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Abstract: Global Navigation Satellite System Reflectometry Bistatic Synthetic Aperture Radar (GNSS-
R BSAR) is becoming more and more important in remote sensing because of its low power, low mass,
low cost, and real-time global coverage capability. The Back Projection Algorithm (BPA) was usually
selected as the GNSS-R BSAR imaging algorithm because it can process echo signals of complex
geometric configurations. However, the huge computational cost is a challenge for its application
in GNSS-R BSAR. Graphics Processing Units (GPU) provides an efficient computing platform for
GNSS-R BSAR processing. In this paper, a solution accelerating the BPA of GNSS-R BSAR using GPU
is proposed to improve imaging efficiency, and a matching pre-processing program was proposed to
synchronize direct and echo signals to improve imaging quality. To process hundreds of gigabytes of
data collected by a long-time synthetic aperture in fixed station mode, a stream processing structure
was used to process such a large amount of data to solve the problem of limited GPU memory. In the
improvement of the imaging efficiency, the imaging task is divided into pre-processing and BPA,
which are performed in the Central Processing Unit (CPU) and GPU, respectively, and a pixel-oriented
parallel processing method in back projection is adopted to avoid memory access conflicts caused by
excessive data volume. The improved BPA with the long synthetic aperture time is verified through
the simulation of and experimenting on the GPS-L5 signal. The results show that the proposed
accelerating solution is capable of taking approximately 128.04 s, which is 156 times lower than pure
CPU framework for producing a size of 600 m × 600 m image with 1800 s synthetic aperture time;
in addition, the same imaging quality with the existing processing solution can be retained.

Keywords: Global Navigation Satellite System Reflectometry (GNSS-R); Back-Projection Algorithm
(BPA); Graphics Processing Units (GPU)

1. Introduction

The concept of GNSS-R was firstly considered by Hall and Cordy in 1988 [1], which
uses the reflected GNSS signals to obtain information about the Earth’s surface; however,
they consider the technology to be less promising. The concept of ocean altimetry using the
GNSS-R was proposed by Martin-Neira in 1993 [2]. In recent years, GNSS-R technology has
achieved rapid development, both in the measurement concepts, instruments, and applica-
tions, such as retrieving wind speed [3–6], measuring sea-surface level [7–10], estimating
soil moisture and biomass [11–16], detecting oil spill [17], detecting sea ice [18], etc.

GNSS-R BSAR is one of the emerging applications of GNSS-R technology [19], which
uses the GNSS satellites as non-cooperative illuminators and employs bistatic SAR tech-
nology to obtain an image of the Earth’s surface. This technology has been proven to be
applicable to target detection and recognition [20], deformation monitoring [21,22], etc.
It is also evident that more precise phase-based analyses are required for deformation mon-
itoring, which is likely to be the topic of our future activities. The advantage of GNSS-R
BSAR is significant compared with traditional SAR. Firstly, as no additional transmitter
is needed, the GNSS-R BSAR equipment can be made low mass, low power, and low
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cost. Secondly, the GNSS constellation has more than 140 satellites, which can provide
more than 20 satellites in any certain area to observe the Earth’s surface from multiple
angles. Furthermore, abundant satellite resources provide the feasibility of fusing multiple
satellites at different angles, not only to improve the spatial resolution and time resolution
of the system but also to obtain more information on the characteristics of the observation
area [23]. Finally, GNSS can provide precise timing services to ensure the synchronization
performance of the technology.

GNSS signals are not designed for radar or remote sensing; therefore, this has caused
some problems in the application of GNSS-R BSAR. Firstly, the power density of GNSS
signals near the surface of the Earth is relatively low, but a sufficiently high signal-to-noise
ratio (SNR) can be obtained by increasing the synthetic aperture time [24]. Secondly, the
signal bandwidth of GNSS limits its range resolution. Thirdly, the instability of signal
power on the Earth’s surface causes signal power calibration problems. Finally, due
to its complex bistatic geometric structure, these improved frequency domain imaging
methods still have limitations, such as the Range Doppler Algorithm (RDA) [25], Chirp
Scaling Algorithm (CSA) [26,27], etc. With the increase in synthetic aperture time and the
deterioration of geometry, the image quality of the frequency domain imaging methods
will deteriorate further [28]. The BPA is better suited to GNSS-R BSAR because of its ability
to handle different geometrical configurations of echo signals, and the fact that it is not
restricted by synthetic aperture time [19]. However, the computational cost of BPA is huge.
Therefore, the huge computational cost is a challenge for the application of BPA to GNSS-R
BSAR. To reduce the computational cost, there are two methods for solving this problem:

1. Using Fast Back Projection Algorithm (FBPA) for GNSS-R BSAR imaging has the
advantage of reducing the computational cost, but it will reduce the quality of the
imaging [29].

2. Using GPU to accelerate BPA in parallel; this method will increase the complexity of
the system but will obtain the optimal imaging quality [30–35].

In this paper, our research focuses on the use of GPU to accelerate BPA in GNSS-R
BSAR. An improved BPA was proposed for making it suitable for GPU parallel implemen-
tation. Firstly, a pre-processing program was designed to obtain parameter information
matching BPA. In the pre-processing program, to ensure the synchronization of the direct
signal and the echo signal, the echo signal is synchronized with the accurate pseudorange
and code phase information in the direct signal. The precision ephemeris of the GPS is
introduced to improve the orbit accuracy of the navigation satellites and the positioning
accuracy of the receivers, which improves the imaging quality of the BPA algorithm. Sec-
ondly, the parallel acceleration strategy of BPA in CPU and GPU heterogeneous architecture
is designed and implemented. In fixed station mode, the GNSS-R SAR system may work
for thousands of seconds on a single mission resulting in the acquisition of data that can
reach hundreds of gigabytes. A stream processing structure was used to process such a
large amount of data. According to the memory size of the GPU, the original data are
divided into several subdata in chronological order and transmitted to GPU. To optimize
calculation efficiency, the preprocess program is allocated to the CPU for execution, after
which the BPA is allocated to the CPU for execution.

To prove the feasibility of the proposed imaging algorithm, simulations and experi-
ments were carried out using a GPS-L5 signal in the ground fixed station mode. In simula-
tion and experiment, the time consumed by the proposed algorithm is 163.96 and 156 times
less than that consumed by BPA running only on CPU, respectively. However, the image
quality has not been reduced. The simulation and experimental results prove the feasibility
and effectiveness of the proposed algorithm.

This paper is organized into six sections. In Section 2, the signal model of GNSS-R
BSAR is reviewed briefly. In Section 3, the improved BPA is discussed in detail. A GPU
parallel acceleration method compatible with the improved BPA is proposed and analyzed
in Section 4. The simulation and experimental results are provided in Section 4. A further
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discussion of the proposed algorithm is presented in Section 5, and conclusions are drawn
in Section 6.

2. Materials

We consider a ground-based stationary receiving platform collecting the signals emit-
ted from a GNSS satellite and reflected by a stationary scene. Figure 1 shows the geometric
configuration of GNSS-R BSAR, where the origin O is set to center of the XYZ coordinate
system, P(xp, yp, 0) is an arbitrary point target in the imaging area (the targets are assumed
to be located on the XOY plane). T and R are the transmitter (navigation satellite) and
fixed receiver, respectively. The transmitter is located at T(xT(t), yT(t), zT(t)), while the
receiver at (xR, yR, zR). RT(t) is the distance between the satellite T and target P, RR is the
distance between the receiver R and target P, RB(t) is the distance between the satellite T
and receiver R. RT(t), RR, and RB(t) can be expressed as

RT(t) =
√
(xT(t)− xp)

2 + (yT(t)− yp)
2 + (zT(t)− zp)

2 (1)

RR =
√
(xR − xp)

2 + (yR − yp)
2 + (zR − zP)

2 (2)

RB(t) =
√
(xT(t)− xR)

2 + (yT(t)− yR)
2 + (zT(t)− xR)

2 (3)
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The range history is R(t) = RT(t) + RR.
GNSS-R BSAR’s receiver contains two channels, a direct channel, and an echo channel.

The direct channel connects a Right-Handed Circularly Polarized (RHCP) omnidirectional
antenna for receiving direct signals from GNSS satellites, which is used to realize sys-
tem positioning and obtain accurate carrier phase and code phase to provide reference
information for signal synchronization. Based on the Stop–Go model [36], the length of
a ranging code (for GPS C/A code is 1 ms) is equivalent to the width of the range pulse.
After quadrature demodulation and SAR data formatting [36], the direct signal can be
expressed as a two-dimensional form

s(η, τ) = W(η)N(η)C
[

τ − RB(η)

c

]
exp

[
−j2π fc

RB(η)

c

]
(4)

η is the azimuth time, also called slow time, τ is the range time, also called fast
time. W(η) is the envelope of the received signal in the azimuth dimension, which is a
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rectangular window. N(η) is the data code of the navigation signal, C(τ) is the ranging
code sequence, fc is the carrier frequency of the transmitted signal, and c is the speed
of light. The echo channel connects a high-gain Left-Handed Circular Polarized (LHCP)
antenna to receive the echo signal from the target area. After removing the data code,
the echo signal can be expressed as

sr(η, τ) = W(η)C
[

τ − R(η)
c

]
exp

[
−j2π fc

R(η)
c

]
(5)

The direct channel and echo channel use the same oscillator to mix the sampling
signal, and the analog-to-digital converter chips for sampling the direct signal and echo
use the same clock. After demodulation, the signals are sampled and stored by a large
storage data collector for postprocessing.

3. Methods
3.1. Review on BPA

The BPA is a typical time-domain imaging algorithm [37], which comes from computer
tomography. Firstly, the imaged plane is divided into grids, and the center of each grid
is determined as the pixel point. Secondly, range compression used matched filtering
to achieve pulse compression in the range. Thirdly, in the range–azimuth time domain,
the coherent accumulation method is used to realize the azimuth focusing of each pixel
point by point. Each pixel in the imaged plane is traversed to calculate the position of the
target in each echo, and the phase is compensated for coherent accumulation to obtain the
pixel value of the current point.

3.2. Data Pre-Processing

To optimize the imaging quality of the BPA algorithm and extract the parameters
needed to accelerate BPA in parallel using the GPU, a pre-processing program is designed
for a GNSS-R BSAR system. Three crucial technical issues relating to the program are
considered. Firstly, it is necessary to ensure the synchronization of the direct signal and
the echo signal during the entire imaging process. Secondly, BPA requires accurate time,
and the location of the transmitter, receiver, and imaging area [38]. Finally, the relevant
parameters (the reference point, imaging area, synthetic aperture time, the pixel interval) of
the BPA algorithm are obtained. The pre-processing program was designed for the above
three issues; the specific process is shown in Figure 2.
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The range compression in the BPA of GNSS-R SAR is achieved through correlation
operations between the direct channel and the echo channel. The performance of the
autocorrelation depends on the quality of the signal synchronization between the direct
and echo channel. Ideally, the direct channel and the echo channel would have good
channel coherence, but unfortunately, the signal can be affected by various factors. To solve
the problem of time synchronization, the signals of the direct channel and the echo channel
are processed, as shown in Figure 2. The GNSS direct signal is captured and tracked
to obtain a subframe start timestamp position Td of the direct signal and calculate the
time delay difference Tdelay between the echo signal and the direct signal due to the
different propagation paths. To ensure the time and phase synchronization of the two
signals, the direct signal of 1 ms (a ranging code length) taken by timestamp Td, and the
complete pseudorandom noise code of zero-initial phase is reconstructed as a reference
signal. According to Phase-locked loop (PLL) theory [39], after compensating for the
time difference Tdelay, we can obtain the direct signal and the echo signal, which was
emitted by satellite at the same time. The direct signal and the echo signal have good time
synchronization performance by this operation. The expression of the reference signal is

h = C[τ − R(η)
c

] (6)

The method for improving the satellite orbit accuracy and positioning accuracy is
shown in Figure 2. International GNSS Service (IGS) Ultra-Rapid Precision Ephemeris was
used to extract satellite obit data and calculate its position with less than 10 cm position
error and satellite clock 5 ns error [40]. As IGS Ultra-Rapid data has a 15 min update rate,
interpolation was necessary to meet the sampling rate of the GNSS-R BSAR system.

As shown in Figure 2, The method of using geometric modeling is used to determine
the specific parameters of the BPA imaging process. Taking the ground fixed station mode
as an example, the reference point is the position of the phase center of the echo antenna.
The imaged area is the area covered by the main lobe of the echo antenna. The synthetic
aperture time can be selected as a period of time between the navigation satellite antenna
beam enters the imaged area to the time when the beam completely leaves the imaged
area. To obtain a high-resolution image, it is necessary to determine the start and end
times of the synthetic aperture according to the geometric structure of acquisition time [28].
Finally, the imaged plane is determined according to the coordinate information of the
imaged area. In this paper, the height of the imaged plane is determined by introducing the
Google Elevation Application Programming Interface (API), which can reduce the impact
of elevation errors on the imaged quality. The pixel interval is estimated by the range and
azimuth resolution at the time of acquisition. The minimum requirement is that the pixel
interval sampling for the range and azimuth resolution satisfies the Nyquist sampling
theorem.

3.3. Theoretical Analysis of the Improved BPA

An improved BP algorithm is proposed for GNSS-R BSAR, which can optimize the
signal processing of heterogeneous architecture platform of CPU and GPU. The GNSS-
R SAR system may work for thousands of seconds on a single mission resulting in the
acquisition of data that can reach hundreds of gigabytes. A stream processing structure
was used to process such a large amount of data.

The block diagram of the proposed algorithm is shown in Figure 3. The algorithm can
be divided into three steps: range compression, back projection and phase compensation,
and azimuth compression.
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3.3.1. Range Compression

As the ranging code of the navigation satellite signal has good autocorrelation charac-
teristics, the range compression is accomplished by autocorrelating the echo signal with the
reference signal. Taking the C/A code of GPS L1 signal as an example, its autocorrelation
peak is 24 dB higher than the sidelobe and cross-correlation results. Under a Gaussian
white noise background, the autocorrelation gain is about 30 dB. In this paper, the calcula-
tion speed is accelerated by converting to the frequency domain, due to which the range
autocorrelation is relatively computationally intensive. As shown in Figure 3, firstly, due to
the actual collected echo data of GNSS-R BSAR consisting of hundreds of gigabytes, its
capacity greatly exceeds the size of the video memory (tens of gigabytes) [30]. The pro-
posed solution is to equally divide the echo data into multiple data segments and process
them sequentially according to time. Secondly, the direct signal and the echo signal are
converted to frequency domain for range compression, the specific implementation process
is described in [25]. At a given azimuthal moment, the signal after range compression is
expressed as:

F(η, τ) = P[τ − R(η)
c

] exp[−j2π
R(η)

λ
] (7)

P(τ) represents the autocorrelation function of the ranging code.

3.3.2. Back Projection and Phase Compensation

The focus processing of BPA in the azimuth direction is carried out in the time domain
and does not require Range Cell Migration Correction (RCMC). F(η, τ) is the correlation
value at different time delays relative to the reference point, and the process of back
projection is to map the F(η, τmn) to different pixels (xm, yn), (see Figure 4) (m, n) is the
image pixel index of the final image.
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The propagation delay can be calculated according to the signal propagation distance
when the three positions of the navigation satellite, the pixels, and the receiver are uniquely
determined, which can be expressed as:

τmn(η) =
RT(η, m, n) + RR(m, n)

c
(8)

RT(η, m, n) =
√
[xT(η)− x(m, n)]2 + [yT(η)− y(m, n)]2 + [zT(η)− z(m, n)]2 (9)

RR(m, n) =
√
[xR − x(m, n)]2 + [yR − y(m, n)]2 + [zR − z(m, n)]2 (10)

F(η, τmn) = P[τmn −
RT(η, m, n) + RR(m, n)

c
] exp[−j2π

RT(η, m, n) + RR(m, n)
λ

] (11)

τmn(η) is the time delay of the echo signal generated at the pixel (xm, yn). RT(η, m, n)
and RR(m, n) are the distance from the satellite and receiver to the pixel (xm, yn). Before
F(η, τmn) is mapped to the pixel, the Doppler phases need be compensated. The Doppler
phase compensation factor can be expressed as:

h(η, m, n) = exp[j2π
RT(η, m, n) + RR(m, n)

λ
] (12)

The Doppler phase compensation is realized by complex multiplication h(η, m, n) in
the time domain according to the data selected by the slant range RT(η, m, n) + RR(m, n),
and the result is used as the value of the pixel. An image can be generated at each azimuth
time η, which can be expressed as

S(η, xm, yn) = F(η, τmn) · h(η, m, n) (13)

3.3.3. Azimuth Compression

The azimuth compression of a data segment is achieved by coherently accumulating
S(η, xm, yn), the result obtained is defined as a subimage, which can be expressed as

Ssub(xm, yn) =
∫ T

2

− T
2

Ssub(η, xm, yn)dη (14)

T is the time length of each data segment and the synthetic aperture time. The final
SAR image is generated by accumulating each subimage, which can be expressed as

S(xm, yn) =
N

∑
i=1

Ssub(xm, yn) (15)

N is the total number of data segments.
As we all know, with the increase of scene area and synthetic aperture time, the

computational cost of BPA will increase sharply. This makes BPA difficult to adopt in
SAR technology. Fortunately, the two main steps (the range compression and the back-
projection) of BPA can be highly parallelized. A software program taking advantage of
a GPU can benefit from speed improvements thanks to parallel computing. In the next
section, we will analyze these two steps.

3.4. Parallelized BPA on GPU

To optimize the processing process, a heterogeneous processing architecture was
designed. Figure 5 shows the system block diagram of the proposed GNSS-R BSAR signal
processing. In the heterogeneous framework, the GPU and the CPU process the data
serially. The pre-processing part is mainly executed in CPU, the BPA is executed in GPU,
finally, the image is sent back to CPU for output and storage.
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3.4.1. Parallelized Range Compression on GPU

It can be seen from Section 3 that the range compression is realized by converting to the
frequency domain. As shown in Figure 5, the range compression module is all processed
on the GPU, which includes main operations such as FFT and IFFT operation, complex
multiplication, and complex addition. FFT and IFFT operations can be completed through
the cuFFT library provided by Compute Unified Device Architecture (CUDA). The parallel
complex multiplication and complex addition in the frequency domain are completed by
constructing a kernel function. It is worth noting that the operation of FFT and IFFT will
take up a lot of video memory resources, and the data size needs to be reasonably planned
according to the size of the video memory to prevent memory overflow.

In the CUDA architecture, a thread is the smallest execution unit of a GPU that
corresponds to the streaming processor (SP) of hardware. The threads are allocated to
the number of range gates sampled according to the range, and each thread is solely
responsible for the complex multiplication of the echo signal and the reference signal by a
range gate data. The main steps of range compression on GPU include:

(1) Na and Nr are determined according to the size of one segment data, where Na and
Nr are the number of range and azimuth samples, respectively. The memory of CPU
and GPU are requested for the host for the corresponding data, respectively, and the
data are transferred from the memory of the CPU to the memory of the GPU.

(2) The cuFFT library function of CUDA is used to complete the FFT of the reference
signal and echo signal, respectively.

(3) The kernel function of parallel complex multiplication of reference signal complex
conjugate matrix and echo signal matrix in the frequency domain is designed. Threads
are allocated to compressed data based on range gate, and kernel function is called to
complete parallel complex multiplication.

(4) Use the cuFFT library function to develop the IFFT solution to convert the range
compressed data into the time domain, generate correlation values F(η, τ) that match
the slant range.

(5) Repeat the steps (1)–(4) until all echo data are processed.
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3.4.2. Parallelized Back Projection on GPU

In each imaged area, the corresponding time delay is calculated according to the slant
range of each pixel, and a compensation factor is constructed to compensate for the phase
of the pixel. Furthermore, both the sampling points processing at each portion and the
pixel processing in the image are the same and independent. Therefore, all the pixels
in the imaging area are implemented parallelly by an assigned thread, which was also
used to calculate and process azimuth time images. In the viewpoint of thread mapping,
there are two kinds of implementations for the parallel Back Projection step: pixel-oriented
parallel and range code-oriented parallel. The two methods described above have good
parallelism, the pixel-oriented parallelism is more suitable for the engineering realization of
SAR image [30]. Thus, the pixel-oriented parallel BPA is adopted in this paper. The parallel
implementation steps of pixel-oriented back-projection are as follows:

(1) Calculate the delay τmn(η) by constructing a kernel function to allocate threads to
each pixel at a range code.

(2) According to the delay of each pixel τmn(η), the information in the corresponding
range gate in the range compression is selected, and the compensation factor h(η, m, n)
is constructed according to the slant range information R(η, m, n) and the phase
difference value.

(3) Phase compensation is performed by complex multiplication of the range compression
data F(η, τmn) for that pixel point with the compensation factor h(η, m, n) in the time
domain. The kernel function will be invoked tens of thousands of times to complete
the complex multiplication and complex addition processing.

(4) The data S(η, xm, yn) from each azimuthal moment is coherently summed to generate
the subimage Ssub(η, xm, yn).

(5) Repeat steps (1)–(4) until all echo data are processed.

4. Results

To verify the acceleration of the proposed algorithm, running times and image quality
were compared using a unified hardware development platform. In simulation and experi-
ments, NVIDIA GeForce GTX 3090 is used, which is mounted in a computer equipped with
AMD-3800X (Core frequency is 3.80~4.5 GHz), 64-bit CPU serving as the host, 64 GB RAM,
and Windows 10 64-bit OS, whereas the C/C++ Visual Studio 2019 development environ-
ment is used to implement the algorithms. The specific operation process is implemented
in the following environment:

(1) C++ as a reference compiled procedural language using the Faster Fourier Transform
in the West (FFTW) library version 3.3.5.

(2) CUDA 10 with the cuFFT and NPP included libraries.

4.1. Simulation

Simulations were conducted to demonstrate the performance of the proposed algo-
rithm, which were carried out using the CPU and GPU of the hardware platform described
above, respectively. The geometric configuration of the satellite and receiver is shown in
Figure 6a. Some parameters used in the simulation are listed in Table 1.

Figure 6b shows the multitarget simulation results of the proposed algorithm; all point
targets are focused on the correct position in the image. Table 2 shows the elapsed time
involved in the whole processing using CPU and GPU. The total running time of using the
GPU and CPU to generate images of the size 4 km × 4 km is 106.468 s, while the running
time of the improved BPA on the CPU is about 17,456.88 s, and the total speedup is about
163.96 times. FFT and IFFT process are accelerated by 117 times, the complex multiplication
is accelerated by 261 times, and the back projection is accelerated by 164.1 times. Each step
of the entire process of the BPA can be accelerated by GPU in parallel, and since most of the
time of the algorithm is consumed in the back projection process, the overall acceleration
ratio mainly depends on the back projection acceleration ratio.
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Table 1. Simulation parameters.

Parameters Value

Satellite PRN 3
Carrier frequency 1176.45 MHz

Synthetic aperture time 300 s
Signal band width (GPS L5) 20.46 MHz

Sampling rate 62 MHz
Equivalent PRF 1000 Hz

Receiver position (0, 0, 100) m
Satellite position at center time (20,133.7258, 10,697.3032, 728.0291) km

Satellite speed at center time (1392.7068, −2766.6856, 138.3063) m/s

Table 2. Comparison of processing times.

Parameters Fft&Ifft Complex Multiplication Back Projection Total Time

CPU(s) 74.4 20.88 17,361.6 17,456.88
GPU(s) 0.636 0.08 105.752 106.468

Real speed-up 117 261 164.17 163.96

To verify the imaging quality of the proposed algorithm, cross-sectional measurements
were taken along the range and azimuth in the point targets. The imaging results of chosen
target 25 are presented in Figure 7. As can be seen, Target 25 is well focused. The range
profile and the azimuth profile were well consistent with theoretical ones [23]. Table 3 shows
the comparison of the proposed algorithm imaging and CPU imaging of target 25, the range
and azimuth imaging resolution, Peak Side-Lobe Ratio (PSLR), and Integral Side-Lobe
Ratio (ISLR) are the same. This effectively shows that GPU-accelerated BPA can effectively
reduce the imaging time without reducing the image quality at all. In the simulation,
we ignored the cross-correlation interference caused by other navigation satellite signals.
Firstly, the GPS-L5 signal’s autocorrelation peak is about 35 dB higher than the sidelobe and
cross-correlation results. Secondly, the strength of the autocorrelation signal will increase
by 10 log10

Nr times after azimuth focus, Nr is the number of azimuth samples, while the
strength of the cross-correlation signal will not increase due to the different slant range of
different satellites.
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Table 3. Comparison of imaging quality on the CPU and CPU and GPU.

Range Azimuth

Resolution/m PSLR/dB ISLR/dB Resolution/m PSLR/dB ISLR/dB
CPU 15.8 −35.34 −13.425 8.65 −13.35 −10.551

GPU and CPU 15.8 −35.34 −13.425 8.65 −13.35 −10.551

The simulation of scenes of different sizes is performed, and the results are shown in
Table 4. In terms of computing efficiency, GPU and CPU-based methods are superior to
CPU-based methods. The time consumed by the simulation increases as the size of the scene
increases. When the scene size increases to a certain extent, the GPU stream processors
are all in a working state, and the speedup ratio no longer changes. This illustrates that
the acceleration capability of GPU-accelerated BPAs is largely dependent on the number
of stream processors, with the higher the number of stream processors, the better the
acceleration performance. To obtain better acceleration performance, developers can
choose GPUs with more stream processors or use multiple GPU parallel methods to
improve performance.

Table 4. Simulation time (s) comparison in generating different pixels.

Pixel 128 × 128 256 × 256 512 × 512 1024 × 1024 2048 × 2048 4096 × 4096 8192 × 8192

CPU(s) 123.1 206.4 507 2087.4 7611.9 30,543.3 68,871.9
GPU(s) 1.1 1.73 3.43 13.38 45.47 180 407.26

Speed-up 111.6 119.07 147.6 156 167.4 168.9 169.11

4.2. Experiments

To demonstrate the validity and feasibility of our proposed GPU accelerated improved
BPA, real scene experiments were carried out. Figure 8 shows the real scene of the experi-
ment. As shown in Figure 8a, the experimental hardware contains four navigation signal
receiving channels. The RHCP omnidirectional antenna is used to receive direct signals
from GNSS. The echo channel uses a high-gain LHCP antenna to receive the echo signal
from the target area. The receiver location is the stadium stand of Beihang University,
and the LHCP antenna was pointed toward the east, see Figure 8c. The experiment was
conducted at 9:50 on 25 March 2021. According to the strategy of optimal resolution [28],
GPS satellite PRN3 was selected as the optimal signal source, and a long-time synthetic
aperture was carried out. The geometric configuration at the time of collection is shown in
Figure 8b,c, and Table 5 lists the detailed parameters.
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Figure 8. Experiment specific configuration. (a) Experimental equipment hardware, (b) geometric
configuration at the time of collection, (c) optical image of experimental area (Google Earth map).
Target No. 1 is a circular metal fence, Target No. 2~4 is metal fence, Target No. 5 is the swimming
pool, Target No. 6 is the gymnasium, Target No. 7 is the E, F, G blocks of the new main building.

Table 5. Parameters used in the experiment.

Parameters Value

GPS satellite PRN3
Satellite angle—middle time (Elevation, Azimuth) (28.59◦, 270◦)

Select signal L5 (1176.45 MHz)
Select signal bandwidth 20.46 MHz

RHCP antenna gain 3 dBi
LHCP antenna gain/beamwidth 13 dBi/±19◦

System sampling rate 62 MHz
Quantization bit 14 bit

Synthetic aperture time 1800 s

The imaging results are shown in Figure 9. It can be seen that Figure 9a,b were very
similar to each other—this shows that the image quality obtained by using GPU and CPU
to run BPA is the same, which is consistent with the theoretical results. Based on resolution
analysis [23], the theoretically predicted resolution is approximately 16.8 m in the range
and around 0.95 m in the azimuth. The time taken was 128.04 s to run BPA imaging on the
GPU, while that of the CPU was 19,974.24 s. The ratio of time consumed by GPU slightly
higher than the simulation result; this is caused by I/O data transmission. As the scene
becomes larger or the synthetic aperture time increases, the advantages of the proposed
algorithm will become more obvious.
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Figure 9. Comparison between imaging results, (a) is the imaging results of CPU, (b) is the imaging
results of GPU.

It can be seen from Figure 9 that there are multiple strong scattering targets in the
image, but we cannot interpret them. The low range resolution of the system causes this
result. The interpretation is made easier by matching with a very high-resolution optical
image. It can be seen from Figure 10 that the buildings in the optical image and the strong
scattering area in the radar image have a good match. It can be seen from Figure 10 that
the strong scattering area of the radar image is mainly concentrated in the west of the
building, which is caused by the geometry of the acquisition time. As shown in Figure
8b, this geometry leads to the majority of the echo signal coming from the west side of the
building. To obtain the top view image of the target area, the receiver should be installed
at a higher position or on an airplane for data collection. The resulting image will contain
more information about the target scene.
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Figure 10. Comparison between the optical image and the resultant radar image.
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To verify the image quality obtained, cross-sectional measurements were taken along
the range and azimuth in the area around target No. 6 (the edge of the gymnasium), where
the echoes have good signal strength and continuity. As shown in Figure 11a, the actual
range resolution of target No. 6 is approximately 19 m, which is close to the theoretical
value. The theoretically predicted azimuth resolution is approximately 0.95 m, which
is much smaller than the length of the building. However, we can compare the length
of the target’s measured values to its physical length. As shown in Figure 11b, the total
length of the target’s measured values is about 38 m, which is consistent with the optical
measurement result. In addition, Figure 11a,b show the cross-sectional measurement
results of the images generated using GPU and CPU to run BPA, respectively. The contours
generated by these two methods perfectly match each other, which shows that BPA can be
executed in GPU without loss, and the calculation time is greatly reduced compared with
the operation in CPU. The proposed method effectively applies BPA to GNSS-R BSAR, and
its feasibility has been verified.
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5. Discussion

In this section, the necessity of GPU accelerating BPA of GNSS-R BSAR is anal-
ysed. The computational cost of the BPA range compression step can be expressed as
NaNr log2 Nr + NaNr, where Na and Nr are the number of range and azimuth samples, re-
spectively. The computational cost of the back-projection step can be expressed as NmNnNa,
where Nm and Nn are the numbers of samples of the imaging scene. Thus, the total
computational cost for the improved BPA can be represented by NaNr log2 Nr + NaNr +
NmNnNa. The computational cost of an improved RDA is 3NaNr log2 Nr + 2NaNr log2 Na +
7NaNr [27]. It can be seen that the calculation amount of BPA is much greater than RDA.
However, BPA is more suitable for GNSS-R BSAR. The reason is as follows:

(1) The geometry of GNSS-R BSAR is complex. The BPA can focus the echo data without
the influence of geometry, while the frequency domain algorithms are greatly affected
by the geometric structure [28]. Especially in the multisatellite fusion or multistation
fusion mode [19,23], more complex geometry will lead to most of the frequency
domain algorithm, which is no longer applicable.

(2) The frequency domain algorithms rely on the accuracy of the equivalent squint model
and cannot achieve a long-time synthetic aperture [41]. However, increasing the
synthetic aperture time can not only improve the azimuth resolution and signal-to-
noise ratio but also improve the characteristic information of the target in the imaged
area [24]. Especially in one station fixed mode, the synthetic aperture time can reach
thousands of seconds. The BPA algorithm is not affected by the synthetic aperture
time.
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In practical applications, whether airborne large scene imaging or one-station fixed
mode long synthetic aperture time imaging, the BPA algorithm will achieve a huge amount
of calculations, which will greatly affect the efficiency of BPA applications. Especially in
the application of deformation monitoring, there is a demand for response time. Therefore,
it is necessary to use GPU to accelerate BPA for reducing the imaged time.

In this paper, we proposed GPU accelerated BPA, which has a good acceleration ability
in GNSS-R BSAR ‘s one-stop fixed mode. The simulation and experimental verification
results verify the feasibility and effectiveness of the proposed algorithm. The simulated
imaging is performed on an area of 4 km × 4 km, and the synthetic aperture time is 300 s.
The point targets in the image generated by the proposed algorithm are well focused.
Comparing the proposed algorithm with the BPA run only on CPU, the image quality is
the same, while the running speed is increased by 163.96 times. In the experiment, the
synthetic aperture time was increased to the 1800 s for an image area of 600 m × 600 m. The
collected raw data were processed by the proposed algorithm and the BPA run only on the
CPU, respectively. The imaging results are similar for the two algorithms, the running time
of the proposed algorithm is 128.04 s, while the running time on the CPU is 19,974.24 s; the
time taken by the proposed algorithm is greatly reduced.

6. Conclusions

With the improvement of GPU computing power, the BPA has become a feasible
imaging method for processing GNSS-R BSAR data. This paper proposes an improved BPA
for processing GNSS-R BSAR data using a heterogeneous architecture platform of CPU and
GPU. The improved BPA can accurately compensate for the nonlinear motion error of the
satellite and improve the synchronization performance of the direct signal and echo signal.
The improved BPA on the CPU and GPU platform greatly reduces the total running time
and can meet the needs of many offline GNSS-R BSAR imaging applications. As shown by
the simulation and the experimental results, the algorithm performs well in imaging quality
and efficiency. Using GPS L5 signal for a long-time synthetic aperture, the range resolution
of the generated image is about 19 m, and the azimuth resolution is about submeter level.
Images of this quality can meet the needs of many applications; an important application of
GNSS-R BSAR imaging in one-station fixed mode is deformation monitoring. The next step
is to apply this algorithm to the research of deformation monitoring, which will greatly
reduce time consumption and improve emergency response time.
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