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Abstract: People’s interactions with each other form the social relations in society. Understanding
human social relations in the public space is of great importance for supporting the public admin-
istrations. Recognizing social relations through visual data captured by remote sensing cameras is
one of the most efficient ways to observe human interactions in a public space. Generally speaking,
persons in the same scene tend to know each other, and the relations between person pairs are
strongly correlated. The scene information in which people interact is also one of the important
cues for social relation recognition (SRR). The existing works have not explored the correlations
between the scene information and people’s interactions. The scene information has only been
extracted on a simple level and high level semantic features to support social relation understanding
are lacking. To address this issue, we propose a social relation structure-aware local–global model
for SRR to exploit the high-level semantic global information of the scene where the social relation
structure is explored. In our proposed model, the graph neural networks (GNNs) are employed to
reason through the interactions (local information) between social relations and the global contextual
information contained in the constructed scene-relation graph. Experiments demonstrate that our
proposed local–global information-reasoned social relation recognition model (SRR-LGR) can reason
through the local–global information. Further, the results of the final model show that our method
outperforms the state-of-the-art methods. In addition, we have further discussed whether the global
information contributes equally to different social relations in the same scene, by exploiting an
attention mechanism in our proposed model. Further applications of SRR for human-observation are
also exploited.

Keywords: social relation recognition; remote sensing camera; human-oriented observation; local–
global information; graph neural networks

1. Introduction

Social relations broadly exist in our daily lives, and influence societal development
and behavior [1]. It is of great importance to observe the social relations among people
to understand their social lives in public spaces, as this is critical for public administra-
tions. Remote sensing cameras have been widely used for observing human activities in
the areas of public health and administration, and the emerging computer vision tech-
niques have empowered more sophisticated methods for human observation. Recently,
researchers in the computer vision field have had increasing interest in social relation
recognition (SRR) [2–8]. Inspired by the classical social psychology theories [9–11], various
datasets [2,3,12–14] with annotated social relations have been collected to understand the
associations of person pairs in images or videos. As a sub-task in computer vision, accurate
recognition of social relations may contribute to a broad range of high-level tasks, such as
scene understanding for graph generation [15,16] and group activity analysis [17,18].
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In the past decade, significant progress has been made in SRR through many efforts
from researchers. Generally speaking, SRR development has gone through three stages.

(1) In the early stage, researchers [12,19–23] contributed to finding out genetic simi-
larity contained in facial images for kinship verification. They hand-crafted the features
(e.g., facial features, relative position and head pose) and then classified specific kinships
using machine learning methods. Kinship verification is still one of the research hotspots
of SRR [24–26].

(2) With the rise of detailed relation datasets [2,3] and the advancement of deep neural
networks (DNNs), researchers went beyond kinship verification, aiming for broader social
relations such as friends, couples and even dance team members. In this stage, DNNs,
especially convolution neural networks (CNNs) [27,28], were introduced to extract high-
dimension semantic information from person pairs and even scenes for more accurate
relation classification.

(3) In stages (1) and (2), a fixed paradigm, where social relations of person pairs in a
still images were always considered independently, was followed for SRR. To address this
limitation, Li et al. [8] summarized the strong correlations (local information) between pair-
wise social relations using a probability function and designed a new graph neural network
(GNN) to infer the relations for each image for better SRR performance. Li et al.’s work
represented the new stage for SRR. However, their work has not explored the global
contextual cues given by the whole scene, which has been proven to be important [2,5,6].

It is worth noting that the global context contains not only the scene features extracted
by [2,5,6] but also all the social relations in the same scene, which have not been exploited so
far. In addition, it is also vital to find a way to better fuse the local information of pair-wise
personal relations with the global contextual information of the scene. Hence, in this paper,
we propose a local–global information-reasoned model for SRR (SRR-LGR) to exploit the
local information of pair-wise personal relations and the global contextual information
from the scene-relation graph. In this model, all the social relations in an image and the
scene feature are treated as nodes to construct a topological graph. Then gated graph neural
network (GGNN) [29] and graph convolutional network (GCN) [30] are introduced to
exploit the local and global information respectively. Finally, the reasoned local information
and global information are concatenated to recognize specific social relations.

The main contributions of this paper are as follows:
(1) Global information from the scene-relation graph is proposed for SRR. The new

proposed global information deepens the understanding of scene information, which refers
to the scene features extracted by the scene recognition model and all the social relations in
the same scene.

(2) A SRR-LGR model is proposed that considers the addition of the new global
information to explore the local–global information using our constructed scene-relation
graph. Specifically, the local information is reasoned using GGNN; meanwhile, GCN is
introduced to exploit the global information. In addition, we select the different nodes to
represent the local information and global information and concatenate them for better SRR.

(3) Extensive experiments were carried out on the People in Social Context (PISC) [2]
dataset and the People in Photo Album (PIPA) [3] dataset. Experimental results show that
our proposed model can exploit local–global information for more accurate recognition. In
addition, we also conducted experiments using the model with the attention mechanism to
verify that the global information made equal contributions to different social relations in
the same scene. The results of our model also outperformed the state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2, related works on SRR and
graph models are reviewed. Section 3 elaborates our proposed method from the overall
framework to important sub-modules. Detailed experiments are described in Section 4,
including related datasets, experimental settings, a comparison with the state-of-the-art
methods, an ablation study, a contribution analysis of the global information and running
time analysis. Section 5 discusses some potential values and possible applications of our
model. Section 6 concludes this paper.
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2. Related Work

In this section, we first offer a literature review about SRR to present its development
trends. Then, we review the related works about GNNs, which are introduced to explore
the local–global information in our framework.

2.1. Social Relation Recognition

SRR started with kinship verification, which mainly focused on the facial similarities to
identify whether two individuals were related. Although the relational works are old, they
are still classical and have had contributions to the subsequent study. Wang et al. [19] intro-
duced a model to characterize the correlations among facial appearance, identity and social
relation and optimized the model with a maximum likelihood algorithm. Xia et al. [20]
extracted the features of appearance and the facial structure information to improve the
accuracy of kinship verification. Dibeklioglu et al. [21] exploited features of facial dynamics
and spatio-temporal appearance and employed them in kinship verification to improve
the accuracy. Lu et al. [12] proposed a multiview, neighborhood, repulsed metric learning
method to solve the misclassification of interclass samples lying in relatively close posi-
tions and collected two face-based kinship datasets (i.e., KFW-I and KFW-II) to validate
the effectiveness of the proposed method. The two datasets pushed forward the kinship
verification research significantly so that related studies have been the hot spots in the
SRR community. For example, Li et al. [26] combined GNNs with kinship verification
and proposed a graph-based reasoning network, which outperformed the state-of-the-art
methods in KFW-I and KFW-II.

Meanwhile, growing attention on detailed relation recognition has been arising.
Li et al. [2] proposed a dual-glance model to extract features related to person pairs and
paid attention on the contextual regions of interest for jointly predicting social relations.
To validate the effectiveness of the proposed model, the People in Social Context (PISC)
dataset was collected to verify the performance of the model. Besides, Sun et al. [3] ex-
tended the People in Photo Album (PIPA) [31] dataset for detailed relation recognition
based on social domain theory [9]. The collection of the two datasets provided data support
for detailed relation recognition and attracted an increasing number of researchers to work
in this subfield. Wang et al. [4] reasoned the interactions between features of a person
pair and contextual objects of interest using GGNN and introduced a graph attention
mechanism to select discriminative contextual objects for SRR. Goel et al. [5] extracted the
scene information and the attribute context to construct a knowledge graph and utilized
gated recurrent units (GRUs) to iteratively reason this graph, and further generated a social
relation graph. Zhang et al. [6] constructed two graphs (i.e., a person-object graph and a
person-pose graph) and fused scene information to jointly predict social relations. Rather
than using GNNs, Wang et al. [7] proposed a deep supervised feature selection framework
to reduce redundant information and select effective features directly contributing to SRR.

The aforementioned works based on the person-pair paradigm only concentrated
on one social relation in a standalone still image. Li et al. [8] proposed a new image-
based paradigm that considered the logical constraints of social relations and designed a
new graph relational reasoning network to explicitly satisfy these constraints. However,
the global contextual information, which concentrates on the scene features and all the
social relations in this scene, was not considered, and the scene features could not be easily
fused into the graph.

2.2. Graph Neural Networks

GNNs were outlined by Gori et al. [32] for the first time and extended by Scarselli et al. [33]
and Gallicchio et al. [34]. They were designed to operate on topological graph data
in nonEuclidean space. With the foundation of these works, an increasing number of
GNNs were proposed to solve corresponding problems, such as [29,30,35,36]. Different
GNNs infer the graph by different ways, which can be divided into four categories [37]:
recurrent graph neural networks (RecGNNs) [29,38], convolutional graph neural networks
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(ConvGNNs) [30,39], graph autoencoders (GAEs) [40,41] and spatial-temporal graph neural
networks (STGNNs) [42,43]. GAEs and STGNNs are mainly utilized to generate new
graphs and extract spatial-temporal information, respectively. Hence, these two types of
GNNs are not suitable for the task in this paper. RecGNNs concentrate on the information
exchange between nodes so that they are good for exploiting interactions among nodes, as
in [4]. On the contrary, the spectral ConvGNNs conduct a convolutional operation on the
graph to exploit the information of topological structure. For example, Kearnes et al. [44]
modeled molecular structures for drug design.

With the rapid development of GNNs, many research communities tended to take
advantage of GNNs for the promotion of their tasks, such as semantic segmentation [45],
action recognition [46,47] and sentiment analysis [48,49]. Given the power of exploiting
topological information, GNNs were introduced to model some interactions for SRR, such
as the GGNN in [4], the GCN in [6] and the newly designed graph relational reasoning
network in [8]. Hence, the GGNN [29] for the local information and the GCN [30] for the
global information were used in the design of the SRR-LGR model in this paper.

3. Method

In this section, we elaborate on our SRR-LGR model. First, the overall framework of
this model is introduced briefly. Then the node generation module is illustrated in detail.
Next, we show the local–global information reasoning modules. Finally, we present how to
fuse the local–global information and how to classify the specific social relations.

3.1. Overall Architecture

Suppose there are n pairs of social relations, then our constructed scene-relation graph
(i.e., a set of all nodes) can be described as follows.

H = xi|i = 1, 2, . . . , n + 1 (1)

where xn+1 (it also can be represented by xs) denotes a scene node representing a scene
feature, and the other nodes denote the social relation nodes representing pairs of social
relations in this scene. For the edges, all the nodes, including the scene node, connect to each
other so that one is adjacent to the other ones. Based on these definitions, the proposed SRR-
LGR is given in Figure 1, where we have simplified the graph structure by only showing a
subset of the edges. Each orange node stands for the social relation of one person pair, and
the number of orange nodes can be as high as the number of social relations in the image.
Similarly, the only green node xs represents the scene feature of the entire image.

Next, we introduce GGNN and GCN to reason through the local–global informa-
tion contained in the graph. GGNN has an emphasis on the information exchange be-
tween nodes, and GCN concentrates on the entire topological structure. The reasoning of
GGNN exchanges the local information between orange nodes representing social relations,
whereas the scene node obtains the global information with the awareness of social relation
structure of the whole scene after the reasoning of GCN. Finally, each orange node and
green node are concatenated for recognizing a specific social relation.
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Figure 1. Overall architecture of our proposed model. We first treat the social relations and the scene feature as nodes to
construct a relation-scene graph, where one orange node represents a pair of people and the green node represents the
scene feature. Then the constructed graph is reasoned by local–global information reasoning modules to obtain the local
information and the global information. Finally, they are concatenated for social relation classification.

3.2. Node Generation Module

In this subsection, we introduce the generation of nodes in the scene-relation graph,
which contains two types of nodes (i.e., the social relation nodes and the scene node).
As shown in Figure 2, the node generation module consists of two parts, i.e., the social
relation node generation (SRNG) part and the scene node generation (SNG) part. An
orange node represents a pair, and thus a social relation. Take the social relation between
p1 and p2 in the red bounding box as an example. We concatenate the features from three
patches of p1, p2 and their union extracted by pretrained models on ImageNet [50], and
the relative position extracted by a fully-connected layer, to generate the social relation
representations of the two individuals (i.e., p1 and p2). The application of ResNet-101
is followed by [2,4,6], which also outperforms ResNet-50 on the ImageNet dataset [50].
Furthermore, the scene information is extracted by the pretrained ResNet-50 model to
generate the global scene representation, and ResNet-50 outperforms the other models on
the Places365-Standard dataset [51]. Notably, the FC layer outputs 256-dimension features
and the three ResNet-101s output 2048-dimensional features since their last classification
layers are removed. For the scene extraction ResNet-50, its output dimensionality is 8192
as both the last classification layer and the first pooling layer are removed. The dimensions
of node representations are 512 regardless of the node types.

Figure 2. Node generation module. Take two individuals in the red bounding box, for example.
The features of their individual bodies, their union and the relative position are extracted to form
social relation nodes. As for the scene node, it is generated by the features extracted from the
entire image.

In order to adapt our tasks, we fine-tuned the SRNG part on PISC and PIPA datasets.
In the process of fine-tuning, two fully connected layers were utilized to compress the
(2048× 3+ 256)-dimensional features. The first layer compressed the features to 4096 dimension
and the second layer classified the 4096 dimensions to 3, 6 and 16 dimensions, correspond-
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ing to the PISC-Coarse task, PISC-Fine task and PIPA task, respectively. The final output
was used to calculate the probability of each class by the SoftMax function and to determine
the social relation. In the final model, we removed the second fully connected layer of the
SRNG part and added a fully connected layer of 4096 dimensions to 512 dimensions to ob-
tain the social relation node representation. For the SNG part, we added a fully connected
layer from 8192 dimensions to 512 dimensions to generate the scene node representation.

3.3. Local–Global Information Reasoning

As GGNN has an emphasis on the information exchanges between nodes, and GCN
concentrates on the entire topological structure, we elaborate the reasoning process of
GGNN and GCN at the node and graph levels, respectively.

For GGNN [29], the node xi first aggregates the messages from its neighbors and then
updates its representations using a GRU-like approach. As for the full connection among
nodes, the computation can be expressed as follows:

xl+1
i = GRU(

n+1

∑
j=1,j 6=i

W × xl
j, xl

i) (2)

where W is the trainable weight set and l represents the l-th iteration. After the above com-
putation, xl+1

i becomes the new initial vector representation. According to [52], the GRU-
like update process in our graph can be expressed as follows:

First, the update gate zl+1
v and the reset gate rl+1

v are calculated as follows:

zl+1
v = Sig

(
Wz

n+1

∑
j=1,j 6=i

W × xl
j + Uzxl

i

)
(3)

rl+1
v = Sig

(
Wr

n+1

∑
j=1,j 6=i

W × xl
j + Urxl

i

)
(4)

Then, the updated node representation xl+1
i is computed by

xl+1
i =

(
1− zl+1

v

)
� xl

i + zl+1
v � x̂l+1

i (5)

where

x̂l+1
i = Tanh

(
Wx

n+1

∑
j=1,j 6=i

W × xl
j + Ux

(
rl+1

v � xl
i

))
(6)

In Equations (3)–(6), W∗ and U∗ denote the trainable weights, � denotes the Hadamard
product, Tanh denotes the tanh function and the other symbols are the same as in Equation (2).

The number of iterations in Equation (2) can be set as a hyper-parameter L. Therefore,
the final output HGGNN (i.e., the set of nodes after GGNN reasoning) of GGNN after
removing the scene node xL

s can be expressed as

HGGNN = xL
i |i = 1, 2, . . . , n (7)

GCN [30] defines the graph convolution based on the spectral graph theory [53]; hence,
it can exploit the features of the entire graph like a filter. The convolution operation HGCN
(i.e., the set of nodes after GCN reasoning) can be expressed as follows:

HGCN = Sig
(

D̃−
1
2 ÃD̃−

1
2 HW

)
(8)

where H denotes the initial graph representation in Equation (1), and Ã = A + IN is the
adjacency matrix with self-connections. The added IN is an identity matrix, which ensures
that the information of each node itself is retained. The degree matrix Dii = ∑j Ãij, and W
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is the trainable weight matrix. After being activated by the function Sig(·), the new graph
representation HGCN can be obtained. We treat the reasoned scene node xGCN

s in HGCN as
the global information.

3.4. Information Fusion and Classification

After obtaining the social relation representations and the global information, we
concatenate them and calculate the per-class probability pi using a soft-max function
softmax(·),

Ri = {p1, p2, . . . , pm} = softmax
(

FC
(

xL
i , xGCN

s

))
, i = 1, 2, . . . , n (9)

where FC denotes a fully-connected layer, pj(j = 1, 2, . . . , m) denotes the probability of
the j-th class of social relations and m denotes the number of social relation categories.
The corresponding social relation class of the max probability is the final classification result.

4. Experiments and Results

In this section, we introduce our experimental implementation and analyze the ex-
perimental results. First, a brief introduction of the two datasets and the implementation
details are presented. Then, we compare our proposed model with the state-of-the-art
methods. Next, a group of ablation experiments are described, which verify the importance
of the global information. We also analyze whether the global information contributes
equally to different social relations in the scene. Finally, we analyze the computational
complexity via running-time experiments.

4.1. Datasets

To validate the effectiveness of our proposed SRR-LGR model, extensive experiments
were conducted on the PISC dataset and the PIPA dataset. Here, a brief introduction of the
two datasets is presented.

The PISC dataset and PIPA dataset were collected from a broad range of data sources,
including social media (i.e., Flickr, Instagram, Twitter, Google and Bing) and the other
specific datasets (i.e., Visual Genome [54], MS-COCO [55] and YFCC100M [56]). In spite of
the images from the other datasets, they are also related to human activities and similar
to those images in social media. Li et al. [2] and Sun et al. [3] annotated various social
relations in still images following different social psychological theories (i.e., the relational
model theory [10] and social domain theory [9]), respectively.

For social relation division, each dataset contains two recognition tasks at the coarse
and fine levels, which means that there are four types of relation definitions: (1) PISC-
Coarse tasks, including intimate, nonintimate and no relation; (2) PISC-Fine tasks, in-
cluding friends, families, couples, professional pairs, commercial pairs and no relation;
(3) PIPA-Coarse tasks, including attachment, reciprocity, mating, hierarchical power and
coalitional groups; (4) PIPA-Fine tasks, including 16 classes such as father–child, friends,
lovers/spouses, presenter-audience and band members. We evaluated our method on
the PISC-Coarse task, PISC-Fine task and PIPA-Fine task ("PIPA" task defaults to "PIPA-
Fine" task in the following part). Accordingly, per-class recall and mean average precision
(mAP) for the PISC task and top-1 accuracy for the PIPA task were used to evaluate the
performance of our model.

For the split of training set, validation set and testing set, the details are shown in
Table 1 according to the specific recognition tasks.
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Table 1. Numbers of images and social relation samples. For example, 16,142/49,017 means 16,142 im-
ages with 49,017 social relation samples.

Training Validation Testing

PISC-Coarse 13,142/49,017 4000/14,536 4000/15,497
PISC-Fine 16,828/55,400 500/1505 500/1505

PIPA 5857/13,672 261/709 2452/5106

4.2. Training Strategy and Parameter Setting

To decrease the difficulty of training and remove the limitation of computational
source, we trained our model part by part based on transfer learning. Specifically, we first
trained the node generation module and then optimized the local information reasoning
module while freezing the parameters of node generation module. With the same transfer
learning method, the global information reasoning module was trained and optimized.

In the process of training, we optimized our model on one Nvidia GeForce RTX 2080 Ti
using Adam [57] optimizer under the deep learning framework named Pytorch. Batch size,
learning rate, learning attenuation and number of epochs were set to 24, 0.0001, 0.0005 and
200 respectively. Additionally, the learning decay reduced to 10% per 10 epochs. For the
numbers of layers of GGNN and GCN, they were set to 3 and 1, respectively.

It is worth noting that two methods of data augmentation were adopted, which
were suggested by the collector of the PISC [2] dataset. One reverses the people of the
person pair, and the other horizontally flips the full image. Both methods can obtain more
minority samples.

4.3. Comparison with State-Of-The-Art Methods

To demonstrate the performance of our proposed method, we compare it here with
the state-of-the-art ones. First though, we provide a brief introduction for each method.

Dual-glance [2]. This model is the baseline method of PISC dataset, which extracts
features using two channels named glances in the paper. The first glance extracts the
features of a person pair similarly to our model, while the second glance extracts the
features of regions of interest detected by Faster RCNN [58]. Then attention mechanism is
used to weight each region, and finally the outputs of the two glances are concatenated for
social relation prediction.

DSFS [7]. This paper proposed a deep supervised feature selection framework which
aims to reduce the feature redundancy from multi-source data and select the discriminative
features for SRR. Specifically, the framework fuses deep learning algorithm with l2,1-norm
to learn effective features from two views (i.e., group feature selection and dimensional
feature selection).

GRM [4]. This model constructs a graph which treats the features of persons and the
contextual objects in the scene as nodes. Next, GGNN is introduced to reason through the
constructed graph, and the weights for two types of nodes are calculated using an attention
mechanism. Finally, the vector representations of person nodes concatenate the weighted
ones of object nodes for SRR.

MGR [6]. Multi-granularity features are exploited using different methods, including
features between persons and objects contained in the person-object graph, correlations of
pose between two persons contained in the person-pose graph and the scene information
from the full image. In this model, GCN reasons the constructed graphs and pretrained
ResNet-101 on ImageNet [50] extracts the scene information. At last, these multi-granularity
features jointly predict the social relations.

SRG-GN [5]. The framework first extracts the features of person pair attributions
(i.e., age, gender and clothing) from the single-body image and the information of relation
attributions (i.e., scene and activity). Then the two kinds of attribution information are
inferred using GRUs and a message passing scheme, and the final output of reasoning is
used to classify the social relations.
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GR2N [8]. To exploit the interactions among social relations in an image, a novel
graph relational reasoning network was designed to model the logical constraints among
different types of social relations contained in the constructed virtual relation graphs. In the
graph, the node representation comes from the person patches in the feature map obtained
by a convolutional neural network.

As shown in Table 2, our proposed model achieved superiority over the existing
state-of-the-art methods in the PISC-Coarse task, PISC-Fine task and PIPA task. Specifically,
the proposed SRR-LGR model achieved 84.8%, a 1.7% improvement compared with the
GR2N, in the PISC-Coarse task; and 73.0%, a 0.3% improvement compared with the GR2N,
in the PISC-Fine task, which constitute the best results on PISC tasks. In the PIPA task,
the top-1 accuracy was up to 66.1%, a 1.7% improvement over the previous best MGR.

Table 2. Here we compare our model with the state-of-the-art methods on PISC-Coarse, PISC-Fine and PIPA datasets. As
in [4,8], we use the per-class recall rate and mean average precision (mAP) for PISC and the top-1 accuracy for PIPA.

PISC-Coarse PISC-Fine PIPA

Int. Non. No. mAP Fri. Fam. Cou. Pro. Com. No. mAP Acc.

Dual-glance [2] 73.1 84.2 59.6 79.7 35.4 68.1 76.3 70.3 57.6 60.9 63.2 59.6
DSFS [7] - - - - - - - - - - - 61.5
GRM [4] 81.7 73.4 65.5 82.8 59.6 64.4 58.6 76.6 39.5 67.7 68.7 62.3
MGR [6] - - - - 64.6 67.8 60.5 76.8 34.7 70.4 70.0 64.4

SRG-GN [5] - - - - 25.2 80.0 100.0 78.4 83.3 62.5 71.6 53.6
GR2N [8] 81.6 74.3 70.8 83.1 60.8 65.9 84.8 73.0 51.7 70.4 72.7 64.3

SRR-LGR 89.6 84.6 78.5 84.8 83.9 52.4 35.9 64.0 54.0 63.6 73.0 66.1

Like the baseline method, i.e., dual-glance, our model also extracts the features of
the relative position, the two bounding boxes of the person pair and their union. For the
scene features, dual-glance detects the objects of interest in the scene as the scene features.
However, our model made great improvements of 5.1% in the PISC-Coarse task, 9.8% in
the PISC-Fine task and 6.5% in the PIPA task, which demonstrates the effectiveness of our
constructed graph and the reasoned local–global information. On the other hand, GR2N, it
also considers the local information while the global information is ignored; hence, our
model increased the accuracy by 1.7% in the PISC-Coarse task, 0.3% in the PISC-Fine task
and 1.8% in the PIPA task. This comparison demonstrates that it is important to take the
global information into account.

Next, we analyze the per-class recall in the PISC task to elaborate this characteristic
of this model. In the PISC-Coarse task, our model outperformed the GR2N in both the
mAP and the per-class recall. It can be noticed from Table 2 that our proposed work
cannot always outperform the existing work in terms of per-class recall. In order to better
understand this point, the confusion matrix in the PISC-Fine task is given in Figure 3.

As shown in Figure 3, the model performed well in recognizing friends, professionals
and no relation; for friends in particular, the per-class recall was up to 83.9%. However,
differently from the good performance in the PISC-Coarse task, there were some minor
problems in detail in the PISC-Fine task. It can be observed that many samples were
misclassified into the social relation friend, especially the families and couples.

All these three social groups (i.e., friends, families and couples) have intimate relations,
which may be the cause of the difficulty when discriminating the features of them. In
Figure 4, we present some true positive (TP) samples of the relation friend (row 1), couple
samples misclassified to friends (row 2), and family samples misclassified to friends (row 3).
These samples (i.e., friend, family, and couple) share similar features visually, but there still
exist some distinguishing features. For the couples, the two individuals are always one
male and one female. In addition, they are likely to be closer than the friends, especially
in sample (d). For family, their ages may be different (e.g., take a father and a daughter).
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Besides the gender and age differences, activity is another factor with which to discriminate
the different social relations. For example, the couples in sample (e) were dating and the
family members in the sample (h) were having a family dinner.

Figure 3. Confusion matrix in the PISC-Fine task. The values from the upper left corner to the lower
right corner on the diagonal represent the per-class recall.

Figure 4. True positive (TP) samples of the relation friend (row 1, a–c), samples misclassified as
couples (row 2, d–f) and samples misclassified as being family (row 3, g–i).

In addition, although data augmentation was adopted to alleviate the data imbalance,
the samples of the class friend were still too many compared with family and couple
samples—one of the reasons for the misclassifications. As listed in Table 3, the number of
the friend pairs was greater than those of family and the couple. The number of couples
was only about one tenth of the number of friends.
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Table 3. Sample distribution of the PISC dataset.

Social Relations Fri. Fam. Cou. Pro. Com. No.

Number of Samples 12,686 7818 1552 20,842 523 11,979

Nevertheless, our proposed SRR-LGR model outperforms the state-of-the-art meth-
ods in terms of the overall metric (i.e., mAP), which demonstrates the effectiveness of
our model.

4.4. Ablation Study

To evaluate the performance of our designed SRR-LGR model, a group of ablation
experiments were conducted.

(1) Concatenation. This is the baseline method, which simply concatenates all ex-
tracted features from person pair and scene and directly predicts the social relation.

(2) Local information. On top of the baseline method, the local information reasoning
channel is added and then the output of this channel is used to recognize social relations.

(3) Local–global information. In addition to the local information reasoning chan-
nel, the global contextual information reasoning channel is also added to jointly classify
social relations.

The results of this group of ablation experiments are listed in Table 4. To begin with, we
implemented the paradigm shift by using GGNN to reason through the local information
in our constructed graph. By this means, the performance of recognizing social relations
obtained great improvements, 4.9%, in the PISC-Coarse task, 6.5% in the PISC-Fine task
and 2.9% in the PIPA task, respectively. This proves that the local information is of vital
importance for SRR. After the addition of the global information, we can see the overall
improvements in the PISC-Coarse task and the PISC-Fine task but a worsening in the
PIPA task. This indicates, in our opinion, that the contribution of global information
varies for different social relations. Furthermore, since the classification tasks went from
coarse to fine (i.e., numbers of categories were 3, 6 and 16), it became more difficult to
distinguish the subtle differences. For the PISC-Coarse task with only three categories,
the local information could reason through the logical constraints among social relations
and achieve great performance. This is due to the simplicity of the triple classification;
the global information has barely any impact on it. So after fusing the global information,
the mAP improved by a slight 0.1% in the PISC-Coarse task. However, for the PISC-Fine
task and the PIPA task with more label categories, local information alone was not adequate
to discriminate the different social relations; hence, the global information has a greater
impact on improving the discriminative ability, which facilitates the increase of the accuracy
for an SRR. Therefore, the mAP went up by 1.8% in the PISC-Fine task. In the PIPA task,
the top-1 accuracy slightly decreased by 0.6%, which was possibly because the global
information in this task is more difficult and cannot correspond to the each class of the
16 social relations. Even so, the top-1 accuracy was still superior compared to the other
state-of-the-art methods.

Table 4. A group of ablation experiments to evaluate the vital importance of local–global information
by adding corresponding modules.

PISC-Coarse (mAP) PISC-Fine (mAP) PIPA (Acc.)

Concatenation 79.8 64.7 63.8
Local Information 84.7 71.2 66.7

Local–Global Information 84.8 73.0 66.1

4.5. The Contribution of the Global Information for Different Social Relations

As discussed in Section 4.4, the global information contributes to the social relations
in the scene. In order to further find out if the global information contributes equally to
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different social relations, we introduced the attention mechanism to exploit this point,
motivated by [2,4,7]. Li et al. [2] and Wang et al. [4] introduced the attention mechanism
to weigh the contributions of different objects in a scene. Wang et al. [7] also proposed
a deep supervised feature selection (DSFS) framework to reduce the redundancy of the
multi-source features. Experiments have demonstrated that the attention mechanism does
not make sense for global information, and the global information is little redundant.
Here, we give the implementation process of the attention mechanism and present the
possible reasoning.

As shown in Figure 5, we introduced an extra attention mechanism to weigh the
contributions of the global information to different social relations in the same scene.

Figure 5. The simplified overall architecture with the extra attention mechanism.

In order to weigh the contribution of the global information xGCN
s for each social

relation node xL
i (i = 1, 2, . . . , n), an attention mechanism is introduced to capture the

global information weighted by the local information. We first compute the hidden state hi
inspired by low-rank linear pooling method [59] as follows:

hi = Relu
((

W1xL
i

)
�W2xGCN

s

)
, i = 1, 2, . . . , n (10)

where � denotes the Hadamard product, W1 and W2 are the trainable weights and Relu
denotes the ReLU activation function.

Then we can compute the attention weight and use the sigmoid function to normalize
the weight:

ai =
1

1 + exp(−(W3hi + bias )/ len(W3))
, i = 1, 2, . . . , n (11)

where W3 and bias are also the trainable weight and bias and len(W3) is a scaling factor,
denoting the length of W3.

Thus, the corresponding weighed global information xGCN
s−i of each social relation can

be expressed as follows:
xGCN

s−i = aixGCN
s , i = 1, 2, . . . , n (12)

Finally, we concatenate xGCN
s−i and xL

i to classify social relations.
The above is the implementation process of the attention mechanism, and the models

achieved the same effectiveness no matter whether the attention mechanism was added or
not. We visualized the weights of the attention mechanism wi in Figure 5 and found that
they are the same. All of these facts demonstrate that the global information makes the
same contribution to different social relations in the same scene.

Li et al. [2] and Wang et al. [4] have proved that the objects in a scene made different
contributions to social relations. However, the global information contains not only the
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overall information of the scene but also the social relations in the same scene, and even
the classified social relation also exists in the global information. In the same scene, people
always interact each other, which means each social relation is related to the other ones.
This may be the reason why the global information always makes equal contributions
when we classify some of all the social relations in the scene. Nevertheless, the global
information makes the model improvement over the state-of-the-art methods. We will
also make the code and the two models (i.e., without the attention mechanism and with it)
available for this discussion.

4.6. Running Time Analysis

Our method takes the local information (i.e., the logical constraints among social
relations) into account, so we can recognize all the social relations in an image at the same
time. This leads to the higher efficiency of our method compared to most pair-based
methods, which classify the social relations pair by pair. We followed Li et al. [8] and
implemented running-time experiments with different batch sizes on the PIPA dataset
using a Nvidia GeForce RTX 1080 Ti GPU. We firstly introduce the three representative
methods and ours as follows:

GRM [4]. One of the pair-based methods—that is, it recognizes the social relations in
an image pair by pair. Dual-glance [2], DSFS [7], MGR [6] and SRG-GN [5] also belong to
this type.

SRR-LGR (Ours). Our method, the image-based method, can classify all the social
relations in an image.

Pair CNN [8]. It is the baseline method that recognizes the social relations using two
bounding boxes for the person pair. Additionally, it is also a pair-based method. To be fair,
we conducted the experiments using the Pair CNN provided by [8].

GR2N [8]. It is also an image-based method.
The comparative results are listed in Table 5, and the “-” in the table represents the

memory overflow.

Table 5. Comparisons of running time (seconds/image) under different batch sizes for SRR on the
PIPA dataset with the accuracy.

Method Batch Size Accuracy
1 2 4 8 PISC-Coarse PISC-Fine PIPA

GRM [4] 0.294 0.171 0.089 - 82.8 68.7 62.3
SRR-LGR

(Ours) 0.065 0.053 0.047 0.044 84.8 73.0 66.1

Pair CNN [8] 0.077 0.045 0.039 0.037 65.1 48.2 58.0
GR2N [8] 0.046 0.025 0.021 0.021 83.1 72.7 64.3

Compared with the pair-based method (i.e., GRM [4]), our method is much faster
and achieves 2×∼5× speed-ups, which shows the benefits of the image-based method
(i.e., recognizing all the social relations in an image simultaneously). Considering the
Pair CNN [8] method, its efficiency is slightly higher than that of our method because
our model extracts more comprehensive features and utilizes a more effective method to
achieve better performance. It can be observed that our model was 19.7% more accurate in
the PISC-Coarse task, 24.8% in the PISC-Fine task and 8.1% in the PIPA task over the Pair
CNN method. In addition, since there were on average 2.5 bounding boxes per image on
the testing set of the PIPA dataset, we could achieve higher speed when more individuals
exist in an image. Compared with the image-based GR2N method, it is faster about two
times than our method because its input is one patch, whereas our inputs are four patches
and one vector. However, our method considers the extra and effective global information
and improved performance by 1.7% in the PISC-Coarse task, 0.3% in the PISC-Fine task and
1.8% in the PIPA task. Generally speaking, our method achieves a good balance between
the efficiency and the accuracy.
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In order to further demonstrate the efficiency and computational complexity, we
calculated the numbers of float-point operations (Flops), the numbers of parameters and the
memory requirements (i.e., size of parameters) of different modules of our model, and
the results are given in Table 6. It can be observed that the key local–global information
reasoned module expends little in the way of computational resources; that is, this module
is effective and low-cost. As for the dynamics of the number of the social relations in an
image, the number of the nodes in the constructed graph is also dynamic so that the three
values are approximate. In addition, we set the number of social relation classes as six
(i.e., the number of output classes in the PISC-Fine task) to calculate these values.

Table 6. The computational complexity of different modules of our model, i.e., the node generation
module, the local information reasoning module, the global information reasoning module and the
final social relation classification layer.

Flops (M) Parameters (M) Memory (MB)

Node Generation 109,195.02 183.52 700.10
Local Information Reasoning 1.57 0.79 3.00

Global Information Reasoning 0.52 0.26 1.00
Social Relation Classification 0.01 0.01 0.02

Total 109,197.12 184.58 704.12

5. Discussion

Social relations in public spaces demonstrate the high-level features of human beings
socially. Observing them has great potential for deeply understanding how people interact
with each other, and gaining a better understanding of human behaviors. In this section,
we discuss the potential value and the possible application of our proposed model for
sensing and observing human dynamics, and thus deepening the understanding of human
activities in the urban public space and providing some useful information for the urban
designer and the administrator.

In order to understand human dynamics, we need to find out what kinds of people
are in the scene, how humans are connected with their surroundings and how they are
connected with each other. Thus, the scene graph can be firstly applied to provide low-
level information. As shown in Figure 6, the scene graph contains objects, their low-level
attributes and their relationships. In this realm, some studies have been completed: see
the real-world scene graph dataset [60], the visual genome dataset [54], the scene graph
generation methods (i.e., the Pixel2Graph model [61], the MotifNet model [62], the KERN
model [63]) and the evaluation metrics for measuring a model’s capability of capturing the
semantics of relations [64].
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Figure 6. The scene graph, depicting the objects, their low-level attributes and their relationships.

Although a scene graph contains the majority of objects and their relationships, there
is still much information, e.g., social distances, social relations and each individual’s
emotions, which have not been considered comprehensively. In particular, social distancing
detection [65] and assistance [66] are important to slow down the spread of Covid-19.
Thus, it is necessary to generate high-level semantic information to contain the low-level
attributes and high-level semantic information. In order to fulfill this goal, social relation
graph generation can be applied. Goel et al. [5] made some effort to propose a novel
multi-task framework for social relation graph generation. However, the accuracy of SRR
still needs to be improved further, the information in the graph needs to be enriched
and datasets for scene graphs and social relation graphs need to be collected for more
detailed graphs. Figure 7 presents a typical social relation graph, where the low-level
(i.e., ages, genders and positions for social distance) and high-level attributes (emotions,
activities, etc.) of individuals are depicted, and their social relations and distances are also
included. Based on social relation graph, varieties of applications can be implemented for
different human-observation tasks.

Figure 7. The social relation graph, depicting individuals, their low-level/high-level attributes
and their social relations.

Besides applying graph to deeply represent human organization, the predictions of
social vitality may come true based on a social relation graph. Social vitality is a new
concept and a more intuitive metric, which not only represents the types of the human
interactions but also reflects the quality of the urban public spaces to a certain extent.
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In human-oriented urban planning, it is a key factor for the quality evaluation of urban
public space with which to estimate the human-related metrics. Social relations are human
interactions at a high level; hence they are suitable for estimating the human-related metrics.
In our opinion, social vitality consists of various factors, which can be expressed as follows:

V = {SR, E, A, G, N} (13)

where SR denotes the social relations, and the more classes of social relations there are,
the higher the social vitality is. E denotes another high-level attribution of people, i.e., emo-
tion, which reflects the intensity and quality of social interactions. A and G denote the age
and gender, respectively. Their richness can reflect whether the public space is suitable for
various groups with different ages and genders. N denotes the number of people, which
is a simple and vital factor. The urban public spaces of high quality are most likely used
for leisure, exercise, sports and other activities. According to these factors, we can draw a
social relation graph as shown in Figure 7 (partial social relations are neglected). Social
relation graph generation still faces some challenges, such as the low accuracy of SRR
and emotion recognition in a complex scene. In addition, how to quantify the indexes
mentioned in Equation (13) is another issue. In future work, we will construct a uniform
framework to promote the SRR task and to further generate more accurate social relation
graphs. The specific computational process will be improved too. Only with a more
accurate and detail social relation graph can we provide more meaningful information on
human activities for supporting human-oriented observations.

6. Conclusions

In this paper, we considered the global contextual information of a scene’s features and
all the social relations in the same scene to gain deeper understanding of SRR. Specifically,
GGNN and GCN were introduced to reason through the local information for interactions
among person pairs, and the global information by considering all of the structural in-
formation of the constructed scene-relation graph. An ablation study demonstrated that
our SRR-LGR model can exploit the local–global information for social relation prediction.
Overall, the proposed SRR-LGR model outperformed the state-of-the-art methods on the
PISC dataset and PIPA dataset. We have also found that the discriminative ability for the
global information is still not sufficient for cases where the numbers of label categories are
substantially large. In addition, how to mine the total structural information of a group
for more accurate recognition is another key issue in the future, which is the vital factor
as to whether this proposal can be applied to observing social relations in public spaces.
Finally, how to apply SRR based on remote sensing cameras and how to further support the
city-scale public administration (including social distancing detection and social relation
graph generation) are still open for future research.
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