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Abstract: In the recent decades, development of agricultural and human settlements have severely
affected wetlands on the China-side of the Amur River Basin (CARB). A long-term holistic view
of spatio-temporal variations of the wetlands on the CARB is essential for supporting sustainable
conservation of wetlands in this region. In this study, a training sample migration method along
with Random Forest classifier were adopted to map wetland and other land covers from two key
seasons image collections. The proposed classification method was applied to Landsat images, and a
30-m resolution dataset was obtained, which reflected the dynamic changes of historical wetland
distribution on the CARB region from 1990 to 2010. As the accuracy assessments showed, land cover
maps of the CARB had high accuracies. The classification results indicated that the wetland area
decreased from 89,432 km2 to 75,061 km2 between 1990 and 2010, with a net loss of 16%, which was
mainly converted to paddy field and dry farmland, and the changes were most obvious in Sanjiang
Plain and Songnen Plain. This suggests that agricultural activities are the main cause of wetland loss.
The results can provide reliable information for the research on wetland management and sustainable
development of the society and economy in the CARB.

Keywords: historical wetlands; training samples migration; Amur River Basin; random forest

1. Introduction

Wetlands, known as the kidneys of the Earth, cover approximately 6% of the terres-
trial area and provide numerous ecosystem services, such as maintaining water balance,
sequestrating carbon, regulating climate, and providing habitat [1,2]. However, since the
eighteenth century, up to 87% of wetlands have been lost globally, and severe degradation
has happened in Asia as well as many high- and mid-latitude regions [3,4]. Tracking
historical changes of wetlands is fundamental for wetland conservation and restoration,
and serves as a key role in related decision-making processes.

The Amur River Basin, spans Russia, China, and Mongolia, and is one of the world’s
top ten largest river basins [5]. The wetlands in it provide abundant breeding habitats for
migratory waterfowl on the East Asia–Australasia Flyway (EAAF) [4]. However, compared
with Europe and North America at the same latitudes, this basin has a unique landscape
pattern [6] but less focus. Nowadays, population in the China side account more than
93% of the total population in the whole Basin. Since the early 1950s, human settlement
and agricultural development in the China side of the Amur River Basin (CARB) have
severely affected local natural wetlands [7,8]. Thus, the ecosystem services of wetlands on
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the CARB have been largely degraded. A holistic view of spatio-temporal variations of
the wetlands on the CARB is essential for evaluating ecosystem services and supporting
sustainable conservation of wetlands in this region.

Remote sensing, which could provide historical and current patterns of natural re-
sources, has long been used to track wetland changes [9–11]. Among varieties of remote
sensing data, Landsat-5, which afforded the first image obtained in the year of 1984, was
widely applied to historical wetland mapping [12]. To date, numerous classification meth-
ods were employed to map wetland changes [13–15]. Traditionally, accurate mapping
of the complex wetland landscape depended on manually interpreting, empirical thresh-
olds, or post-processing. However, such approaches are usually laborious and costly in
large-scale applications. In recent years, to address the limitations brought by traditional
methods, machine learning algorithms (MLAs) have been adopted in mapping wetlands.
Due to the robustness and accuracy, random forest (RF) classifier is the widest used of the
MLAs [16–18], which has also been adopted to wetland mapping processes [19].

Lack of suitable training samples is the greatest challenge hindering the progress
of MLAs-based wetland mapping across broad scales [20]. In general, the accuracy of
supervised classification is significantly influenced by the quality of training samples. In
many classification processes, errors could be caused by inappropriate or unrepresentative
training samples, no matter what algorithms were being used [21–23]. However, for
large scale applications, problems associated with the sample collection, such as cost
and practicality, have been the limiting factors for acquiring consistent and high-quality
samples. Moreover, due to the unavailability of historical field samples, the historical
imagery can hardly be classified by the MLAs. Recently, Huang et al. [20] developed a
training sample migration method which could identify the changing state of training
sample pixels and form historical training samples automatically. This sample migration
method provides opportunities to map historical land cover based on MLAs. However,
more attempts need to be explored on broader scales.

In recent years, individual geoscientists who are interested in geospatial analysis
have benefited from the Google Earth Engine (GEE) platform [24,25]. This cloud-based
platform has introduced possibilities for automatic training sample migration and supports
RF-based wetland mapping. Thus, the aim of this study was to track historical changes
of wetlands on the CARB based on Landsat images. To achieve this goal, we sought to
(1) operate an automatic training sample migration method which could form historical
training sample collections of the CARB for the time periods of 2010, 2000, and 1990;
(2) based on the historical training sample collections, we applied RF classifier to map
wetlands and other land cover; and (3) analyzed dynamics and conversions of wetland on
the CARB. The methods and discussion will contribute to remote sensing and management
of the wetlands around the world.

2. Materials and Methods
2.1. Study Area

The Amur River Basin ranks the tenth largest watershed in the world. The area of
the CARB is 890,308 km2, including parts of the Jilin and Inner Mongolia provinces and
the whole Heilongjiang province (41◦45′N to 53◦33′N, 115◦13′E to 135◦05′E, Figure 1). The
Greater Khingan, Lesser Khingan and Changbai mountains are located in the western,
northern, and eastern side, respectively. While the Songnen and the Sanjiang Plain are
situated in the interior and northeastern, respectively. The Ussuri and Songhua rivers are
major tributaries of the CARB [26,27].
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Figure 1. Spatial location and elevation of the China side of the Amur River Basin (CARB).

2.2. Land Cover Classification System

Referring to our primary research objectives, and considering the results of our field
surveys, land cover classification system of the CARB is defined in Table 1. Wetlands, in
this study, were referred to as vegetated wetland and included four types, (i.e., swamp,
marsh, bog, and fen).

Table 1. Land cover classification system for the CARB.

Category II Description TM Image

Wetland Natural wetland covered by vegetation
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Table 1. Cont.

Category II Description TM Image

Water body Permanent water surface
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2.4. Landsat-5 Data Collection in the GEE

Ideally, accurate training sample migration needs to be applied to consistent images
acquired in the same phenological period and from the same sensor [28]. Thus, in this
study, Landsat-5 Thematic Mapper (TM) which hold the Guinness World Record for the
longest on-orbit time (from 1984 to 2012) were used to monitor historical wetlands on
the CARB. In total, 78 tiles of Landsat images could cover the CARB completely. We
selected cloud free Landsat images captured during two key phenological periods that
could distinguish wetland and other land covers. These periods were from 1 May to 31
May and from 1 August to 31 August. In order to assure the quality of observations, images
captured in the same key phenological periods of years adjacent to 1990, 2000, and 2010
were also selected. For each location, the images with the highest quality were used to
migrate training samples and classify wetland and other land covers. Finally, the image
collection contained 468 TM calibrated surface reflectance images in total.

2.5. Training Samples Collection and Migration

Ground surveys were conducted between June and September 2018. Ground reference
data were also collected from historic field surveys between 2000 and 2010. Samples from
a 1990 field survey were drawn from historical maps and documents with the assistance
of local experts. Finally, we collected 7325, 9016, 18,315 and 24,422 reference samples for
1990, 2000, 2010 and 2018, respectively. Among these data, samples collected during 2018
were used to migrate to the training samples of the years 2010, 2000, and 1990, while other
ground reference samples acquired for the years of 1990, 2000, and 2010 were used to
validate classification accuracies. Spatial distributions of 2018′s ground reference samples
were shown in Figure 3.

Figure 3. Ground survey samples obtained in the year 2018.

Analyzing the spectral similarity and difference among different land covers is the
first step for a classification task based on remote sensing. In this study, 200 ground survey
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samples for each land cover type were selected randomly. Then we overlaid these samples
with the 2010 Landsat 5 images obtained in May and August 2010. Figure 4 shows the
surface reflectance of typical land covers. It is as expected that the general shapes of
the spectral curves were similar, especially in bands 1–3 which revealed a considerable
overlap of both May and August. In the spectral region of band 4 (760–900 nm) in May,
the reflectance of woodland was similar to dry farmland, while in band 4 of August,
woodland was much lower than dry farmland. By comparison, the reflectance of wetland
was obviously different to paddy field. These spectra can be considered as an important
estimate to map different land covers on the CARB.

Figure 4. Mean reflectance spectra of wetland and other land covers.

2.6. Training Samples Migration

To migrate training samples from a reference year to a target year, differences between
the two spectra should be measured. In this study, euclidean distance (ED) and spectral
angle distance (SAD) were chosen to realize this goal. The results show that these two
indices are the best order of magnitude and similarity for the detection of bitemporal
changes [12,20]. SAD can measure the angle between two vectors by the direction of
changes. It is insensitive to illumination variation and shadow, and can stress the spectral
shape characteristics of the target [29,30].

θ = cos−1 ∑N
i=1 Xi(t1)Yi(t2)√

∑N
i=1(Xi(t1))

2
∑N

i=1(Yi(t2))
2

SAD = cos(θ),
(1)

where θ represents the spectral angle. Xi is the reference spectra of time t1, Yi is target
spectra of time t2. Variable i ranges from 1 to the number of bands (N). Here, i represents
bands 1–5 and 7 of Landsat TM. SAD equals to 1, when the target spectra are the as same
as the reference spectra.

ED is the euclidian distance between the target spectra and reference spectra, expressed
as formula 2. ED becomes 0 when the reference spectra are the same as the target spectra.

ED =

√
∑N

i=1

(
Xi(t1) −Yi(t2)

)2
, (2)
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Training sample migration in the CARB was achieved through three steps, which were
further illustrated by the case from 2018 to 2010 as follows. Firstly, for the pixel of each
sample, spectral information from reference period, (i.e., 2018) and target period, (i.e., 2010)
were extracted, respectively. Correspondingly, the results were named reference spectra
and target spectra. For each period, reference spectra at any given location of a training
sample were derived from its corresponding Landsat-5 images, which contained two pixels
from May and August, that is, 12 bands. Secondly, based on the target spectra and reference
spectra, SAD and ED were calculated, respectively. Lastly, by comparing these two indices,
the change conditions could be judged with the given intersection thresholds. Only pixels
within the thresholds were selected as the training sample for the target year, (i.e., 2010). In
addition, we conducted the migration process that selected 2010 to be the reference year
and 2000 to be the target year, as well as 2010 to be the reference year and 2000 to be the
target year, respectively. In this study, we adopted the optimal results of Huang’s [20]
experiment to estimate the change status, which meant the optimal ED and SAD was set to
0.2 and 0.9, respectively. Detailed distribution of how to select these thresholds could be
found in Huang et al. [20]. For each land cover type, the number of samples identified as
unchanged are listed in Table 2.

Table 2. Unchanged training sample pixels detected by SAD, ED and an intersection criterion (ED ≤ 0.2 and SAD ≥ 0.9).

Land Cover Type 2010 2000 1990

SAD ED intersection SAD ED intersection SAD ED intersection
Wetland 2585 2314 2146 2011 1895 1752 1681 1464 1433

Woodland 4682 4631 4527 4455 4384 4264 4007 3894 3629
Grassland 1534 1271 1174 1007 982 969 880 761 704

Water body 1201 1124 1100 996 867 798 711 668 621
Dry farmland 3561 3482 3398 2941 2803 2631 2224 2007 1952
Paddy field 2973 2888 2765 2579 2350 2158 1865 1745 1588

Built-up land 2546 2312 2103 1888 1604 1477 1158 947 823
Barren land 980 804 774 704 688 641 598 550 469

Total 20,062 18,826 17,987 16,581 15,573 14,690 13,124 12,036 11,219

2.7. RF-Based Wetland and Other Land Cover Classification

RF classification is a non-parametric ensemble classification algorithm with more accurate
and robust performance than traditional classifiers in land cover classification, so it has
attracted more and more attention [31,32]. The random forest classifier consists of decision tree
clusters, each of which consists of random samples independent of the input samples, which
will be classified into the most popular category voted by all the trees in the forest [33,34]. The
application of RF algorithm to remote sensing classification research has several advantages
such as high efficiency in computing large databases, and robustness in resisting noise and
outliers of the input data [32,35]. In addition, a quantitative evaluation of the importance for
input features are provided [32,35]. In this study, six original bands (bands 1, 2, 3, 4, 5, 7) and
five spectral indices were selected to classify different land covers. Five spectral indices were
calculated and inserted into each image of the time series images. Table 3 shows a list of the
indices. The RF classifications were carried out on the GEE platform.

Table 3. Formulas of the spectral indices used in this study.

Name Abbreviation Equation Reference

Nominalized Difference Vegetation Index NDVI ρnir − ρred/ρnir + ρred [36]
Enhanced Vegetation Index EVI 2.5× ρnir−ρred

ρnir+6×ρred−7.5×ρblue+1 [37]
Normalized Difference Water Index NDWI ρgreen − ρnir/ρgreen + ρnir [38]

Modified Normalized Difference Water Index mNDWI ρgreen − ρswir/ρgreen + ρswir [39]
Normalized Difference Soil Index NDSI ρswir − ρnir/ρswir + ρnir [40,41]
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2.8. Independent Assessment of Mapping Accuracy

We used stratified random sampling to verify the wetland and other land covers of the
CARB. Ground survey references (see Section 2.5) were selected randomly as verification
points in each land cover type. Finally, the number of verification points in 1990, 2000 and
2000 was 7325, 9016 and 18,315, respectively. Referring to previous studies, the accuracies
of the classification maps were adjusted based on a 95% confidence interval by considering
the area of each land cover type [42], based on which areas and accuracies were corrected.

3. Results
3.1. Accuracy Assessment of the Historical Maps

Table 4 shows a full confusion matrix for classification results in 2010, including infor-
mation of mapped area proportions (W), sample counts, conjectured values of producer’s
accuracies (PA), conjectured values of user’s accuracies (UA), and the standard deviations
(S) of the strata. The classification map of the year 2010 has an overall accuracy of 91%
± 0.005. Particularly, the wetland category had a UA and a PA of 86% ± 0.01 and 93%
± 0.001, respectively. Moreover, user’s accuracies for all other land covers are all over
80%, while the PA of built-up land and others were lower than 70%. Confusion matrices
for classification results of 2000 and 1990 showed that the overall accuracies of the 1990
and 2000 maps were 85% ± 0.002 and 88% ± 0.015, respectively. The UA and PA of the
wetland category ranged from 82% ± 0.01 to 89% ± 0.001, while the two indices of other
land cover types ranged from 62% ± 0.001 to 94% ± 0.002. Assessments calculated by
confusion matrices demonstrated that our resultant maps were in good agreement with
ground-survey points.

Table 4. Areal adjusted confusion matrix of land cover map of 2010 (the standard error was presented with a 95% confidence
interval).

Class Wetland Woodland Grassland Water Body Dry Farmland Paddy Field Built-Up Land Others

Wetland 1841 98 32 56 49 47 2 5
Woodland 1 3790 36 0 73 25 16 9
Grassland 26 21 985 6 149 0 38 8

Water body 0 2 5 888 3 53 7 1
Dry

farmland 18 89 0 2 2711 37 50 22

Paddy field 35 75 0 33 49 2285 11 10
Built-up land 0 0 0 0 11 19 1692 41

Others 10 0 0 5 15 23 77 601
Wi 0.08 0.43 0.12 0.02 0.27 0.05 0.02 0.01

UAi ± Si 0.86 ± 0.01 0.96 ± 0.006 0.80 ± 0.02 0.93 ± 0.02 0.93 ± 0.009 0.91 ± 0.01 0.96 ± 0.008 0.82 ± 0.03
PAi ± Si 0.93 ± 0.001 0.96 ± 0.001 0.95 ± 0.001 0.84 ± 0.000 0.91 ± 0.002 0.83 ± 0.001 0.63 ± 0.001 0.64 ± 0.001

Overall Accuracy 0.91 ± 0.005

Note: Wi is the proportion of area mapped as class i. UAi is the estimated user’s accuracy, PAi is the estimated producer accuracy.

3.2. Historical Spatial Patterns of CARB Wetlands

Figure 5 illustrated the geographical distributions of wetlands and waterbody on the
CARB for 1990 (A), 2000 (B), 2010 (C), and loss and gain of wetland from 1990 to 2010. Most
wetlands were in the Greater Khingan Mountains, Lesser Khingan Mountains and Songnen
Plain, with a total area about 59,652 km2, or about 67% of the CARB wetlands in 1990.
From 1990 to 2000, wetland losses mainly occurred in Sanjiang Plain, with loss areas of
about 7673 km2, or with loss rates of 45% in the Sanjiang Plain. From 2000 to 2010, wetland
losses occurring in the Sanjiang Plain were most portions of the study area, with a loss area
of about 2072 km2, while wetland gain occurred in the Songnen Plain, Greater Khingan
Mountains and Lesser Khingan Mountains. Waterbody were mainly distributed in the
Songnen Plain and Sanjiang Plain. The waterbody changes mainly occurred in Songnen
Plain, with loss area of about 973 km2 between 1990 and 2000.
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3.3. Temporal Changes of Wetlands and Oher Land Covers

The changes of spatial extents and areas of different land covers from 1990 to 2010
are presented in Table 5, Figures 6 and 7. In 1990, the total CARB wetland area was about
89,432 km2, within which marsh, occupying approximately 93% of whole wetlands area,
was the most common wetland type. The area of water body on the CARB was 17,964
km2. On the CARB, woodland, dry farmland and grassland were the most common types,
occupying 42%, 36% and 10%, respectively.

Table 5. Areal extents and changes of wetland and other land covers on the CARB.

1990 2000 2010 1990–2000 2000–2010 1990–2010

Wetland 89,432 78,501 75,016 −10,931 −3485 −14,416
Waterbody 17,976 17,404 17,360 −572 −44 −616
Woodland 382,205 378,722 380,535 −3483 1813 −1670
Grassland 108,292 103,067 102,640 −5226 −426 −5652

Dry farmland 242,357 254,708 244,110 12,351 −10,598 1753
Paddy field 25,259 32,163 44,313 6904 12,150 19,054

Built-up land 19,084 19,866 21,310 783 1444 2227
Others 5476 5649 4796 173 −853 −680
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Figure 6. Areal proportions of different land covers in 1990, 2000, and 2010 of the CARB.
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The most significant wetland loss was shown from 1990 to 2000 with an area decline of
10,806 km2 (12%). Dry farmland area continually and strongly decreased from 440,395 km2

in 1990 to 388,111 km2 in 2000. In contrast, woodland and paddy field showed continual
increases from 1990 to 2000. The results of grassland, built-up land and waterbody showed
slight variability from 1990 to 2010. From 2000 to 2010, the CARB lost 4% of its total
wetlands (3155 km2). About 18% of dry farmland on the CARB vanished between 2000 and
2010; a linear trend showed that the average rate of loss reached 7139 km2/y. In contrast,
an increasing trend was observed for paddy field, and the total paddy field area increased
by 38%.

3.4. Conversions between Wetland and Anthropogenic Land Covers

The conversions between wetland and other land covers were shown in Table 6. We
discovered that nearly 85% of lost wetlands were converted to anthropogenic land covers
between 1990 and 2000. These losses, which include 8479 km2 of wetlands to dry farmlands
and about 2030 km2 of wetlands to paddy fields, however, are partially offset by gains
of nearly 330 km2 from dry farmlands and paddy fields, to total net losses of around
10,366 km2.

The wetlands conversion ratio then gradually dropped, with a total loss rate of 58%
from 2000 to 2010. We demonstrated that agricultural exploitation was the chief contributor
to the lost wetlands on the CARB. From 2000 to 2010, about 1867 km2 of the wetlands had
been modified to dry farmlands, and about 1368 km2 of the wetlands was occupied by
paddy fields. Although the rate of wetland conversion has slowed between 2000 and 2010,
wetland losses continued to out-distance wetland gains.
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Table 6. Areal extents and conversions between wetland and other land covers.

Wetland Loss to (km2) Wetland Gain from (km2)
1990–2000 2000–2010 1990–2000 2000–2010

Waterbody 863 1387 821 1049
Woodland 607 450 246 386
Grassland 293 531 333 265

Dry farmland 8479 1867 292 468
Paddy field 2030 1368 39 61

Built-up land 190 115 2 8
Others 119 74 41 386

4. Discussion
4.1. Advantages and Uncertainties of the Migrated Training Samples

We adopted a robust methodology to migrate 2018′s training samples to historical
time periods (the years of 2010, 2000, and 1990). The method used spectral similarity
and spectral distance to determine whether a training sample of a reference year can be
migrated to a target year. The accuracy assessments confirmed that the training sample
migration method was successfully implemented in mapping historical land covers of
the CARB. To our knowledge, the successful implementations could be attributed to two
aspects, namely, the good performance of spectral similarity and spectral distance and the
powerful computing abilities of the GEE platform. Firstly, this study chose images from the
same seasons of different time periods (year of 2010, 2000, and 1990), and calculated both
similarity and distance of the spectra to ensure unchanged samples. Secondly, the GEE
platform provides full-storage dataset, meanwhile it offers online code editor and shares
super computing power. For this study, over 20,000 training samples were migrated to the
year of 2010, 2000, and 1990 by the GEE platform. The processes were rapid and robust.

Errors and limitations of the migrated training samples were caused mainly by the
uncertainties of the image conditions. For example, if the image was captured after heavy
rain, the spectra of grassland and woodland could be simple to wetlands, which, thus, led
to further misclassifications. By building two season spectral curves, we tried to reduce
such uncertainties as much as possible. However, for a broad scale such as the CARB,
uncertainties could not be avoided completely.

4.2. Lost and Conservation of Wetlands on the CARB

As shown in Figure 7 and Table 6, conversions of wetland and other land covers, both
direct and indirect factors caused the serious losses of wetlands on the CARB during the
historical time periods (1990–2010). As is known, the study area is one of the major grain
producing areas in China. Therefore, for a long time, two primary threats to wetlands on the
CARB were agricultural development and population increase [7,8,43]. According to Table
4, dry farmland and paddy fields exploitations have occupied a large area of wetlands. Mao
et al. [44] pointed out that 86% of the natural wetland losses in North-east China from 1990
to 2010 arose from agricultural encroachment. It has also been shown by previous studies
that in the Songnen and Sanjiang Plain, most farmlands were developed by reclaimed
natural wetlands [7,45]. Particularly during the implementation of the “Comprehensive
Agricultural Development Project” by the Chinese government (from the mid-1980s to
2000), large areas of swamps had been converted into farmland [46,47]. From the mid-1980s
to 2000, for instance, in the Sanjiang Plain, cropland added up to 10,400 km2 and most of
these new cropland emerged from wetland conversion [7,48].

The construction of the project has also significantly affected the wetlands on the
CARB [45]. As regions being faced with flood disaster on the CARB, a lot of embankments
and reservoirs have been constructed. Fragmentation of wetlands were also caused by
built-up land development.

Moreover, some indirect factors could also lead to significant wetland degradation,
such as climate change and agricultural irrigation from wetland water [2,49], which would
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contribute to a decrease in the amount of wetland water and further degradation of marsh
into grassland [49].

According to our results, between 1990 and 2010, the net loss of wetlands in the whole
basin was 16%. Some previous studies of wetlands on the CARB also indicated the same
trend of wetland losses. Liu et al. [50] showed that wetlands in the Heilongjiang province
reduced over 13,000 km2 from 1990 to 2014, accounting for one quarter of 1990’s total
wetlands. As Chen et al. [46] reported, from 1990 to 2015, Sanjiang Plain lost approximately
30% of wetlands, and at the same time, in the Songnen Plain saw 12% of wetlands lost. As
Tian et al. [51] reported between 2000 and 2015, about 10% of wetlands in the Songnen
Plain had disappeared. Jia et al. [2] indicated that floodplain wetland on the CARB had
losses of 25% from 1990 to 2018.

As is shown in Table 5, Figures 6 and 7, from 1990 to 2010, the tendency of wetland
loss has slowed down. In the meantime, wetland rehabilitation from cropland, (i.e., dry
farmland and paddy field) was enhanced. From 1990 to 2000 and 2000 to 2010, there were
330.43 km2 and 528.86 km2 of wetlands rehabilitated from croplands, respectively. A series
of projects promoted these positive effects, which relied on Chinese and local governments’
efforts, even transnational cooperation. For example, the 2002–2030 National Wetland
Conservation Program was approved in 2003 by the central government. This program
aimed to establish natural reserves and restore wetlands [52]. To date, on the CARB there
are more than 40 national wetland reserves, these reserves strengthen wetland conservation
projects [53]. On another positive aspect, in 2011 Russia and China adopted the “Russian–
Chinese Strategy for Development of Transboundary Network of Protected Areas in the
Amur River Basin for the period till 2020”, which stressed the inventory and protection of
wetlands as the first priority. The strategy also provided a basis for improving cooperation
between different conservation agencies and the establishment of transboundary nature
reserves [54]. However, the areal extent is still shrinking in the CARB, even though
numerous conservation and restoration measures have been taken. Anthropogenic factors
including population increase and socioeconomic development become main reasons for
these shrinkages [46]. Therefore, further sustainable managements are still necessary to
promote conservation and rehabilitation efforts for wetland on the CARB [44].

5. Conclusions

In this study, we adopted a convenient and robust training sample migration method
along with the RF classifier to classify wetland and other land cover types on the CARB
using two seasons’ worth of Landsat image collections. Resultantly, a 30-m resolution
dataset for the CARB containing historical spatial distribution information of wetlands
and other land covers in 1990, 2000, and 2010 was produced. The basic idea of the training
sample migration is to compare the spectral similarity and spectral distance to determine
whether a reference sample could be used as a training sample in a target year. Accuracy
assessments showed high producer’s and user’s accuracies for all maps in the dataset. This
success owed to the robustness and sufficiency of the training sample migration and RF
classification, combined with super computing power and the complete storage of Landsat
data of the GEE platform. According to the dynamics and conversions reflected by the
resultant dataset, the area of wetland reduced from 89,432 km2 to 75,061 km2 from 1990
to 2010, with a net loss of 16%. At the same time, a majority of these reduced wetlands
were converted into dry farmland and paddy field, especially in the Songnen and Sanjiang
plains, which suggested that agricultural activities are the main cause of wetland loss. The
dataset obtained by this study can provide reliable information for wetland management
and socio-economic sustainable development in the CARB, and could be a reference for
other related research.
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16. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. Int. J. Photogramm. Remote
Sens. 2016, 114, 24–31. [CrossRef]

17. Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia
using sentinel 2 and random forest. Remote Sens. Environ. 2020, 240, 111702. [CrossRef]

18. Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recogn. Lett. 2006, 27,
294–300. [CrossRef]

http://doi.org/10.1002/ldr.2939
http://doi.org/10.1016/j.jag.2020.102185
http://doi.org/10.1371/journal.pone.0081292
http://doi.org/10.1016/j.jenvman.2020.111670
http://www.ncbi.nlm.nih.gov/pubmed/33218828
http://doi.org/10.3390/geosciences9060262
http://doi.org/10.1016/j.scitotenv.2018.09.115
http://www.ncbi.nlm.nih.gov/pubmed/30290347
http://doi.org/10.1007/s13157-011-0209-0
http://doi.org/10.1007/s13157-017-0975-4
http://doi.org/10.1016/j.jag.2018.07.025
http://doi.org/10.1016/j.isprsjprs.2020.03.020
http://doi.org/10.3390/rs11172043
http://doi.org/10.3390/rs71013507
http://doi.org/10.1016/j.jag.2018.01.020
http://doi.org/10.3390/su10061913
http://doi.org/10.1016/j.jag.2018.01.017
http://doi.org/10.1016/j.isprsjprs.2016.01.011
http://doi.org/10.1016/j.rse.2020.111702
http://doi.org/10.1016/j.patrec.2005.08.011


Remote Sens. 2021, 13, 2161 14 of 15

19. Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The global
distribution and trajectory of tidal flats. Nature 2019, 565, 222–225. [CrossRef] [PubMed]

20. Huang, H.; Wang, J.; Liu, C.; Liang, L.; Li, C.; Gong, P. The migration of training samples towards dynamic global land cover
mapping. Int. J. Photogramm. Remote Sens. 2020, 161, 27–36. [CrossRef]

21. Foody, G.; Arora, M. An evaluation of some factors affecting the accuracy of classification by an artificial neural network. Int. J.
Remote Sens. 1997, 18, 799–810. [CrossRef]

22. Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of classification algorithms and training sample sizes in urban land
classification with Landsat thematic mapper imagery. Remote Sens. 2014, 6, 964–983. [CrossRef]

23. Radoux, J.; Lamarche, C.; Van Bogaert, E.; Bontemps, S.; Brockmann, C.; Defourny, P. Automated training sample extraction for
global land cover mapping. Remote Sens. 2014, 6, 3965–3987. [CrossRef]

24. Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B. Mapping paddy rice planting area in
northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185,
142–154. [CrossRef]

25. Wang, C.; Jia, M.; Chen, N.; Wang, W. Long-Term Surface Water Dynamics Analysis Based on Landsat Imagery and the Google
Earth Engine Platform: A Case Study in the Middle Yangtze River Basin. Remote Sens. 2018, 10, 1635. [CrossRef]

26. Simonov, E.A.; Dahmer, T.D. Amur-Heilong River Basin Reader; Ecosystems Hongkong: Hongkong, China, 2008.
27. Jia, H.; Pan, D.; Zhang, W. Health Assessment of Wetland Ecosystems in the Heilongjiang River Basin, China. Wetlands 2015, 35,

1185–1200. [CrossRef]
28. Chen, X.; Chen, J.; Shi, Y.; Yamaguchi, Y. An automated approach for updating land cover maps based on integrated change

detection and classification methods. Int. J. Photogramm. Remote Sens. 2012, 71, 86–95. [CrossRef]
29. Carvalho Junior, O.A.; Guimarães, R.F.; Gillespie, A.R.; Silva, N.C.; Gomes, R.A. A new approach to change vector analysis using

distance and similarity measures. Remote Sens. 2011, 3, 2473–2493. [CrossRef]
30. Kruse, F.A.; Lefkoff, A.; Boardman, J.; Heidebrecht, K.; Shapiro, A.; Barloon, P.; Goetz, A. The spectral image processing system

(SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [CrossRef]
31. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
32. Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a

random forest classifier for land-cover classification. Int. J. Photogramm. Remote Sens. 2012, 67, 93–104. [CrossRef]
33. Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [CrossRef]
34. Trigila, A.; Iadanza, C.; Esposito, C.; Scarascia-Mugnozza, G. Comparison of Logistic Regression and Random Forests techniques

for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 2015, 249, 119–136. [CrossRef]
35. Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens.

Environ. 2003, 86, 554–565. [CrossRef]
36. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150.

[CrossRef]
37. Huete, A.; Liu, H.; Batchily, K.; Van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for

EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [CrossRef]
38. McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J.

Remote Sens. 1996, 17, 1425–1432. [CrossRef]
39. Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery.

Int. J. Remote Sens. 2006, 27, 3025–3033. [CrossRef]
40. Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Wang, C.; Wang, Y. Rapid, robust, and automated mapping of tidal flats in China using time

series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2021, 255, 112285. [CrossRef]
41. Rogers, A.; Kearney, M. Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices.

Int. J. Remote Sens. 2004, 25, 2317–2335. [CrossRef]
42. Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and

assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [CrossRef]
43. Yan, F. Large-Scale Marsh Loss Reconstructed from Satellite Data in the Small Sanjiang Plain since 1965: Process, Pattern and

Driving Force. Sensors 2020, 20, 1036. [CrossRef] [PubMed]
44. Mao, D.; Luo, L.; Wang, Z.; Wilson, M.C.; Zeng, Y.; Wu, B.; Wu, J. Conversions between natural wetlands and farmland in China:

A multiscale geospatial analysis. Sci. Total Environ. 2018, 634, 550–560. [CrossRef] [PubMed]
45. Yu, X.; Ding, S.; Zou, Y.; Xue, Z.; Lyu, X.; Wang, G. Review of Rapid Transformation of Floodplain Wetlands in Northeast China:

Roles of Human Development and Global Environmental Change. Chin. Geogr. Sci. 2018, 28, 654–664. [CrossRef]
46. Chen, H.; Zhang, W.; Gao, H.; Nie, N. Climate Change and Anthropogenic Impacts on Wetland and Agriculture in the Songnen

and Sanjiang Plain, Northeast China. Remote Sens. 2018, 10, 356. [CrossRef]
47. Mao, D.; Wang, Z.; Wu, B.; Zeng, Y.; Luo, L.; Zhang, B. Land degradation and restoration in the arid and semiarid zones of China:

Quantified evidence and implications from satellites. Land Degrad. Dev. 2018, 29, 3841–3851. [CrossRef]
48. Liu, H.; Zhang, S.; Li, Z.; Lu, X.; Yang, Q. Impacts on wetlands of large-scale land-use changes by agricultural development: The

small Sanjiang Plain, China. AMBIO J. Hum. Environ. 2004, 33, 306–310. [CrossRef]

http://doi.org/10.1038/s41586-018-0805-8
http://www.ncbi.nlm.nih.gov/pubmed/30568300
http://doi.org/10.1016/j.isprsjprs.2020.01.010
http://doi.org/10.1080/014311697218764
http://doi.org/10.3390/rs6020964
http://doi.org/10.3390/rs6053965
http://doi.org/10.1016/j.rse.2016.02.016
http://doi.org/10.3390/rs10101635
http://doi.org/10.1007/s13157-015-0705-8
http://doi.org/10.1016/j.isprsjprs.2012.05.006
http://doi.org/10.3390/rs3112473
http://doi.org/10.1016/0034-4257(93)90013-N
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.isprsjprs.2011.11.002
http://doi.org/10.1080/01431160412331269698
http://doi.org/10.1016/j.geomorph.2015.06.001
http://doi.org/10.1016/S0034-4257(03)00132-9
http://doi.org/10.1016/0034-4257(79)90013-0
http://doi.org/10.1016/S0034-4257(96)00112-5
http://doi.org/10.1080/01431169608948714
http://doi.org/10.1080/01431160600589179
http://doi.org/10.1016/j.rse.2021.112285
http://doi.org/10.1080/01431160310001618103
http://doi.org/10.1016/j.rse.2014.02.015
http://doi.org/10.3390/s20041036
http://www.ncbi.nlm.nih.gov/pubmed/32075124
http://doi.org/10.1016/j.scitotenv.2018.04.009
http://www.ncbi.nlm.nih.gov/pubmed/29635197
http://doi.org/10.1007/s11769-018-0957-3
http://doi.org/10.3390/rs10030356
http://doi.org/10.1002/ldr.3135
http://doi.org/10.1579/0044-7447-33.6.306


Remote Sens. 2021, 13, 2161 15 of 15

49. Zhang, J.; Ma, K.; Fu, B. Wetland loss under the impact of agricultural development in the Sanjiang Plain, NE China. Environ.
Monit. Assess. 2010, 166, 139–148. [CrossRef] [PubMed]

50. Liu, W.; Guo, Z.; Jiang, B.; Lu, F.; Wang, H.; Wang, D.; Zhang, M.; Cui, L. Improving wetland ecosystem health in China. Ecol.
Indic. 2020, 113, 106184. [CrossRef]

51. Tian, Y.; Wang, Z.; Mao, D.; Li, L.; Liu, M.; Jia, M.; Man, W.; Lu, C. Remote Observation in Habitat Suitability Changes for
Waterbirds in the West Songnen Plain, China. Sustainability 2019, 11, 1552. [CrossRef]

52. Wang, Z.; Wu, J.; Madden, M.; Mao, D. China’s Wetlands: Conservation plans and policy impacts. Ambio 2012, 41, 782–786.
[CrossRef] [PubMed]

53. Turner, R.K.; Van Den Bergh, J.C.; Söderqvist, T.; Barendregt, A.; Van Der Straaten, J.; Maltby, E.; Van Ierland, E.C. Ecological-
economic analysis of wetlands: Scientific integration for management and policy. Ecol. Econ. 2000, 35, 7–23. [CrossRef]

54. Egidarev, E.; Simonov, E.; Darman, Y. Amur-Heilong River Basin: Overview of Wetland Resources. In The Wetland Book; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 1–15.

http://doi.org/10.1007/s10661-009-0990-x
http://www.ncbi.nlm.nih.gov/pubmed/19475485
http://doi.org/10.1016/j.ecolind.2020.106184
http://doi.org/10.3390/su11061552
http://doi.org/10.1007/s13280-012-0280-7
http://www.ncbi.nlm.nih.gov/pubmed/22457078
http://doi.org/10.1016/S0921-8009(00)00164-6

	Introduction 
	Materials and Methods 
	Study Area 
	Land Cover Classification System 
	Basic Idea 
	Landsat-5 Data Collection in the GEE 
	Training Samples Collection and Migration 
	Training Samples Migration 
	RF-Based Wetland and Other Land Cover Classification 
	Independent Assessment of Mapping Accuracy 

	Results 
	Accuracy Assessment of the Historical Maps 
	Historical Spatial Patterns of CARB Wetlands 
	Temporal Changes of Wetlands and Oher Land Covers 
	Conversions between Wetland and Anthropogenic Land Covers 

	Discussion 
	Advantages and Uncertainties of the Migrated Training Samples 
	Lost and Conservation of Wetlands on the CARB 

	Conclusions 
	References

