
remote sensing  

Article

Assessing Past Climate Biases and the Added Value of
CORDEX-CORE Precipitation Simulations over Africa

Gnim Tchalim Gnitou 1, Guirong Tan 2,*, Ruoyun Niu 3 and Isaac Kwesi Nooni 1,4

����������
�������

Citation: Gnitou, G.T.; Tan, G.; Niu,

R.; Nooni, I.K. Assessing Past Climate

Biases and the Added Value of

CORDEX-CORE Precipitation

Simulations over Africa. Remote Sens.

2021, 13, 2058. https://doi.org/

10.3390/rs13112058

Academic Editors: Elsa Cattani,

Ali Behrangi and Geert Sterk

Received: 20 March 2021

Accepted: 20 May 2021

Published: 23 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Binjiang College, Nanjing University of Information Science & Technology, Wuxi 214105, China;
patrickgnitou@yahoo.fr (G.T.G.); nooni25593@alumni.itc.nl (I.K.N.)

2 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of
Meteorological, Disaster, Ministry of Education, Nanjing University of Information Science and Technology,
Nanjing 210044, China

3 National Meteorological Centre, China Meteorological Administration, Beijing 100081, China;
niury@cma.gov.cn

4 School of Geographical Sciences, Nanjing University of Information Science & Technology,
Nanjing 210044, China

* Correspondence: tanguirong@nuist.edu.cn

Abstract: The present study investigates the skills of CORDEX-CORE precipitation outputs in
simulating Africa’s key seasonal climate features, emphasizing the added value (AV) of the dynamical
downscaling approach from which they were derived. The results indicate the models’ good skills in
capturing African rainfall patterns and dynamics at satellite-based observation resolutions, with up
to 65.17% significant positive AV spatial coverage for the CCLM5 model and up to 55.47% significant
positive AV spatial coverage for the REMO model. Unavoidable biases are however present in
rainfall-abundant areas and are reflected in the AV results, but vary based on the season, the sub-area,
and the Global Climate Model–Regional Climate Models (GCM-RCM) combination considered. The
RCMs’ ensemble mean generally performs better than individual GCM–RCM simulations. A further
analysis of the GCM–RCM model chain indicates a strong influence of the dynamical downscaling
approach on the driving GCMs. However, exceptions are found in some seasons for specific RCMs’
outputs, where GCMs are influential. The findings also revealed that observational uncertainties
can influence AV and contribute to a 6 to 34% difference in significant positive AV spatial coverage
results. An analysis of these results suggests that the AV by CORDEX-CORE simulations over Africa
depend on how well the GCM physics are integrated to those of the RCMs and how these features
are accommodated in the high-resolution setting of the downscaling experiments. The deficiencies of
the CORDEX-CORE simulations could be related to how well key processes are represented within
the RCM models. For Africa, these results show that CORDEX-CORE products could be adequate for
a wide range of high-resolution precipitation data applications.

Keywords: regional climate models; global climate models; precipitation; Africa; added value

1. Introduction

Regional Climate Models (RCMs) are the cornerstones of regional climate change,
vulnerability, impacts and adaptation studies, and climate service activities (VIA-CS) [1].
Being the key ingredient of successful applications for actionable and usable regional
information, RCMs should be subjected to some quality prerequisites. This pivotal issue
has been recently addressed by the robustness, reliability, and relevance framework (3R
framework) [2], which aims at providing a systematic way of insuring data quality and
consistency for actionable regional climate change information. The 3R framework de-
fines robustness as a feature reflecting a multi-model and multi-method ensembles-based
significantly consistent change signal from a statistical point of view. The reliability ele-
ment captures the ability of the models to reproduce key features of the climate system
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at different scales while being produced based on a good understanding of the physical
process driving the change signals. The relevance aspect targets the extent of applica-
bility of climate models under the VIA-CS activities context and proper characterization
of uncertainties.

From an RCM standpoint, the 30 years of research and development in regional
climate modeling [1,3], recently celebrated, suggest relatively good progress regarding
the relevance aspect of the 3R framework. However, crucial issues such as the added
value (AV) by RCMs need greater attention. The need to understand AV by RCMs is
moreover essential for better compliance to the relevance aspect of the 3R framework [2],
as it strongly suggests not to use regional climate information off the shelf from many
databanks without a clear understanding of best use and limitations. The search and
justification of the presence of AV by RCMs therefore represents a crucial effort toward the
issue of RCMs’ misuses, but contributes on a larger spectrum to a better understanding of
the improvement or degradation introduced by regional climate modeling approaches, and
constitutes a robust basis for user application choices, especially when choosing between
GCMs and RCMs [4].

However, attributing the AV by RCMs can be challenging due to the complexity of
GCM–RCM model chains, from which dynamically downscaled climate fields are ob-
tained [5]. The attribution of AV by RCMs is important and useful, especially from a
modeling standpoint, as it can pinpoint the aspect of the downscaling experiment that
could be improved to increase the overall quality of RCMs. In principle, using the AV
as a metric that reflects the improvement introduced by RCMs is not bad. Still, it should
be complemented by other methods to ensure that at least a positive AV, for example, is
observed for the right reason such as if the AV observed is really driven by the RCMs. This
further analysis can give users confidence on whether the AV they are observing is there for
the right reasons and if those underlying reasons fit their applications. To solve these intri-
cacies that may occur while analyzing or using RCMs, recent studies [6,7] have introduced
a new metric that compares the driving GCM biases to the difference between the RCMs
and the GCMs known as the RCM increment (RCMI), using the correlation coefficient. A
positive correlation indicates that the GCM biases dominate the observed added value,
while a negative correlation suggests that the RCM counteracts the GCM biases.

In recent years, the AV debate was made possible by a series of regional climate
modeling projects around different parts of the world [8–12], and was further revived by
the launch of the Coordinated Regional Downscaling Experiment (CORDEX) [13,14], under
the auspices of the World Climate Research Program (WRCP).The CORDEX project’s first
phase carried out a set of experiments, where reanalysis data from ERA-INTERIM and
the Coupled Model Intercomparison Project phase 5 (CMIP5) [15] Global Climate Models
(GCMs) were dynamically downscaled to produce historical and projection simulations
of at least 50 km resolution, over various domains, from which Africa was given the
highest priority.

The availability of CORDEX data over Africa has been of great interest to the African
climate community as it has given rise to various studies [16–21] over the continent.
Although most of these studies adopted direct assessment of RCMs with observations,
they have been instrumental in showing the ability of RCMs to reproduce key features
of the African climate system. Studies over Africa targeting and discussing the AV issue
have been scarce in the literature, but a few recent studies [22–26] have discussed and
addressed some aspects. This is particularly due to the lack of African scientists training on
these emerging and robust assessment methods, but more generally owing to the variable,
incomplete, and inhomogeneous availability of CORDEX phase I simulations from different
modelling centers [27]. These studies found that CORDEX RCM precipitation simulations
capture African rainfall characteristics; however, unavoidable biases are still present and
majorly due to process misrepresentation and observational uncertainties. The findings
also revealed the presence of AV by dynamically downscaled outputs.
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The aforementioned challenges related to data availability have been integrated into
the guidelines of the second phase of the CORDEX project, under the Common Regional
Experiment framework (CORDEX-CORE) [28,29]. The particularity of the CORDEX-CORE
project is the unprecedented high-resolution of its RCM outputs [30], with resolutions rang-
ing from 10–25 km and therefore reaching common satellite-based products’ resolutions.
With these high-resolution datasets, the availability of satellite-based observational datasets
with similar resolutions could be instrumental for better regional information distillation
over Africa, where such activities are often affected by the scarce and uneven density of
measurement networks [31].

In the present study, we investigate past climate seasonal precipitation biases reported
by CORDEX-CORE dynamically downscaled outputs, compared to their driving GCMs
over Africa, while accounting for observational uncertainties. We then extend the bias
analysis to the investigation of potential AV by the CORDEX-CORE RCMs to their driving
GCMs. The results are further regionalized based on African climate zones, for which a
statistical attribution is carried out to understand the origins of the locally observed AV at
the model level.

2. Materials and Methods
2.1. Study Area

This study investigates the possibility of AV by CORDEX-CORE RCMs over Africa,
which is known for its important fingerprint in the global climate system, and its insufficient
capacity to adapt to climate change impacts. Africa is also known for its heterogeneous
topographic features (see Figure 1) and its monsoonal climate system, making the area
ideal for investigating the AV by RCMs, as they usually integrate such local and fine-
scaled features.

Figure 1. Topographical map of the African domain, overlaid with the updated IPCC key regions for
subcontinental climate analysis [32].
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The inhomogeneous aspect of global climate features and the difficulty of converging
and consistently comparing results across studies have recently triggered the need to
specify climatologically consistent and coherent subcontinental zones and regions. The
Intergovernmental Panel for Climate Change (IPCC) regions for subcontinental climate
analysis have been recently updated to address this problem [32]. This update has an
impact on how we understand the African climate zones with well-defined new climate
regions such as the Sahara (SAH), West Africa (WAF), Central Africa (CAF), Northern
East Africa (NEAF), Southern East Africa (SEAF), Western South Africa (WSAF), and
Eastern South Africa (ESAF) as shown on Figure 1. This new repartition has been recently
employed in one of the first papers [33] concerning CORDEX-CORE data assessment. It is
employed in the context of this study to provide a continuum of efforts towards consistently
investigating RCMs’ potentialities and applications.

2.2. Climate Simulation and Observation Datasets

Two RCMs, produced at an unprecedented high resolution (0.22◦ ≈ 25 km grid size)
are used in this study, to assess if they add some value to the driving GCMs. The set of
RCMs used as a testbed includes the REMO2015 Regional Climate Model [34,35] and the
COSMO-CLM Regional Climate Model (CCLM) [36]. The two RCMs were chosen out of
the CORDEX-CORE ensemble because they share the same driving data. For instance, the
CCLM and REMO2015 RCMs are driven by ERA-INTERIM for the evaluation run (1979–
2016) and three GCMs for the historical runs and projections. Further information about the
two RCMs and their driving datasets are given in Table 1. Moreover, the high resolution of
the CORDEX-CORE simulations makes the evaluation exercise more challenging, because
of the scarcity of gauge networks, and the resulting high uncertainties and resolution
variety within the set of available gridded rainfall products over Africa.

Table 1. Regional Climate Models (RCMs) of the CORDEX-CORE ensemble, and their driving Global Climate Models (GCM) and
reanalysis used in this study.

Model Type Name Institution Spatial Resolution Vertical Levels

GCM HadGEM2-ES Met Office Hadley Centre (MOHC) 1.25◦ × 1.85◦ 38

GCM MPI-ESM-LR Max Plank Institute for Meteorology
(MPI-M) 1.8653◦ × 1.875◦ 47

GCM NorESM1-M Norwegian Climate Centre (NCC) 1.8947◦ × 2.5◦ 26

REANALYSIS ERA-INTERIM European Centre for Medium-Range
Weather Forecasts (ECMWF) 0.75◦ × 0.75◦ 60

RCM REMO2015 Climate Service Center Germany
(GERICS) 0.22◦ × 0.22◦ 27

RCM CCLM5-0-15
KIT, Karlsruhe, Germany in collaboration

with the CLM-Community
(CLMcom-KIT)

0.22◦ × 0.22◦ 35

To account for observational uncertainty while employing datasets with highly similar
resolutions to those of the CORDEX-CORE simulations, we chose the Climate Hazard
Infrared Precipitation with Stations (CHIRPS) [37] daily product at 0.25◦, and the Global Pre-
cipitation Climatology Centre (GPCC) full data monthly product version 2018 at 0.25◦ [38].
The GPCC product is purely gauge measurement-based, while the CHIRPS product is
satellite and gauge measurement blending-based. The CHIRPS data are available from
1981 to 2020 at daily temporal resolution, and the GPCC data are available from 1891 to
2016 at monthly temporal resolution.

2.3. Methodology

The precipitation regional simulations and their driving GCMs were acquired from
the Earth System Grid Federation (ESGF) website through the German node [39]. The
GPCC dataset was acquired from the Deutscher Wetterdienst (DWD) website [40] and the
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CHIRPS dataset from the UC Sancta Barbara Climate Hazard Group’s website [41]. In order
to allow grid-wise comparison, the driving GCM and the RCM datasets are interpolated
to the observational datasets grid (0.25◦) using the bilinear remapping functions from the
Climate Data Operators version 1.9.7 (CDO 1.9.7), developed by the Max Plank Institute of
Meteorology. The daily CHIRPS precipitation data are aggregated to a monthly total using
the monthly sum function from CDO 1.9.7.

Both observational and modeled datasets from 1981 to 2005 are aggregated to the sea-
sonal timescale considering December-January-February (DJF), March-April-May (MAM),
June-July-August (JJA), and September-October-November (SON) seasons. To investigate
discrepancies that may be inherent to the climate simulations and picture the effectiveness
of the RCMs in reducing the GCM ones, the mean seasonal bias is computed and plotted
for all the climate simulations using the following formula:

MBGCM/RCM = GCM/RCM − OBS (1)

where GCM/RCM is the seasonal mean of the GCM or the RCM being considered and
OBS is the seasonal mean of the observational reference.

To further quantify the extent to which the RCMs add value to the GCMs, we approach
the AV based on suggestions by [5] where the AV is calculated as a comparison of the
distance between a chosen statistic of the GCMs and observations, and the distance between
the same statistic of the RCMs and observations. The AV formula using the mentioned
approach is given as follow:

AV = d(XGCM, XOBS)− d(XRCM, XOBS) (2)

where the XGCM and the XRCM respectively represent the chosen statistic for the GCM
and the RCM, and XOBS represents the same statistic for the observational reference. For
this study, the seasonal mean is used as the statistic and the distance metrics chosen
to be the mean squared error, with a normalization factor as proposed by [22] in the
following formula:

AV =
(XGCM − XOBS)

2 − (XRCM − XOBS)
2

Max
(
(XGCM − XOBS)

2, (XRCM − XOBS)
2
) (3)

where the AV values are restricted to values between −1 and 1. The AV values greater
than zero are considered positive AV values, while AV values less than zero are considered
negative AV values. The AV calculations and plotting are carried out on a grid-wise
basis for each season over Africa. A 10% significance level threshold corresponding to
AV values between −0.1 and 0.1 is used to distinguish positive AV and negative AV
from non-significant AV values. Significant positive AV values are greater than 0.1 and
significant negative AV values are lower than −0.1. These thresholds therefore allow a
better quantification of the proportion of positive, negative, and non-significant AV.

To allow better usage of the RCMs for regional to local decision making and other
related applications, we classify the seasonal AV results by regions, using the updated
IPCC reference regions for subcontinental climate analysis. For each region, the AV spatial
coverage (AVC) of positive, negative, and non-significant AV at a 10% significance level is
introduced based on the following formula:

AVCpos/neg/ns =
Npos/neg/ns

Ntot
× 100 (4)

where AVCpos/neg/ns represents the positive, the negative, and the non-significant AV cov-
erage for a given region, considering a specific season; Npos/neg/ns represents the number
of pixels or grids exhibiting a positive, a negative, or a non-significant AV for the given
region; and Ntot represents the total number of pixels or grids for the considered region.
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To understand how the driving GCM and the dynamical downscaling process impact
the AV results, we calculate the correlation coefficient between the GCM biases and the
RCM increment (RCMI). A positive correlation suggests an impact of the GCM biases on
the AV, while a negative one suggests that the RCM counteracts the GCM biases. The
different equations are given as follow:

RCMI = RCM − GCM (5)

CC =
∑N

i=1
(
MBGCMi − MBGCM

)(
RCMIi − RCMI

)√
∑N

i=1
(
MBGCMi − MBGCM

)2
√

∑N
i=1
(
RCMIi − RCMI

)2
(6)

where the RCMI represents the RCM increment; RCM and GCM, the seasonal mean of
the RCM and the GCM, respectively; N the number of grids over the considered region;
MBGCMi the mean bias at each grid point; MBGCM the overall average of the mean biases
at each grid point of the region; RCMIi the RCM increment at each grid point of the
region; and RCMI the overall average of the RCM increment at each grid point of the
considered region.

3. Results
3.1. Spatial Seasonal Bias and Added Value

Figure 2 depicts the spatial seasonal biases of both the driven GCMs and the RCMs
outputs for the DJF season, considering CHIRPS data as the reference. The spatial seasonal
bias results in DJF (Figure 2), show a southern-wise shift of the observed rain belt by
CHIRPS, resulting in wet biases over South Africa for all the driving GCMs (Figure 2d–f),
although pronounced with NorESM1-M (Figure 2f). These biases are also present in all the
downscaled outputs (Figure 2g–l), with a higher coverage by REMO outputs (Figure 2j–l)
compared to those of CCLM (Figure 2g–i) depending on the driving GCMs. Dry biases are
found in HADGEM2-ES, MPI-ESM-LR, and all CCLM-based results over Southern Central
Africa and are extended to Eastern South Africa for CCLM outputs. Dry biases remain dom-
inant in the driving GCMs and result in an average bias ranging from −12.66 mm/month
to 1.08 mm/month, while wet biases are major in the downscaled output with an average
bias ranging from −10.24 mm/month to 96.24 mm/month. As reported in Table 2, REMO
tends to report a higher wet average bias compared to CCLM when HADGEM2-ES and
NorESM1-M are used as driving data. The error amplitude results tend to show an average
error increase in the downscaled output, which is in the order of 10 to 20 mm/month,
thus showing that the averaged bias results may have been subjected to positive and
negative bias cancellation. The results from Table 2 for the DJF season also show the effect
of observational uncertainties on the error amplitude, as CHIRPS-based results tends to be
different from GPCC-based results by an additive factor of roughly 10 mm/month.

Figure S1 reports the AV by REMO and CCLM downscaling schemes to the driving
GCMs in the DJF season, while using CHIRPS and GPCC data as references. The results
show a noticeable bias reduction by CCLM (Figure S1a–f) and REMO (Figure S1g–l) RCMs
over South Africa, as high AV values are reported throughout the RCMs ensemble. The
systematic reduction of pronounced NorESM1-M biases is evident with a consistent positive
AV pattern covering the DJF rain-belt area and the Southern part of Africa, for all the
RCMs. Moreover, results by Figure S1 suggest the presence of observational uncertainties,
especially over the Sahel and differences in the AV pattern, depending on the driving
GCMs. These results are in line with the AV coverage (AVC) results reported in Table 3,
where positive and negative AVC differences ranging from 10 to 34% are observed between
CHIRPS and GPCC-based results, depending on the driving GCM.
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Figure 2. Bias of monthly precipitation in DJF, compared to CHIRPS, for GCMs, CCLM, and REMO: (a) CHIRPS (b) CCLM
(ERA-INT)–CHIRPS, (c) REMO (ERA–INT)-CHIRPS, (d) HadGEM2–ES–CHIRPS, (e) MPI-ESM–LR–CHIRPS, (f) NorESM1–
M-CHIRPS, (g) CCLM (HadGEM2–ES)-CHIRPS, (h) CCLM (MPI–ESM–LR)–CHIRPS, (i) CCLM (NorESM1–M)–CHIRPS,
(j) REMO (HadGEM2–ES)–CHIRPS, (k) REMO (MPI–ESM–LR)–CHIRPS, (l) REMO (NorESM1–M)–CHIRPS.
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Table 2. Spatial statistics averaged over the whole African domain, considering land grid points. The statistics are provided
in mm/month.

DJF
HadGEM2-ES CCLM5/REMO MPI-ESM-LR CCLM5/REMO NorESM1-M CCLM5/REMO

CHIRPS GPCC CHIRPS GPCC CHIRPS GPCC CHIRPS GPCC CHIRPS GPCC CHIRPS GPCC

BIAS −2.83 −0.32 18.26/85.84 21.2/88.6 −1.2 1.08 29.2/90.07 32.34/96.24 −12.66 −12.12 −10.24/11.81 −8.66/14.15
RMSE 47.56 56.02 53.27/58.61 61.61/70.49 46.83 53.73 54.3/60.37 62.56/70.96 60.38 65.98 55.31/64.37 62.58/72

MAM

BIAS −12.84 −12.77 22.35/54.77 26.24/58.34 −2.7 −2.15 24.47/65.24 28.66/70.43 −1.26 −1.76 8.81/34.52 11.39/38.54
RMSE 47.43 55.17 74.01/66.92 86.57/81.7 49.2 55.87 62.31/65.23 74.33/78.94 55.98 63.24 64.55/66.94 73.57/81.13

JJA

BIAS −57.15 −51.13 −3.53/54.43 4.88/64.11 −34 −30.29 6.93/55.1 14.78/61.63 −46.57 −42.06 −25.8/1.23 −17.19/11.35
RMSE 35.43 37.98 79.36/68.68 93.73/82.72 36.79 41.1 62.89/53.09 72.51/61.92 59.35 60.05 64.16/54.69 70.47/62.8

SON

BIAS −24.28 −21.64 38.2/79.96 45.15/85.63 −4.36 −4.45 29.61/56.1 33.53/58.26 −22.11 −21.15 −1.66/−3.55 2.2/−0.98
RMSE 40.75 48.6 88.16/73.29 105.35/90.68 38.28 46.55 65.26/57.44 77.13/69.15 54.63 58.08 56.47/47.86 65.64/55.81

Table 3. Added value coverage in percentage for Africa’s land grid points at 10% significance level.

RCM Output Negative AV Non-Significant AV Positive AV

DJF

CHIRPS
CCLM5/REMO(HadGEM2-ES) 27.49/40.59 7.34/7.54 65.17/51.87
CCLM5/REMO(MPI-ESM-LR) 41.38/43.03 7.26/7.33 51.36/49.64
CCLM5/REMO(NorESM1-M) 85.52/85.59 2.95/1.33 11.53/13.08

GPCC
CCLM5/REMO(HadGEM2-ES) 42.52/56.87 4.8/3.38 52.68/39.75
CCLM5/REMO(MPI-ESM-LR) 56.97/57.76 6.96/3.71 36.07/38.53
CCLM5/REMO(NorESM1-M) 52.12/49.13 6.16/3.82 41.72/47.05

MAM

CHIRPS
CCLM5/REMO(HadGEM2-ES) 38.02/46.13 8.58/9.56 53.39/44.31
CCLM5/REMO(MPI-ESM-LR) 39.67/54.24 7.08/7.43 53.24/38.33
CCLM5/REMO(NorESM1-M) 74.61/77.65 1.12/0.86 24.27/21.49

GPCC
CCLM5/REMO(HadGEM2-ES) 68.06/73.12 4.5/4.69 27.44/22.19
CCLM5/REMO(MPI-ESM-LR) 50.79/64.97 5.05/3.54 44.16/31.49
CCLM5/REMO(NorESM1-M) 41.03/50.24 4.7/4.17 54.27/45.6

JJA

CHIRPS
CCLM5/REMO(HadGEM2-ES) 37.29/49.34 7.26/6.49 55.45/49.34
CCLM5/REMO(MPI-ESM-LR) 31.59/43.67 10.01/7.36 58.4/48.98
CCLM5/REMO(NorESM1-M) 85.29/71.2 4.74/1.81 9.97/26.99

GPCC
CCLM5/REMO(HadGEM2-ES) 51.91/62.72 3.6/2.78 44.49/35.51
CCLM5/REMO(MPI-ESM-LR) 43.17/60.63 7.01/2.47 49.82/36.9
CCLM5/REMO(NorESM1-M) 52.68/39.13 8.08/5.4 39.25/55.47

SON

CHIRPS
CCLM5/REMO(HadGEM2-ES) 34.02/50.59 7.75/8.24 58.23/41.17
CCLM5/REMO(MPI-ESM-LR) 44.56/63.98 7.62/7.62 47.56/28.39
CCLM5/REMO(NorESM1-M) 79.35/73.88 12.6/5.63 8.05/20.49

GPCC
CCLM5/REMO(HadGEM2-ES) 51.47/70.9 4.03/1.93 44.49/27.17
CCLM5/REMO(MPI-ESM-LR) 59.99/85.27 3.63/3.32 36.38/11.41
CCLM5/REMO(NorESM1-M) 40.81/37.42 19.05/10.62 40.14/51.95

Figure 3 reports spatial seasonal biases of both the driving GCMs and the dynam-
ically downscaled output for the MAM season with CHIRPS data as reference. MAM
season’s results (Figure 3), majorly indicate an underestimation tendency in reproduc-
ing the observed rain belt by CHIRPS. MPI-ESM-LR (Figure 3e) slightly overestimates
observed precipitation over Western Central Africa and South Africa, while pronounced
overestimation tendencies by NorESM1-M (Figure 3f) are persistent over Central and South
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Africa. Results by CCLM outputs show a typical underestimation of the MAM season’s
rain belt by both ERA-INT and GCM-driven results (see Figure 3b,c,g–l), which tend to
be pronounced compared to driving GCMs HADGEM2-ES (Figure 3d) and MPI-ESM-LR
(Figure 3e). REMO dynamically downscaled structural biases (Figure 3c) report an over-
estimation pattern over Western Central Africa, the West Africa coast, and South Africa,
which is evident in all the GCM-driven outputs (Figure 3g–l), with higher amplitudes over
South Africa for NorESM1-M based outputs (Figure 3i,l). Underestimation tendencies are
generally observed in the driving GCMs, while overestimation tendencies are depicted
by the downscaled outputs as Table 2 reports an average bias ranging from −12.84 to
−1.26 mm/month for the GCMs, and values ranging from 8.81 to 70.43 mm/month for the
downscaled outputs.

Figure S2 depicts the AV by CCLM and REMO RCMs to the driving GCMs with
CHIRPS and GPCC as reference data. In the MAM season, AV results (Figure S2) are
consistent with the bias patterns from Figure 3, highlighting the net reduction of the GCM
biases by NorESM1-M for the two RCMs. AV differences between CCLM (Figure S2a–f)
and REMO (Figure S2g–l) are mainly found over Western Central Africa for all the simu-
lations, and over South Africa when HADGEM2-ES (Figure S2a,d,g,j) is used as forcing.
Observation-related uncertainties are also observed, especially over the Sahel region for
HADGEM2-ES (Figure S2a,d,g,j) and MPI-ESM-LR (Figure S2b,e,h,k) driven RCMs’ out-
puts. The AVC results reported in Table 3 indicate observation-based AVC differences
ranging from 6 to 30% for the coverage of positive AV over Africa. Differences between
CCLM and REMO-based outputs tend to vary depending on the driving GCM. However,
CCLM-based downscaled precipitation shows a higher positive AVC and a lower nega-
tive AVC compared to REMO results, regardless of the driving GCM and the reference
data used.

Figure 4 shows the spatial biases of the driving GCMs and the dynamically down-
scaled outputs using CHIRPS data as the reference. In the JJA season (Figure 4), the
observed monsoonal belt is underestimated by the driving GCMs (Figure 4d–f) with overes-
timation exceptions for MPI-ESM-LR (Figure 4e) and NorESM1-M (Figure 4f) over the West
Africa coast and Western Central Africa. The mentioned wet biases are depicted in both
CCLM and REMO simulations driven by the GCMs. However, they are marked in REMO
simulations (Figure 4j–l) as a result of structural biases of the same nature which are com-
pounded with those of the GCMs. By the same token, dry and wet biases are found along
the rain belt, especially over coastal West Africa, Northern Central and East Africa, with
CCLM-based outputs (Figure 4g–i). The dry biases are also present in REMO simulations
(Figure 4j–l) with high amplitudes over East Africa in accordance with its reanalysis-driven
results (Figure 4c). Dry biases in the driving GCMs remain present with an averaged bias
ranging from −57.15 to −30.29 mm/month, which is relatively higher than the DJF and
MAM season results. Table 2 reports a significant reduction of the averaged bias observed
with the driving GCMs in CCLM dynamically downscaled outputs, while a slight increase
is observed with REMO outputs, except for NorESM1-M-driven results. However, the
spatially averaged errors by the dynamically downscaled outputs remain higher than the
driving GCM ones. This contrast between the errors and the bias results is mainly due
to the balance between underestimation and overestimation tendencies in downscaled
outputs and particularly in CCLM-based outputs.
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Figure 3. Bias of monthly precipitation in MAM, compared to CHIRPS, for GCMs, CCLM, and REMO: (a) CHIRPS (b) CCLM
(ERA–INT)–CHIRPS, (c) REMO (ERA-INT)-CHIRPS, (d) HadGEM2-ES-CHIRPS, (e) MPI-ESM-LR-CHIRPS, (f) NorESM1-
M-CHIRPS, (g) CCLM (HadGEM2–ES)-CHIRPS, (h) CCLM (MPI–ESM–LR)-CHIRPS, (i) CCLM (NorESM1–M)–CHIRPS,
(j) REMO (HadGEM2–ES)-CHIRPS, (k) REMO (MPI–ESM–LR)–CHIRPS, (l) REMO (NorESM1–M)–CHIRPS.
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Figure 4. Bias of monthly precipitation in JJA, compared to CHIRPS, for GCMs, CCLM, and REMO: (a) CHIRPS (b) CCLM
(ERA–INT)–CHIRPS, (c) REMO (ERA–INT)-CHIRPS, (d) HadGEM2–ES–CHIRPS, (e) MPI-ESM–LR–CHIRPS, (f) NorESM1–
M-CHIRPS, (g) CCLM (HadGEM2–ES)-CHIRPS, (h) CCLM (MPI–ESM–LR)-CHIRPS, (i) CCLM (NorESM1–M)–CHIRPS,
(j) REMO (HadGEM2–ES)–CHIRPS, (k) REMO (MPI–ESM–LR)–CHIRPS, (l) REMO (NorESM1–M)–CHIRPS.
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Figure S3 depicts AV by CCLM and REMO dynamical downscaling schemes to the
driving GCMs for the JJA season, considering CHIRPS and GPCC data as references. The
AV results by Figure S3 converge with findings by Figure 4 and suggest that dynamical
downscaling by CCLM (Figure S3a–f) and REMO (Figure S3g–i) result in a degradation of
biases by the driving GCMs, alongside the monsoonal rain belt, although sub-areas with
positive AV exist. Sub-regional observational uncertainties and RCMs’ specific fingerprints
are still observed; however, the general negative AV tendency is evident along the mon-
soonal rain belt. The AVC for positive AV is however closed or greater than 50%, especially
for RCMs driven by HADGEM2-ES and MPI-ESM-LR as reported by Table 3. Observational
uncertainties’ impacts on the AV results are typically observed for NorESM1-M-driven
RCM results (nearly 30%) as reported in Table 3, and generally participate in the 8 to 30%
difference in the AVC results.

Figure 5 shows the spatial bias of the GCMs and their dynamically downscaled
outputs in the SON season, while using CHIRPS as the reference data. In the SON season
(Figure 5), the observed rain band is majorly overestimated in all the simulations. Among
the driving GCMs (Figure 5d–f), a misplacement of the rain belt, similar to DJF and MAM
seasons, is observed with NorESM1-M (Figure 5f), while HADGEM2-ES (Figure 5d) and
MPI-ESM-LR (Figure 5e) depict a less pronounced wet bias pattern. These wet biases are
also present in REMO-based outputs (Figure 5j–l) but slightly reduced in CCLM-based
outputs (Figure 5g–i). Dry structural biases by ERA-INT-driven CCLM (Figure 5b) and
REMO outputs (Figure 5c) are persistent in the GCM driven simulations. However, for
REMO downscaled outputs (Figure 5j–l), the persistence of structural biases seems to be
GCM dependent. The dominance of dry biases in the GCMs’ results is further confirmed
by the average bias results (Table 2) ranging from −24.28 to −4.36 mm/month. The
downscaled outputs report a positive average bias ranging from −0.98 to 85.63 mm/month
suggesting the dominance of wet biases. Averaged error amplitudes by CCLM and REMO
in the SON season are the highest, especially when HADGEM2-ES and MPI-ESM-LR are
used as boundary conditions.

Figure S4 depicts the AV by CCLM and REMO simulations to the driving GCMs,
with CHIRPS and GPCC as reference data in the SON season. According to Figure S4’s
results, the reduction of the driving GCMs’ biases by both REMO (Figure S4a–f) and CCLM
(Figure S4g–l) is evident, particularly when driven by NorESM1-M (Figure S4c,f,i,l). GCM-
driven CCLM simulations show a slightly better positive AV than REMO over coastal West
Africa, especially when HADGEM2-ES and MPI-ESM-LR are used as boundary conditions.
Observational uncertainties are also persistent in the SON season, especially over the Sahel
and contribute to about 10 to 33% differences in AVC results for positive AV as reported in
Table 3. The uncertainties’ effects on the AVC results are particularly higher (more than
30% difference) in NorESM1-M-driven results.

Overall, the results obtained for the ensemble mean of the observations prod-
ucts (Figure S5a,e,i,m), the driving GCMs (Figure S5b,f,j,n), and the RCMs outputs
(Figure S5c,g,k,o) suggest a general improvement of the RCMs’ ensemble mean compared
to the individual simulations. The RCMs’ dry and wet biases are persistent at the mon-
soonal rain-belt positions in MAM (Figure S5g) and JJA (Figure S5k). Such biases are
pronounced over East Africa in the MAM season (Figure S5g), and over Northern Central
Africa in the JJA season (Figure S5k). These findings are further confirmed in the AV results
(Figure S5d,h,l,p), which depict the reduction of GCM-driven biases in the DJF (Figure S5b)
and SON (Figure S5n) season in the dynamically downscaled outputs, especially over
South Africa.
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Figure 5. Bias of monthly precipitation in SON, compared to CHIRPS, for GCMs, CCLM, and REMO: (a) CHIRPS (b) CCLM
(ERA–INT)-CHIRPS, (c)REMO (ERA–INT)-CHIRPS, (d) HadGEM2–ES–CHIRPS, (e) MPI–ESM–LR–CHIRPS, (f) NorESM1–
M-CHIRPS, (g) CCLM (HadGEM2–ES)-CHIRPS, (h) CCLM (MPI–ESM–LR)–CHIRPS, (i) CCLM (NorESM1–M)–CHIRPS, (j)
REMO (HadGEM2–ES)–CHIRPS, (k) REMO (MPI–ESM–LR)–CHIRPS, (l) REMO (NorESM1–M)–CHIRPS.

3.2. Sub Regional Annual Cycles, Interannual Variability and Added Value

In this section, sub-regional climatic features reproducibility by the RCMs and their
driving GCMs is investigated. The analysis is performed by considering the recent sub-
continental regions updates by the IPCC provided in Figure 1, with a focus on the an-
nual cycle (Figure 6), the seasonal interannual variability (Figure 7), and the regional
AV (Figures 8 and 9). For the annual cycle results, only the GCMs’ ensemble mean, the
individual RCMs’ ensemble mean, and the overall RCMs’ ensemble mean are considered
alongside the observations and the evaluation runs driven by ERA-INT.
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Over the SAH region (Figure 6a), the unimodal distribution of rainfall is well captured
by most climate simulations. Observational uncertainties are depicted mainly in July,
August, and September, thus explaining the observational sensitivities found over the
region in the previous section. CCLM dynamically downscaled outputs overestimate the
annual cycle, while REMO-based outputs underestimate it. The ensemble of all the RCMs
tends to improve the individual RCMs results.

The annual cycle of rainfall over the WAH region, reported in Figure 6b, indicates
that the driving GCMs show better performances in capturing the observed unimodal
rainfall pattern and the related quantities. CCLM and REMO outputs driven by ERA-INT
overestimate monthly rainfall quantities and tend to depict a bimodal distribution, which
results in a displacement of the rainfall peak. The August peak is, however, captured
by GCM-driven REMO outputs but missed in CCLM ones. The unimodal distribution is
improved by the RCMs’ ensemble mean although it depicts a peak earlier in July.

The Central African cycle (Figure 6c) depicts rainfall throughout the year with higher
quantities in the MAM season and the SON season. All the climate simulations capture
to some extent the monthly rainfall quantities. The driving GCMs satisfactorily capture
the April and the October peak, but show some deviations in the rainfall quantities. GCM-
driven CCLM outputs show better performances compared to REMO. The ensemble mean
of the RCMs tends to improve REMO results, and remains better than CCLM results.

Over NEAF (Figure 6d), all the climate simulations capture the annual cycle. The
simulations mostly underestimate the observed monthly rainfall. For the ERA-INT-driven
outputs, CCLM tends to depict better results compare to REMO. This tendency is also
observed in the GCM-driven results, especially in the JJAS season, where CCLM outputs
outperform REMO ones. The RCMs’ ensemble mean tends to be better than REMO
simulations, but not as good as the CCLM output as it was found over CAH.

The annual cycle results in SEAF (Figure 6e) depict a good reproduction of the overall
cycle and specific peaks by ERA-INT-driven simulations. Major deviations by both the
driving GCMs and their dynamically downscaled outputs are observed in the MAM season
and the OND season. The highest biases are observed in October. Consequently, the RCMs’
ensemble mean remains highly biased, although better than CCLM results.

Over WSAF (Figure 6f), the ensemble of simulations captures the overall annual cycle
despite some discrepancies. This is true over the DJFMA season, where the peaks in
January and March are not well captured. Thus, this results in a rainfall peak misplacement
in March. The RCMs’ ensemble mean also misses the March peak but tends to show better
results compared to both CCLM and REMO.

Similar to WSAF, ESAF’s annual cycle (Figure 6g) is well captured by all the simula-
tions, but biases still exist in the DJFMA season. For instance, all the simulations and the
RCMs’ ensemble mean miss the January peak.

The seasonal year-to-year variability results (Figure 7) further confirm the annual
cycle results. As for the seasons with rainfall peaks, each sub-area tends to show higher
variability in the downscaled results compared to the driving GCMs. This is the case over
the SAH (Figure 7a) and WAF (Figure 7b) regions for the JJA season, over NEAF (Figure 7d)
for the SON season, and over SEAF (Figure 7e), WSAF (Figure 7f), and ESAF (Figure 7g) for
the DJF season. Observational uncertainties in terms of interannual variability are found
over all the regions except CAF (Figure 7c) and NEAF (Figure 7d). Underestimation and
overestimation of the variability is observed for the climate simulations compared to the
reference datasets. The RCMs generally show higher variability compared to the driving
GCMs, although some exceptions exist based on the GCM–RCM combination. This might
be due to the relatively high resolution of the RCMs, compared to the GCMs.
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Figure 6. Annual cycles of mean monthly precipitation (mm/month) over the regions indicated in Figure 1: (a) Sahara
(SAH) region, (b) West Africa (WAF) region, (c) Central Africa (CAF) region, (d) Northern East Africa (NEAF), (e) Southern
East Africa (SEAF), (f) Western South Africa, (g) Eastern South Africa (ESAF).
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Figure 7. Seasonal variability (mm/month) over the regions indicated in Figure 1: (a) Sahara (SAH) region, (b) West Africa
(WAF) region, (c) Central Africa (CAF) region, (d) Northern East Africa (NEAF), (e) Southern East Africa (SEAF), (f) Western
South Africa, (g) Eastern South Africa (ESAF).
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Figure 8. Added value coverage percentage per sub-region indicated in Figure 1 with GPCC as the observational reference.
(a–d) Sahara (SAH) region, (e–h) West Africa (WAF) region, (i–l) Central Africa (CAF) region, (m–p) Northern East Africa
(NEAF), (q–t) Southern East Africa (SEAF), (u–x) Western South Africa, (y–ab) Eastern South Africa (ESAF).
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Figure 9. Added value coverage percentage per sub-region indicated in Figure 1 with CHIRPS as the observational reference.
(a–d) Sahara (SAH) region, (e–h) West Africa (WAF) region, (i–l) Central Africa (CAF) region, (m–p) Northern East Africa
(NEAF), (q–t) Southern East Africa (SEAF), (u–x) Western South Africa, (y–ab) Eastern South Africa (ESAF).

The AV coverage (AVC) results for each region and season compared to GPCC and
CHIRPS datasets (Figures 8 and 9) indicate observational uncertainty-related sensitivity,
especially over SAH (Figures 8a–d and 9a–d) and WAF (Figures 8e–h and 9e–h). The AVC
generally depends on the season; the driving GCM and the RCM model used. It is, however,
worth mentioning the higher coverage (AVC > 50%) over SEAF (Figures 8q–t and 9q–t),
WSAF (Figures 8u–x and 9u–x), and ESAF (Figures 8y–ab and 9y–ab), for almost all the sea-
sons. Over these regions, RCMs driven by NorESM1-M remain mostly lower (AVC<50%).
REMO-based simulations tend to have the best performances over SAH (Figures 8a–d
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and 9a–d), WAF (Figures 8e–h and 9e–h), and CAF (Figures 8i–l and 9i–l), while CCLM
seems to be better over NEAF (Figures 8m–p and 9m–p), SEAF (Figures 8q–t and 9q–t),
WSAF (Figures 8u–x and 9u–x), and ESAF (Figures 8y–ab and 9y–ab). The relatively higher
number of zones where CCLM-based simulations tend to show superior results, confirm
global AV results presented in Table 3, and suggest better positive AVC by CCLM-based
output compared to REMO. Figures 8 and 9 results, however, reinforce the Table 3 results
on the fact that REMO-based simulations remain superior when driven by NorESM1-M.

3.3. Seasonal Model Contribution Analysis

In this section, the contribution of the GCMs and the dynamical downscaling process is
investigated by the means of the sign of the correlation coefficient between the GCM biases
and RCM increment (RCMI). The results per seasons, RCMs, sub-regions, and reference
data are shown in Figures 10 and 11.

The key noticeable feature, revealed by Figures 10 and 11 is the significant contribution
of the dynamical downscaling to the AV results. Slight differences are found depending on
the reference data used, but the relatively high impact of the RCMs on the driving GCMs is
evident in all the results. This feature is predominant over SEAF (Figures 10q–t and 11q–t),
WSAF (Figures 10u–x and 11u–x), and ESAF (Figures 10y–ab and 11y–ab) sub-regions,
where relatively high AVC (>50%) is observed (see Figures 8 and 9). An exception to this
general feature is the findings in the MAM season over WSAF (Figures 10v and 11v), where
HADGEM2-ES tends to influence the RCMs’ results with a positive correlation.

The influencing impact of GCMs on the RCMs’ results is frequent over NEAF, CAF,
WAF, and SAH. This is the case, especially in the DJF and MAM seasons when NEAF
(Figures 10m,n and 11m,n), CAF (Figures 10j and 11j), and WAF (Figures 10f and 11f) are consid-
ered, and in JJA and SON when CAF (Figures 10k,l and 11k,l) and SAH (Figures 10c,d and 11c,d)
are considered. These findings are, however, highly dependent on the GCM–RCM combi-
nation. Beyond the GCMs’ influencing factor, observational sensitivities are also present,
especially regarding every reference data specific correlation amplitude.

Cases with zero or near zero correlation coefficients are also present, although very
rare in terms of occurrences. This scenario is observed in GPCC (Figure 10) and CHIRPS
(Figure 11) observational products-based results and indicates different and uncorrelated
trajectories of the GCMs’ biases and the dynamically downscaled ones. However, this
typical result should be taken with caution because, in the case of the HADGEM2-ES-
driven CCLM result in DJF over the SAH region (Figures 10a and 11a), the correlation is
sensitive to the reference data used. A zero correlation is observed when GPCC is used
as the reference (Figure 10a), but a negative correlation is observed when CHIRPS is used
(Figure 11a). Although the interpretation of the impact of observational uncertainties on
the correlation coefficient results remains difficult, one fundamental aspect that may be
under looked in such a scenario is the fact that the correlation we are looking for is linear,
and knowing the non-linear nature of some processes within the climate system suggest
that a non-linear correlation may exist.



Remote Sens. 2021, 13, 2058 20 of 26

Figure 10. Correlation coefficient between the GCM/GPCC biases and the RCM increments over the regions indicated in
Figure 1: (a–d) Sahara (SAH) region, (e–h) West Africa (WAF) region, (i–l) Central Africa (CAF) region, (m–p) Northern
East Africa (NEAF), (q–t) Southern East Africa (SEAF), (u–x) Western South Africa, (y–ab) Eastern South Africa (ESAF).
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Figure 11. Correlation coefficient between the GCM/CHIRPS biases and the RCM increments over the regions indicated in
Figure 1. (a–d) Sahara (SAH) region, (e–h) West Africa (WAF) region, (i–l) Central Africa (CAF) region, (m–p) Northern
East Africa (NEAF), (q–t) Southern East Africa (SEAF), (u–x) Western South Africa, (y–ab) Eastern South Africa (ESAF).

4. Discussion

The recent release of the CORDEX-CORE project datasets, as the response to the need
for high-resolution climate data supply, is timely as the conclusions from 30 years’ worth
of research in regional climate modeling [1,42] emphasized such a crucial demand. In this
study, we focused on evaluating CORDEX-CORE precipitation datasets and their potential
in reproducing observed Africa’s climate features and adding value to the coarse GCMs
from which they have been downscaled. The mean seasonal biases from CORDEX-CORE
datasets indicated a relatively good skill in capturing spatial and temporal precipitation
characteristics over Africa. Unavoidable biases have been encountered depending on the
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different seasons and sub-areas of Africa; the relative amplitudes of the biases depicted
a good caption of the seasonal African rain bands over Africa. Compared to the driving
GCMs, CCLM and REMO outputs depicted a good correction of spatially misplaced rainfall
bands by the GCMs, especially over South Africa, resulting in a higher AV. The spatially
averaged bias results suggest a dominance of dry biases in the GCMs and wet biases in the
dynamically downscaled outputs.

Dry and wet biases by the RCMs were observed in each season, especially at the rain
bands positions. For these rain abundant areas, the RCMs tended to show worsened results
compared to the driving GCMs, resulting in negative AV values. These dry and wet spatial
biases were visible in the sub-regional annual cycles, and probably contributed to major
misplacement of rainfall peaks, depending on the GCM–RCM combination. The ensemble
mean of the dynamically downscaled outputs generally depicted slightly improved results
compared to individual GCM–RCM simulations; although, exceptions were found in
certain areas.

The sub-regional results reported year-to-year rainfall variability features in line with
annual cycle results. The year-to-year variability by RCM outputs tended to be generally
higher than the driving GCMs, as one could have expected, given the differences in
resolutions. The variability features also depicted, in line with the annual cycle results
and the spatial biases, the presence of uncertainties between GPCC and CHIRPS datasets
reflected in the global and regional AV results, especially in the DJF and MAM seasons.
Similar conclusions on the spatiotemporal biases, the annual cycle’s peak misplacement,
the negative AV by RCMs over rain abundant areas and seasons, and the presence of
observational uncertainties over Africa were previously reported in the literature [22]. The
same study concluded, however, on the absence of information, on the origin of the biases
especially as to whether the biases where inherited from the GCMs or introduced by the
RCM signal.

The extension of the present study, to the understanding of the possible reason for
such biases, by following the correlation coefficient sign-based approach by Kerkhoff et al.,
2015 and Sørland et al., 2018, led to the conclusion that the AV results obtained for both
CCLM and REMO are mostly the result of a significant modification of GCMs’ signals by
the RCM ones, thus explaining the dry bias and wet bias gap observed from the GCMs
to RCMs’ outputs. As the study proceeded by region and seasons, it appeared that the
GCM signals could drive the AV results in some regions and seasons. These conclusions
are, however, not exempted from the effect of observational uncertainties as the GCM bias
component used for the analysis depends on the observational data, and differences in
CHIRPS and GPCC data appeared to contribute to the 6 to 34% differences in positive AV
coverage results by the same RCM outputs depending on the season and the forcing data.

The correlation coefficient-based attribution results could explain the strong similari-
ties observed between the GCM-driven RCM biases and structural biases from reanalysis-
driven RCM outputs, over some areas and seasons. This explanation is also valid for
seasons and sub-regions where the GCM-driven RCMs tended to correct structural biases
by reanalysis-driven RCM outputs, as such improvements may be due to the influence of
the driving GCMs. Moreover, the variety of correlation coefficient results by the statistical
attribution approach depending on the GCM–RCM matrix suggest that the AV by the
RCMs may be related to how well the driving GCMs’ physics are integrated with the RCM
ones, and how well the GCMs and RCMs interact in the high-resolution setting of the
dynamical downscaling experiment [43].

Concerning the dynamical downscaling models used in this study, their contribution
to the observed biases may be due to missing or misrepresented processes such as flow
regimes, environmental effects, and land-atmosphere-ocean processes [35]. For Africa,
these missing or misrepresented processes may include the monsoon processes and the
deep convection [44,45].

However, it is worth mentioning that the AV discussed in this paper is specifically
related to the seasonal mean and should not serve as a conclusion on the general quality of
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CCLM and REMO RCMs. Further AV studies targeting other key features will be crucial
to infer a general conclusion. Quantitative approaches such as the one used in this study
are essential. Still, as emphasized by Di Luca et al., 2015, there is a need to devote efforts
towards searching for meaningful processes that are worth quantifying, especially in terms
of AV.

5. Conclusions

This paper has investigated the potential of CORDEX-CORE simulations in repro-
ducing the historical climate features observed by gauge and satellite-based observational
precipitation products over Africa. We then explored the potential of CORDEX-CORE
RCMs to add value to the driving GCMs from which they are derived. Beyond the AV
metrics often used, we introduced a statistical attribution method to study the contribution
of the driving GCMs and the dynamical downscaling approach to the AV observed. The
findings of the present study suggest that CORDEX-CORE simulations CCLM and REMO
can capture the rain-belt dynamics over Africa. However, unavoidable biases exist both
in terms of seasonal mean quantities and year-to-year seasonal variability, and can lead
to zonal misplacement of rainfall peaks, especially when considering gauge and satellite-
based observational annual cycles. The results of the present studies can be summarized
as follow:

• AV by CCLM and REMO simulations can be positive, negative, or non-significant (10%
significance level), based on the season, the sub-area, and the GCM–RCM combination.
The biases observed over rain abundant areas result in the dominance of negative AV
over such areas. CCLM and REMO have shown a systematic correction potential to
spatially misplaced rain bands, which contribute to a high AV, especially over Central
and South Africa in some seasons.

• The regional result revealed that REMO RCM outputs reported the best performances
over SAH, WAF, and CAF, while CCLM results were superior over NEAF, SEAF, WSAF,
and ESAF, in terms of spatial AV coverage for all the seasons. As AV results were
proven to be highly influenced by the RCM signals in the model contribution analysis,
one could be confident when using this RCM for local studies and applications, where
good seasonal performances are needed.

• Beyond the meaning of the model contribution analysis for the choice between RCMs
and GCMs, further implications for the GCM–RCM model chains were found. For
instance, the GCMs were influential to the RCMs’ outputs AV, especially in the DJF
and MAM seasons. The analysis also revealed the impact of observational uncertainty
on such statistical attribution approaches. It indicated, based on the mixed results
obtained per season, regions, and GCM–RCM combination, that the good integration
of the GCMs’ physics and the RCM ones, as well as how they both accommodate
the high-resolution settings of the downscaling experiments, could be major factors
of AV. However, missing and misrepresented processes in the RCMs should not be
discarded.

• It is important to recall that the AV results obtained in this study are exclusively
targeting seasonal mean statistics and that these results cannot be generalized. We
recommend that the AV studies for climate features and statistics relevant for VIA-CS
applications should be carried out both at the continental and regional level as a
continuum of the AV debate. It remains important to investigate AV concerning key
processes as a first step toward going beyond AV targeting general statistics.

For Africa, the unprecedented high-resolution of CORDEX-CORE RCMs, reaching
satellite observational data resolutions, is a window of opportunity for more thorough as-
sessment studies for the continent, as the availability of consistent and dense measurement
networks is lacking. The generally accepted satellite-based precipitation products such
as CHIRPS and other products could be used for post-processing activities such as bias
correction to help correct intensity and year-to-year variability biases found in this study.
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Such data distillation activities at high-resolution will be of great use for climate change
projections and VIA-CS applications to serve regional to local decisions.
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