
Machine
learning
method

500 m 8 days Global 2000-present

In the 1990s, the Chinese Fengyun-3 (FY-3) series satellites were designed to obtain the
three-dimensional and multispectral observations of the global land surface, atmosphere,
and ocean under different weather conditions [19,20]. As the second generation of Chi-
nese polar orbit meteorological satellites, the FY-3 satellites were continuously launched
from 2008 to 2017 [21,22]. Due to its reliable ability of providing available data and the
stable performance of the observation data, FY-3 satellites were the most advanced Earth
observation satellites in China, which were composed of four sun-synchronous (polar)
satellites, including FY-3A, FY-3B, FY-3C, and FY-3D [23]. At present, the FY-3 satellite
data are widely used in weather analyses, climate predictions, and land surface vegetation
parameter estimations [24,25]. For example, Zhu et al. developed a set of leaf area index
(LAI) products from the FY-3A reflectance data, and the results of the verifications demon-
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strated that the estimated LAI had similar accuracy compared with the MODIS LAI data.
Wang et al. proposed an improved algorithm of aerosol retrieval for the FY-3 satellite data,
which provided strong evidence of identifying the air pollution sources [26]. Generally, all
these results indicated that the FY-3 reflectance data have strong potential on the global
FVC estimations [27]. Therefore, it is meaningful for proposing a global FVC estimation
algorithm for FY-3 reflectance and further investigating its capability on monitoring land
surface vegetation.

Currently, remote sensing has become the comprehensive way of FVC generation in
the long term and large scale, and commonly, the approaches of FVC estimation based
on remote sensing data include the empirical method, pixel unmixing method, and ma-
chine learning method [16]. Generally, the empirical method would build an empirical
relationship between the FVC values and spectral band reflectance or vegetation indices
data [28,29]. Usually, the empirical method can achieve a satisfactory FVC estimation effi-
ciently for a small region, but high uncertainties would occur when applied over large-scale
regions. For the pixel unmixing method, a basic hypothesis is set that the spectral data of
each pixel is a composition of the spectral information of different land targets, referred to
as endmembers, and the proportion of green vegetation components is considered as the
FVC value correspondingly [28]. With the clear physical assumption, the pixel unmixing
method is easy to operate in practice. Whereas, due to the complexity of the land surface
conditions and various spectral characteristics of land targets, it is tough on the reliable
endmembers, particularly in a large scale [30]. Furthermore, in the machine learning
method, high-quality samples, composed of the FVC values and preprocessed reflectance
or vegetation indices data, are usually adopted to build FVC estimation models [8,17,31].
With the reliable abilities of fitting multivariate nonlinear relationships and reducing the
effects of noisy data, this study determined to use the machine learning method to develop
the FVC estimation algorithm for the YF-3 reflectance data.

Therefore, to investigate the potential of the FY-3 reflectance data on FVC retrieval, this
study proposed a FVC estimation algorithm for FY-3 reflectance data using the machine
learning method, firstly. Then, the spatial–temporal validation was conducted to assess
the continuity of the proposed algorithm, and an independent validation of accuracy
was conducted based on the high-quality reference FVC data. In the remainder of this
paper, Section 2 introduces the dataset used in this study, Section 3 presents the processing
operations of the training sample generation and global FVC estimation model building.
Section 4 presents the spatial–temporal distributions and accuracy assessment of the FVC
estimation data generated by the proposed algorithm. Section 5 discusses the ability of
FY-3 reflectance on FVC estimating and indicates our further work, and Section 6 outlines
the conclusions of this study.

2. Data and Preprocessing
2.1. FY-3B Reflectance Data

In this study, the FY-3B reflectance data of 2015 were selected as the represent of the
FY-3 satellite data to develop the FVC estimation algorithm. As an essential part of the Chi-
nese polar orbit meteorological satellites, the FY-3B satellite was launched on 5 November
2010 and had 11 observation instruments, including the MEdium Resolution Spectral Im-
ager (MERSI) [27,32]. Particularly, the MERSI contains 20 spectral bands, and the spectral
coverage is 0.40~12.5µm, which provides rich land surface observation data [33]. Table
2 shows the information of the FY-3B/MERSI spectral bands and specifications [34]. The
band-13 (red) and band-16 (NIR) reflectance values were used as the input data for FVC
estimating. Beforehand, a satellite monitoring analysis and remote-sensing application tool
(SMART) were used to conduct the radiative calibration and geolocation operations for
FY-3 reflectance by the National Satellite Meteorological Centers (NSMC) [34]. Furthermore,
the top of atmosphere (TOA) reflectance of the FY-3B data were converted to land surface
reflectance data based on the fast line-of-sight atmospheric analysis of spectral hypercube
(FLAASH) model from the Environment for Visualizing Images (ENVI) software. Addition-



Remote Sens. 2021, 13, 2165 4 of 16

ally, the FY-3B data were provided with daily temporal resolution, sinusoidal projection,
and ‘HDF’ format.

Table 2. Information on the FY-3B/MERSI spectral bands and specifications.

Band Number Central Wavelengths
(µm) Band Widths (µm) Instantaneous Field

of View (IFOV/m)

1 0.470 0.05 250
2 0.550 0.05 250
3 0.650 0.05 250
4 0.865 0.05 250
5 11.250 2.50 250
6 1.640 0.05 1000
7 2.130 0.05 1000
8 0.412 0.02 1000
9 0.443 0.02 1000
10 0.490 0.02 1000
11 0.520 0.02 1000
12 0.565 0.02 1000
13 0.650 0.02 1000
14 0.685 0.02 1000
15 0.765 0.02 1000
16 0.865 0.02 1000
17 0.905 0.02 1000
18 0.940 0.02 1000
19 0.980 0.02 1000
20 1.030 0.02 1000

2.2. Reference FVC Data from EOLAB

Under the support of the Implementing Multi-scale Agricultural Indicators Exploit-
ing Sentinels (IMAGINES) project, ground-measured FVC values were generated by the
Earth Observation LABoratory (EOLAB) and/or local teams and used to evaluate the
accuracy of different FVC products by the Earth Observation LABoratory (EOLAB) and/or
local teams [35,36]. To collect the reliable ground FVC values, the digital hemispheri-
cal photographs of the sample sites covered by different kinds of vegetation types were
firstly taken and handled on a global scale. Then, the empirical transfer functions be-
tween the remote sensing data with medium spatial resolutions, like Landsat-8, FASat-C,
SPOT-5, etc., and the ground FVC measurements were derived based on the multiple
robust regression approach [37]. Next, high-quality reference FVC data were generated
through these established transform functions. Finally, the reference FVC data were
averaged over an area of 3 km × 3 for the kilometric biophysical product assessment.
The EOLAB reference FVC data were released on the Copernicus Global Land service
(http://fp7-imagines.eu/pages/services-and-products/ground-data.php, accessed on 31
May 2021) [38]. To ensure the reliability of the reference FVC data, two measurements in
the “Barrax–LasTiesas observation” site were abandoned for the validation process in this
study, because this site contained various types of vegetation, which would cause high
uncertainties over the high-quality reference FVC data generated by the empirical transfer
function. Table 3 lists the basic information of the EOLAB reference FVC data in 2015,
which were used for validation in this study.

http://fp7-imagines.eu/pages/services-and-products/ground-data.php


Remote Sens. 2021, 13, 2165 5 of 16

Table 3. Information on the EOLAB reference FVC data.

Number Name Latitude (◦) Longitude (◦) Year Day of Year FVC

1 SanFernando −34.7228 −71.0019 2015 19 0.44
2 Barrax-LasTiesas 39.05437 −2.10068 2015 145 0.268
3 Pshenichne 50.07657 30.23224 2015 174 0.46
4 Pshenichne 50.07657 30.23224 2015 188 0.619
5 Pshenichne 50.07657 30.23224 2015 204 0.528
6 AHSPECT-Meteopol 43.5728 1.3745 2015 173 0.26
7 AHSPECT-Peyrousse 43.6662 0.2195 2015 174 0.38
8 AHSPECT-Urgons 43.6397 −0.4340 2015 174 0.55

9 AHSPECT-Creón
d’Armagnac 43.9936 −0.0469 2015 175 0.59

10 AHSPECT-Condom 43.9743 0.3360 2015 176 0.331
11 AHSPECT-Savenès 43.8242 1.1749 2015 176 0.286
12 Collelongo 41.85 13.59 2015 189 0.84
13 Collelongo 41.85 13.59 2015 266 0.86

3. Methods Development

The proposed FVC estimation algorithm flowchart for the FY-3B reflectance data
is shown in Figure 1. Firstly, the PROSAIL model was used to simulate high-quality
training samples, including the simulated FY-3B reflectance data (red and NIR bands)
and corresponding FVC values. Then, a random forest regression model for the global
FVC estimation was built based on the simulated samples. After that, the regional FVC
estimation in 2015 was generated by the developed random forest regression model. Next,
the generated daily FVC estimations were composited in 8 days of temporal resolution by
extracting the maximum FVC value during the corresponding period. The Savitzky–Golay
(SG) filter was used to smooth the composited sequence FVC data. Finally, the accuracy
evaluation for the FVC estimation by the proposed algorithm was conducted based on the
high-quality reference FVC data, which further analyzed the capability of the FY-3B data
on the FVC estimation.
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3.1. Training Samples Generation and Refinement

With satisfied computational efficiency and simplicity in operation, the PROSAIL
radiative transfer model, which is a combination of the leaf optical properties model
(PROSPECT) and the canopy reflectance model (Scattering by Arbitrarily Inclined Leaves;
SAIL), is widely adopted to simulate the reflectance data ranging from 400 to 2500 nm [39].
This study adopts the PROSAIL model to generate the FY-3B reflectance and corresponding
FVC simulation data, which are regarded as the sample dataset for model building.

For the PROSPECT model, the leaves were regarded as one or several absorbing
plates with rough surfaces causing isotropic scattering [40]. The input parameters of the
PROSPECT model include the leaf structure parameter (N), the leaf chlorophyll a+b concen-
tration (Cab, µg/cm2), brown pigment content (Cbrown), dry matter content (Cm, g/cm2),
and relative water content [41]. Table 4 lists the primary input parameters and range of
driving the PROSAIL model. For the SAIL model, the canopy of vegetation is regarded
as a turbid medium, which has leaves in random distributions [42]. Generally, the input
parameters for the SAIL model include the FVC, the average leaf angle (ALA), hot spot
parameter (Hot), sun zenith angle (SZA), observer zenith angle (OZA), relative azimuth
angle (RAA), and the soil reference. Besides, these input parameters were randomly gener-
ated obeying Gaussian distribution, where the average value (Va) and standard deviation
(σ) are listed in Table 4. Furthermore, the classical gap fractions were used to convert the
FVC to LAI, which was fed into the PROSAIL model [43]. The gap fraction function and
transfer function between FVC and LAI are expressed in Equations (1) and (2).

P0(θ) = e−λ0
G(θ,θ1)

cos θ ×LAI (1)

FVC = 1 − P0(0◦) (2)

where P0 is the gap fraction, θ is the direction of the gap fraction, G(θ, θ1) is the orthogonal
projection of a unit leaf area along direction θ, and θ1 is the average leaf angle. λ0 is the
leaf dispersion or clumping. According to the definition of FVC, θ is equal to 0 when the
FVC is calculated [44].

Table 4. Input parameters for the PROSAIL model.

Model Parameters Range or Fixed
Value (Va,σ)

PROSPECT

Leaf structure parameter (N) 1~2.5 (1.5, 1)
Chlorophyll content (Cab, µg/cm 2) 30~100 (50, 30)

Brown pigment (Cbrown) 0~1.5 (0.1, 0.2)

Dry matter content (Cm, g/cm 2) 0.002~0.02 (0.0075,
0.0075)

Relative water content 0.65~0.90 (0.8, 0.05)

SAIL

Fractional vegetation coverage
(FVC) 0~0.95 (0.5, 0.4)

Average leaf angle (ALA,◦) 30~70 (50, 15)
Hot spot parameter (hspot) 0.001~1 (0.1, 0.3)
Sun zenith angle (SAZ, ◦) 30 -

Observer zenith angle (OZA, ◦) 0 -
Relative azimuth angle(RAA, ◦) 0 -

Soil reflectance id:1~20 - -

The soil reflectance data were also important parameters for the PROSAIL model.
To better describe various land conditions, the soil reflectance data used in the PRO-
SAIL model were collected from the International Soil Reference and Information Centre
(http://www.isric.org), which was a global distributed soil spectral library and contained

http://www.isric.org
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10,253 soil reflectance profiles over 149 countries [43,45,46]. Before the simulation oper-
ation, the collected soil reflectance profiles were firstly resampled to 1 nm based on the
cubic spline functions, which would accord the spectral resolution of the soil reference and
simulated reference data by the PROSAIL model. After that, the soil reflectance data were
further resampled to correspond to the FY-3B spectra according to Equation (3).

ρ =
N

∑
λ=1

β(λ)× ρ(λ)
N
∑

λ=1
β(λ)

(3)

where ρ and ρ(λ) are the simulated FY-3B soil reflectance and resampled soil reflectance
data. β(λ) is the weight of different spectral response function of the FY-3B reflectance
data.

Furthermore, to reduce the redundancy and the large amount of computation over
simulation processing for the PROSAIL model, the similarity of the soil reflectance data
were assessed and classified into different categories based on the spectral angle map-
per [47,48]. During this process, the similar spectral reflectance of different categories
would be averaged as an integrated soil reflectance. For example, here are two spectral
vectors with n wavebands, where X = (x1, x2, . . . xn) and Y = (y1, y2, . . . yn), and their
spectral angles could be calculated using Equation (4):

αXY = cos−1


n
∑

i=1
xiyi

(
n
∑

i=1
x2

i )
1/2

(
n
∑

i=1
y2

i )
1/2

 (4)

where X and Y are two vectors of different soil spectral reflectance data and αXY is the
spectral angles between the two spectral vectors, which are capable of quantifying the
difference of the two spectral profiles [49]. In this study, the similar soil reflectance would
be defined and classified into a category when its distance to the corresponding central
vectors of the category was less than 0.05. Finally, 20 soil reflectance data were selected
from the original soil reflectance data and represent the various land conditions (Figure 2).
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To obtain the top of the vegetation canopy reflectance data, these input parameters
were combined with different conditions and transported into the PROSAIL model, and
the simulated FY-3B reflectance data of the red and near-infrared bands were resampled
using the spectral response functions [50]. A white Gaussian noise of 1% was added to the
simulated FY-3B reflectance data, presenting the uncertainties in sensor observations and
simulation processing [51].

According to the approximate linear relationship between the FVC and NDVI data, a
refinement operation was conducted for these simulated samples, which aimed to remove
the unstable samples and improve the accuracy of the sample data [16]. During this
operation, the NDVI data were firstly calculated based on the simulated FY-3B reflectance
data. Then, the samples were ascendingly sorted according to the NDVI values. After
that, these sample data were evenly spaced into 50 classes based on the variation range of
the NDVI values over [0,1]. For each class, the simulated FVC values, which were lower
than the 15th percentile or higher than the 85th percentile, and corresponding reflectance
sample data were regarded as the unstable samples and removed from the sample datasets.
After careful refinement, the sample data were adopted to build the random forest FVC
estimation algorithm for the FY-3B reflectance data.

3.2. FVC Estimation Algorithm Based on Random Forest Regression

As an important part of the machine learning family, the random forest regression
model is widely used in land surface vegetation parameters retrieval [52–54]. In a previous
study, random forest regression was capable of conducting large datasets efficiently and
required fewer optimized parameters compared with other machine learning methods, like
support vector regression (SVR) and artificial neural network (ANN) [55,56]. Besides, the
random forest regression model can handle thousands of input variables and is robust for
noise data over the nonlinear fitting process, which usually generates low generalization
errors [57,58]. Therefore, the random forest regression model was determined to develop
the FY-3 FVC estimation algorithm in this study. Generally, random forest regression is
an ensemble-learning algorithm, which combines a large amount of regression trees and
averages the results of all trees based on many bootstrap samples [56,59,60]. In the model
building process, regression trees are firstly grown to their maximum sizes, according to
the bootstrap samples from the training dataset, with no pruning operation [59,61]. Due to
the bagging approach of generating bootstrap sample, the ensemble estimated values of
each tree are not in the developed random tree (the out-of-bag: OOB data). Secondly, the
mean square errors (OOB error) of the predictions and targeted value in training samples
are calculated. By minimizing the sum-of-squares error between the targeted variable and
the prediction data, the binary splits are selected.

In this study, the simulated sample data were split into two parts randomly. The
primary part with 70 percent was treated as the training samples and adopted to build the
random forest FVC estimation model. The remaining part with 30 percent was treated as
the validation samples and adopted to validate the theoretical performance of the proposed
FVC estimation algorithm. Over the model building processing, the red and near-infrared
bands of simulated FY-3B reflectance data of the training dataset were used as input data,
and the corresponding FVC values were the targeted data [62]. The number of regression
trees (ntree), a significant parameter of the random forest model, was optimized using the
training samples and RMSE to find the value that could obtain the best FVC estimation [56].
After the parameter determination and achieving a random forest model with satisfy
performance, the regional FVC data were generated.

3.3. Postprocessing Operations and Validation for the Estimated FVC Data

To insure the spatial–temporal continuity of the estimated FVC data by the proposed
algorithm, several postprocessing operations were conducted for the FVC estimation.
Firstly, to reduce the effectiveness of the non-vegetation target, pixels with a NDVI value
lower than 0.05 were regarded as non-vegetation cover, and the FVC value was set to
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zero. Then, a temporal composition approach, which would select the maximum FVC
value during the corresponding temporal period, was used to integrate the FVC estimation
with an 8-day temporal resolution. Finally, to smooth out the noise data caused by cloud
contamination and atmospheric variability among the integrated sequence FVC estimations,
the Savitzky–Golay (SG) filter, which was a commonly used method for temporal profiles
smoothing over various land surface vegetation parameters, was used to further process
the time series FVC estimations and improve the spatial–temporal continuities in this
study [63–65].

After these postprocessing operations for the FVC estimation data, the spatial–temporal
continuity and accuracy were evaluated. Firstly, monthly averaged FVC estimation maps
were generated and analyzed through the spatial distribution patterns. Secondly, temporal
profiles with different vegetation types were collected and validated their variation ten-
dency through time. Finally, the independent validation of accuracy was processed based
on the EOLAB reference FVC data.

4. Results
4.1. Samples of Refinement and Theoretical Validation

After the refinement of simulated samples, 40,018 high-quality samples were gener-
ated (28,012 samples for the training dataset and 12,006 samples for the validation dataset).
Figure 3 presents the density scatter plot of the refined NDVI and FVC values [66]. Vis-
ibly, the approximate linear relationship between the NDVI and FVC was found, which
presented the reliability of the sample data. Due to the spectral diversity of different land
surface vegetation types, the spectral characterization would vary with same FVC value.
Consequently, the relationship between the NDVI and FVC in Figure 3 is not strictly linear.
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With these refined high-quality sample data, the random forest regression FVC esti-
mation algorithm for FY-3B reflectance was established. In this study, 250 regression trees
were determined by evaluating the accuracy performance (root mean square error; RMSE)
of the FVC estimations under different quantity of regression trees based on the validation
samples. Consequently, Figure 4 shows the theoretical performance of the trained random
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forest regression FVC estimation algorithm based on the validation samples. The FVC esti-
mation data achieved a satisfactory performance (R2 = 0.9092, RMSE = 0.0696). Generally,
the most scatter points are located around the 1:1 line, and the fitted line is close to the
1:1 line. Although there are few points located a little far from the 1:1 line, these points
accounted for a tiny percentage of the whole number of the validation samples.
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4.2. Spatial–Temporal Validation

The averaged FVC maps in January and July of 2015 over the regional areas (tile
H25V05) were generated using the proposed algorithm, and Figure 5 presents the spatial
distribution pattern of the FVC estimation. This area is in the mid-west region of China,
which is primarily covered by montane grass, shrub, Mediterranean forest, and scrub [67].
Thus, it was reasonable to select this area to validate the spatial–temporal performance
of the FVC estimation by the proposed algorithm. Visually, these monthly averaged FVC
estimation maps showed stable spatial continuity, and no missing data were found. In
addition, the distribution patterns of the generated FVC maps matched the actual seasonal
variations and distribution of the land vegetation conditions. For example, during the
summertime, high FVC values were observed in northeast region covered by grass and
crops. The west and southwest regions over this area showed low FVC values, where
sparse shrub and barren lands were the primary land cover types.
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Figure 6 shows several representative FVC temporal profiles estimated from the FY-3B
reflectance data in the Heihe River Basin over croplands, grasslands, and open shrublands.
Generally, these FVC estimation profiles are temporally consistent with the seasonal phono-
logical changes and corresponding vegetation types. Furthermore, these temporal profiles
present steady variations over time, which indicate that the proposed algorithm is capable
of describing the temporal characteristics of vegetation growth conditions. All these re-
sults provide strong evidence that the proposed algorithm could effectively generate FVC
estimations with reliable continuities in space and time.
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4.3. Accuracy Validation over Reference FVC Data

Since the EOLAB reference FVC data are aggregated over a 3 km × 3 km area, the
averaged value of the 5 × 5 pixel subset covering each ground site was calculated for
validation. Figure 7 presents the scatter plot of the FVC estimation generated by the
proposed algorithm and the corresponding EOLAB reference FVC data. Overall, the FVC
estimations by the proposed algorithm showed considerable consistency, with a R2 of
0.7336 and RMSE of 0.1288. Mostly, the scatter points of the reference FVC estimations and
reference values lied around the 1:1 line. Besides, the EOLAB reference FVC data contained
various vegetation types, which further indicated the reliability and reasonability of the
proposed algorithm.
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5. Discussion

During the prior studies, several FVC estimation products have been proposed based
on remote sensing data and widely used in related research fields. In order to further
expand earth observation sources on FVC estimating and maintain the continuity of the
FVC products, this study assessed the capability of FY-3 reflectance data on FVC estimating.
To reach this target, a randomly forest model was built based on the simulated FY-3B
reflectance data and corresponding FVC values. With the satisfying validation results
in spatial–temporal continuities and high accuracy against the reference FVC values, the
FY-3B reflectance data presented a reliable performance in FVC estimation. Besides, these
results confirmed that the FY-3B reflectance data were reliable land surface observation
sources for FVC product generation.

Although the FVC estimations generated by the proposed algorithm presented reliable
spatial–temporal continuities and accuracy based on the FY-3B reflection, several aspects
need to be further explored to improve the quality of FVC estimations: (1) According to
the validation samples, the theoretical validation presents higher accuracy compared with
the ground validation, because there are some variabilities between the real observation



Remote Sens. 2021, 13, 2165 13 of 16

and simulated data. Thus, a further quantification for the uncertainties of the simulated
samples from radiative transfer model should be investigated. (2) Over the postprocessing
operations, the FVC estimation data are composited by choosing the maximum FVC
value during the corresponding temporal period, because the maximum FVC value would
usually present the best growth state of vegetation over this time. However, the maximum
value is susceptible to some atmospheric conditions. The mean value, which could reflect
the general level and is robust to extreme values, of the FVC estimation is an alternative
index to determine the reliable FVC estimation during this time. Besides, another approach
composited the FY-3B reflectance data before estimating the FVC. Thus, investigating the
performance of difference indices and approaches for the composition process is significant
to further improve the quality of the FVC estimation form FY-3 data. To further confirm
the ability of FY-3 reflectance data on FVC product generation, three potential operations
would be conducted in our future work. Firstly, more validations and assessments for the
developed algorithm would be organized under various land conditions and vegetation
types, which would provide comprehensive evaluations. Besides, comparing it with
some existing large-scale FVC products, like GLASS FVC and GEOV2 FVC, would be a
considerable approach for the evaluation process. Secondly, some other machine learning
methods, like the artificial neural network (ANN) [17], support vector regression (SVR)
model [68], and multivariate adaptive regression splines (MARS) model, were adopted
for FVC estimating. Thus, investigating the performances of these methods on the FVC
estimation for FY-3 reflectance would be significant in the future. In addition, several
empirical and pixel unmixing methods also achieved reliable FVC estimation with the
regional scale [69–71], which would be evaluated for FY-3 FVC estimation during the future
work. Finally, this study adopted the FY-3B reflectance as the representative to analyze the
capability of FY-3 data on global FVC estimating. However, there are three more satellites
of the FY-3 series, including FY-3A, FY-3C, and FY-3D. Therefore, combining these different
FY-3 satellite data on the global FVC estimation would be a potential approach to further
explore the potential of FY-3 data on large/global FVC estimation generation and improve
the spatial–temporal continuities of the FVC estimations.

6. Conclusions

To investigate the capability of FY-3 reflectance data on FVC estimation, a FVC esti-
mation algorithm for FY-3B reflectance data was developed in this study. The algorithm
was established based on the PROSAIL radiative transfer model and random forest model.
Both the theoretical and direct validation results indicated that the proposed algorithm
could achieve satisfactory FVC estimation accuracy. Furthermore, the spatial–temporal
validation over the regional area further confirmed the robustness and strong potential of
the proposed algorithm on global FVC estimating with spatial and temporal continuities.
The future work will focus on extensive assessment of the proposed algorithm under
various land conditions.
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