
remote sensing  

Article

CscGAN: Conditional Scale-Consistent Generation Network for
Multi-Level Remote Sensing Image to Map Translation

Yuanyuan Liu, Wenbin Wang, Fang Fang, Lin Zhou, Chenxing Sun, Ying Zheng and Zhanlong Chen *

����������
�������

Citation: Liu, Y.; Wang, W.; Fang, F.;

Zhou, L.; Sun, C.; Zheng, Y.; Chen, Z.

CscGAN: Conditional Scale-Consistent

Generation Network for Multi-Level

Remote Sensing Image to Map

Translation. Remote Sens. 2021, 13,

1936. https://doi.org/10.3390/

rs13101936

Academic Editors: Mercedes E.

Paoletti and Juan M. Haut

Received: 7 April 2021

Accepted: 11 May 2021

Published: 15 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China;
liuyy@cug.edu.cn (Y.L.); wangwenbin@cug.edu.cn (W.W.); fangfang@cug.edu.cn (F.F.); zhoulin@cug.edu.cn (L.Z.);
sunchenxing@cug.edu.cn (C.S.); zhengying@cug.edu.cn (Y.Z.)
* Correspondence: chenzl@cug.edu.cn; Tel.: +86-132-9663-0087

Abstract: Automatic remote sensing (RS) image to map translation is a crucial technology for
intelligent tile map generation. Although existing methods based on a generative network (GAN)
generated unannotated maps at a single level, they have limited capacity in handling multi-resolution
map generation at different levels. To address the problem, we proposed a novel conditional scale-
consistent generation network (CscGAN) to simultaneously generate multi-level tile maps from
multi-scale RS images, using only a single and unified model. Specifically, the CscGAN first uses
the level labels and map annotations as prior conditions to guide hierarchical feature learning with
different scales. Then, a multi-scale discriminator and two multi-scale generators are introduced to
describe both high-resolution and low-resolution representations, aiming to improve the similarity
of generated maps and thus produce high-quality multi-level tile maps. Meanwhile, a level classifier
is designed for further exploring the characteristics of tile maps at different levels. Moreover, the
CscGAN is optimized by jointly multi-scale adversarial loss, level classification loss, and scale-
consistent loss in an end-to-end manner. Extensive experiments on multiple datasets and study
areas demonstrate that the CscGAN outperforms the state-of-the-art methods in multi-level map
translation, with great robustness and efficiency.

Keywords: remote sensing image to map translation; multi-level map translation; multi-scale gener-
ator and discriminator; level classifier; hierarchical feature learning

1. Introduction

Electronic maps are of great importance for urban computing and location-based
services like navigation, autonomous vehicles and so on. However, electronic maps are
mainly traditionally obtained through field surveys or manual image interpretation, which
is time-consuming and labor-intensive. Hence, automatically, electronic map production is
of great value in addressing these limitations and is widely considered [1–11]. Recently,
domain mapping or image-to-image translation based methods have been intensively
focused and applied to automatic electronic map production, which automatically and
efficiently targets translating remote sensing (RS) images to tile maps [2–4]. Although
promising results have been achieved in one-level map translation [2–4,8], simultaneously
creating multi-level tile maps remains several challenges, such as scale variation, text
annotation loss and ground target change in different levels (see Figure 1). To address
these challenges, we propose the CscGAN, a novel deep generation network that can
simultaneously translate multi-scale RS images to the corresponding tile maps of different
levels, with significant robustness and efficiency.

Electronic map production generally can be divided into the following two categories:
traditional computer-aided cartography-based methods and deep learning-based methods.
Computer-aided cartography usually includes four stages, namely map designation, data
input, symbolized editing and graphic output. However, in the process of computer-
aided map production, a lot of work still depends on manual expert participation and
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professional tools such as ArcGIS and MapGIS [1], the production cycle and cost of which
are relatively high. Therefore, it is very difficult to quickly generate large-range or even
city-level electronic maps.

RS image + 

annotation image
pix2pixGround truth Proposed CscGAN

RS image + 

annotation image
pix2pixGround truth Proposed CscGAN

(a) Automatic map translation at the 17th Level.

(b) Automatic map translation at the 18th Level.

StarGAN

StarGAN

Figure 1. Generated results at multiple levels using different models. (a) Automatic map translation
at the 17th Level. From left to right: RS image + annotation image, Ground truth, by pix2pix, by Star-
GAN and by the proposed CscGAN. (b) Automatic map translation at the 18th Level. From left to
right: RS image + annotation image, Ground truth by pix2pix, by StarGAN and by the proposed
CscGAN. Note: in generated mappings, red rectangles represent loss contents; yellow rectangles
represent confused contents; green rectangles represent the correct contents generated by the pro-
posed method.

Recently, deep learning-based methods have been intensively developed for auto-
matically multi-level map translation, due to its strong capacity of feature representation
and generation ability [2–4,12]. It significantly simplifies the overall process and labour
cost of map production and provides the possibility to quickly generate large-range elec-
tronic maps. Existing deep learning-based methods can be divided into the following two
broad categories: one-to-one mappings [2–4,13,14] and many-to-many mappings [5,6,15].
The one-to-one mapping-based methods, such as pix2pix [2], CycleGAN [3] and GcGAN [4],
use the source domain image as an input condition and then use one generator to output
the target domain image. Meanwhile, one discriminator output the real or fake probability
of the target domain image. The many-to-many mapping-based methods, such as Star-
GAN [5] and its improved versions [6], can simultaneously generate multi-domain images
based on different target labels. Although these solutions have achieved satisfactory results
in image-to-image translation, it’s still difficult to directly use them for multi-level tile map
generation, mainly due to the following two limitations.

1. One-to-one mapping-based methods usually use two ways to implement map genera-
tion with multiple levels, that is, separated training at each level and uniform training
with multiple levels. For the former way, tile maps at each level are trained separately,
which makes the time and space complexity of the model very high. Meanwhile,
due to the low utilization of the training set during the separated training, a larger
amount of training samples are needed. For the latter way, the unified training of RS
images with different levels can easily cause multi-level information confusion and
detailed information loss at a finer level. As shown in Figure 1, the uniformly trained
pix2pix did not discriminate RS images from which levels, resulting in generating the
confusing contents at the 17th level (maybe from the 18th level), meanwhile, the loss
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of important contents such as the green land at the finer level (see the red rectangles
in Figure 1).

2. Many-to-many mapping-based methods usually use one generator and auxiliary
information to complete multi-level map generation, leading to the errors of detailed
content generated at higher levels. For example, as shown in Figure 1, although the
StarGAN generated the green land at the 18th level map, the generated land contained
a lot of false information and also lost a lot of details (see the red rectangle in the
Figure 1b).

To address the above-mentioned limitations in multi-level map translation, we pro-
posed a novel conditional scale-consistent GAN (CscGAN) that simultaneously generates
multi-level tile maps from multi-scale RS images, using only a single and unified model
with great robustness and efficiency. The CscGAN consists of a multi-scale generator,
two multi-scale discriminators, and a map-level classifier, where the annotation images
with level labels are used as the prior conditions to guide the network for hierarchical
feature generation.

The main contributions of this paper are as follows:

1. A single and unified multi-level map generation model, called CscGAN, is proposed
to learn the mappings among multiple levels, training effectively and efficiently from
multi-scale RS images and annotation images with different levels and resolutions.
As far as we know, this is the first model to simultaneously generate different tile
maps in multiple levels.

2. Two multi-scale discriminators and a multi-scale generator are designed for jointly
learning both high-resolution and low-resolution representations, aiming to produce
high-quality tile maps with rich details at different levels.

3. A map-level classifier is introduced to guide the network for discriminating the
learned representations from which level, improving the stability and efficiency of
adversarial training in multi-level map generation.

4. We construct and label a new RS-image-to-map dataset for multi-level map gen-
eration and analysis referred to as the “self-annotated RS-image-to-map dataset”.
Extensive experiments on two datasets and cross study areas show that the Csc-
GAN outperforms the state-of-the-art methods for the quality of different levels of
map translation.

The remainder of this paper is organized as follows: Section 2 describes related work.
Section 3 introduces the details of the used dataset in this study. Section 4 presents the
proposed CscGAN for tile map generation with multiple levels in detail. Section 5 discusses
the experimental results on publicly available and self-annotated datasets and study areas.
Finally, this paper is concluded in Section 6.

2. Related Work

In this section, methods that are related to Image-to-Image translation and tile map
translation are discussed.

2.1. Image-to-Image Translation

Image-to-Image translation has been a recent development and research hotspot
in the field of generative adversarial network (GAN) [12]. GAN based Image-to-Image
translation generally consists of a generator and discriminator that play games during
training, to achieve Nash equilibrium and finally to generate the fake data. It’s known
that it is a challenge to optimize the generator and discriminator in GAN during train-
ing [16–18]. To address this problem, a lot of training algorithms have been developed
for novel generative tasks over the past few years. DCGAN [19] used a convolutional
neural network as the generative network and proposed a series of suggestions so that
GAN is more stable in training. WGAN [16] adopted the Wasserstein distance to the
objective function of the GAN, which can effectively solve gradient vanishes or gradient
explosion during training. WGAN-GP [20] directly restricted the gradient of the discrim-
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inator based on WGAN. LSGAN [21] also modified the objective function and changed
the classification task to a regression task in the discriminator, which can effectively solve
gradient vanishing. Additionally, to produce high-resolutional images, existing methods,
such as [13,22–25], first produced lower resolution images and then reproduced them into
higher resolution images.

2.2. Automatic Map Translation from RS Images

Automatic map translation from RS images has recently attracted more and more
attention from academia and industry [26]. Pix2pix [2] is first used in map translation. It
used RS images as the generator’s input to generate the corresponding Google map and
then used the generated Google map to train the discriminator. The recently proposed
CycleGAN architecture has been evaluated on RS image to map translation [3], which does
not need pairing data by adding a cycle consistency loss. Similar to CycleGAN, GcGAN [4]
proposed a geometric consistency constraint GAN to generate maps from RS images. GANs
have been also used to create spoof satellite images and spoof images of the ground truth
conditioned on the satellite image of the location [27]. Conditional GANs have also been
used to generate ground-level views of locations from overhead satellite images Deng, Zhu,
and Newsam [28]. Semantic segmentation has also been used to predict the probabilities
from spectral features of the RS images [7–9]. It is very similar to map translation.

In general, the existing methods mostly generated high-quality unannotated maps at
a single level, and the generation of more detailed text annotations at multiple levels is still
an open research problem.

3. Materials
3.1. Maps Dataset

The maps dataset is widely used in RS image-to-map translation task [2,4,29,30].
The data were collected from Google Maps at a single level. In the experiments, 1096 RS
images and 1096 electronic tile maps are used together for training, and 1098 RS images
and 1098 electronic tile maps are used for testing. Table 1 shows the maps dataset for the
training, the testing in our experiment. Note that the dataset has no level attribute. Some
examples from the map dataset are shown in Figure 2.

RS image Tile map

Figure 2. Examples from the maps dataset.
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Table 1. Detailed information for the training and testing.

Dataset Training Testing

Maps dataset 1096 1098
Self-annotated RS-image-to-map dataset 6150 615

3.2. Self-Annotated RS-Image-to-Map Dataset and Study Areas

This dataset was collected, annotated and built independently by the authors. The pairs
of RS images, annotation images and maps with multiple levels scraped from Google Maps.
The RS image, annotation image and the corresponding map for this dataset were collected
from some regions in Shanghai and Hubei, China, covering 14, 15, 16, 17 and 18 levels,
respectively. In this dataset, there are 1476 pairs of tile images (namely maps and RS images)
at each level, where the size of each tile is 256 × 256 pixels. Figure 3 shows examples with
different levels from the dataset, and Table 2 lists the detailed information of the dataset.

Level 18

Level 14

Level 15

Level 16

Level 17

RS image Annotation image Tile map

Figure 3. Examples from the self-annotated RS-image-to-map dataset at different levels, namely from
the 14 to 18 levels.

In this study, since the number and resolution in lower levels is insufficient for training,
for example, there are only 506 tile maps at level 8 in China, we chose the levels from 14
to 18. Additionally, the data split for training (1230 pairs), validation (123 pairs), test sets
(123 pairs), and the total number of samples (1476 pairs) at each level in the experiments.
Table 1 gives detailed training and testing schemes for the self-annotated RS-image-to-map
dataset.

To evaluate the performance of the different areas, we selected two study areas in
Shanghai (including, Songjiang District, Pudong New District, Minhang District, Qingpu
District) and Hubei (including Wuhan city, Yingcheng city, Xiaogan city, Huanggang city),
respectively. These two areas are relatively developed in China, with intricate roads and
rich annotated information, which are very suitable for map translation evaluation. Table 2
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shows the detailed information of the study areas, including the latitude, longitude range,
scale and spatial resolution at each level.

Table 2. Detailed information on the self-annotated RS-image-to-map dataset and study areas.

Study Area Level Range Scale Spatial Resolution

Shanghai 14 120.85, 31.53∼122.24, 30.67 1:72,223 19.109257
(Songjiang District, 15 120.85, 31.53∼122.24, 30.67 1:36,111 9.554629

Pudong New District, 16 121.14, 31.18∼121.53, 30.93 1:18,055 4.777314
Minhang District, 17 121.21, 31.18∼121.56, 30.93 1:9027 2.388657
Qingpu District) 18 120.89, 31.32∼121.67, 30.84 1:4513 1.94329

Hubei 14 113.35, 31.01∼114.42, 30.11 1:72,223 19.109257
(Wuhan, 15 113.53, 30.46∼114.20, 30.31 1:36,111 9.554629

Yingcheng, 16 114.04, 30.42∼114.26, 30.23 1:18,055 4.777314
Xiaogan, 17 114.09, 30.40∼114.21, 30.20 1:9027 2.388657

Huanggang) 18 114.09, 30.39∼114.23, 30.26 1:4513 1.94329

4. Methods

In this section, a brief overview of the proposed end-to-end CscGAN for multi-scale
RS images to multi-level map translation is first presented. Then, the learning process of
each component of the approach is described.

4.1. The Overview of the Method

In this paper, we propose a new multi-level map translation network (termed CscGAN)
based on multi-scale RS images and their annotation images, which incorporates a multi-
scale generator, two multi-scale discriminators, and a map-level classifier into a GAN
framework, as shown in Figure 4. CscGAN allows simultaneous training of multi-level RS
data with different scales within a single network, where the annotation images with level
labels are used as prior conditions to guide the network to perform hierarchical feature
learning. Specifically, given an RS image x and its annotation image xa with the level label
c as the conditional input, the multi-scale generator G is optimized to produce tile map
distributions with two different resolutions via using two residual blocks of different scales
as, G : (x, xa|c)→ {G1(x, xa|c), G2(x, xa|c)} (see the proposed CscGAN training pipeline
in Figure 4). Meanwhile, two multi-scale discriminator Di are optimized to respectively
distinguish the generated maps Gi(x, xa|c) and real tile maps for learning the hierarchical
features Di,j(yi|xi, xai) at different levels, where i represents the scale and j represents the
features. Furthermore, the map-level classifier is introduced to guide the whole network
for learning the map representations most relevant to the corresponding level according to
the conditional input. Overall, high-quality tile maps with rich details at different levels
can be simultaneously translated by the CscGAN with the following objective functions,

LD =
1
p

p

∑
i
[Ex,xa ,y,c[(Di(yi|xi, xai)− 1)2] +Ex[(Di(Gi(x, xa|c)|xi, xai))

2]] + λclsLr
cls, (1)

LG =
1
p

p

∑
i
[Ex,xa ,c[(Di(Gi(x, xa|c)|xi, xai)− 1)2] + λL1LGi

1 (G)] + λclsL f
cls, (2)

where LD and LG respectively are the loss of multi-scale discriminator and generator. x is a
real RS image from the true data distribution pdata(x), and y is a tile map from distribution
pdata(y). p is the number of generated branches, and we set p = 2 in all of our experiments.
λcls and λL1 are hyper-parameters that control the relative importance of level classification
loss Lcls and distance loss L1 during training, respectively. We set λcls = 1 and λL1 = 100
in all of our experiments, similar to [2]. In order to stabilize the training process, we use
the least-squares loss [21] instead of the traditional objective function in GAN.

Each component in the CscGAN is subsequently introduced in detail.
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(i) Multi-level input

(ii) Training procedure of HisStarGAN
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128×128
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Multi-scale Discriminator

Down

sampling

Level

Cls

Classifier 

loss

Adversarial  

loss

OR

Real Fake

Concatenate+ Multi-scale Discriminator2Level Classifier Multi-scale Discriminator1 Feature Pyramid
Level
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Level 14
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Level 15
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Level 18

[0,0,0,1,0]
Level 17

Figure 4. The architecture of the proposed CscGAN.

4.2. Multi-Scale Generator

Due to resolution variation in both RS images and tile maps at different levels, the tra-
ditional generator in GANs has difficulty generating both high and low resolution maps
directly due to overfitting and unstable training [24]. Therefore, a multi-scale generator
G with two parallel scale branches is designed for generating multi-resolution maps of
different levels, aiming to model both high-resolution and low-resolution image feature
distributions at the same time and overwhelm overfitting during training. The detailed
architecture of the proposed multi-scale generator is presented in Figure 5. It consists of
a backbone adopted in CycleGAN [30] and two scale generated branches (see G1 and G2
in Figure 5). In the small-scale branch G1, the generator first generates low-resolution tile
maps according to basic color and structures via two stride-2 convolutions and 7 residual
blocks, and thus some detailed text annotations might be omitted; then, in the large-scale
branch G2, the generator focuses on previously ignored text information to generate higher
resolution maps.

backbone

Level label c

[0,0,1,0,0] +

Annotation image xa

+

RS image x
64

25
6

conv1

128 1
28

conv2

256 64

ResBlock1

7 Residual Blocks

256 64

ResBlock9 128 12
8

Deconv2

64
25
6

Deconv3

128 12
8

Deconv1

Figure 5. The architecture of the multi-scale generator.

Specifically, the small-scale branch G1 outputs a lower resolution map with the size of
128 × 128, and the large-scale branch G2 outputs the higher resolution map with the size of
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256 × 256. To effectively learn discriminative representations with different resolution at
each branch, a multi-scale adversarial loss function is proposed and calculated as follows:

LGi
adv =Ex,xa ,c[(Di(Gi(x, xa|c)|xi, xai)− 1)2], (3)

where xi, xai and yi respectively represent the RS image, annotation image and its map with
the ith resolution. Di(xi, xai, yi) is the multi-scale discriminator described in the following
section. Additionally, the multi-scale generator is to not only fool the discriminator but also
approach the ground truth via the following L1 scale-consistent distance loss at each scale:

LGi
1 = Ex,xa ,y[||yi − Gi(x, xa|c)||1]. (4)

It forces the generated map to be near the prior annotation map xa at each scale.

4.3. Multi-Scale Discriminator

Since the multi-scale generator produces maps of two different resolutions (see the
above Section 3.1), two multi-scale discriminators, i.e., D1 and D2 in the Figure 4, are
adopted to respectively connect to the above two generator branches (G1 and G2), to ex-
plicitly enforce the CscGAN to learn better alignment between the RS image and the
conditioning text annotation images at multiple levels. The framework of each multi-scale
discriminator is shown in Figure 6. For each multi-scale discriminator Di, we first use
PatchGAN [2,3] as the backbone, which classifies each 70× 70 patch of an image as real or
fake. However, some detailed information may be lost in this process. To alleviate infor-
mation loss, each multi-scale discriminator Di is designed as a tree-like structure, which
contains three sub-discriminators to hierarchically learn features of different levels. Since
multi-resolution images were generated by two generated branches, two discriminators
were used for different scales.

conv1

conv2
conv3 conv4 feature

map4

feature
map1

feature
map2

feature
map3

Real/Fake

Real/Fake

Real/Fake

Map-level classifier

Figure 6. The architecture of each multi-scale discriminator.

During training, each discriminator takes real RS images and their corresponding text
annotation images as positive sample pairs. The total multi-scale adversarial loss is used to
optimize the two multi-scale discriminators and is defined as follows:

LDi
adv = Ex,xa ,y,c[

1
m

m

∑
j=1

(Di,j(yi|xi, xai)− 1)2 + (Di,j(Gi(x, xa|c)|xi, xai))
2], (5)

where m is the total number of sub-discriminators in each multi-scale discriminator and
is set as 3 in this study. j represents the jth sub-discriminator. Additionally, the total
multi-scale adversarial loss Ladv is the average for all generator branches.
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Finally, the proposed multi-scale discriminator Di learns multi-resolution probability
distributions over both input source x, xa, and discriminate the tile map y, that is, D :
x, y, c→ {Di(y|x, xa), Mi(c|x, xa, y)}. Besides, Mi is the proposed map-level classifier that
is used to classify input data into the relevant level, which will be described below.

4.4. Map-Level Classifier

In this section, a map-level classifier is introduced to guide the network for discrimi-
nating the learned representations from which level. To make use of the prior conditions,
the map-level classifier M is plunged into the top of the multi-scale discriminator D,
as shown in Figure 7, improving the stability and efficiency of adversarial training for map
generation at different levels.

Classification loss for G

D

Classification loss 

for C and D

(a) Training the level classifier (b) Training the Multi-scale Generator

G

D

Real annotation image, satellite image 

and one-hot label

Real annotation image and satellite image

Real map

Fake map

M

[0,1,0,0,0]

M

M Map-level classifier D Multi-scale DiscriminatorG Multi-scale Generator

Figure 7. The training procedure of the map-level classifier . G represents the multi-scale generator,
M represents the map-level classifier, and D represents the multi-scale discriminator. (a) The real
image goes through D and then into M to calculate the classification loss and optimize the classifier
and the multi-scale discriminator Di. (b) G generates a map based on the input RS image, annotation
image and level label. Then, M calculates the classification loss of the generator and optimizes the
multi-scale generator.

Figure 7 illustrates the training process of the map-level classifier and the multi-scale
generator. Given the level label c, a one-hot vector is first used to encode c as [0, 1, 0, 0, 0]
for categorical attributes. Then, a level classification loss of real images is used to optimize
the classifier and the multi-scale discriminator Di, while a level classification loss of fake
images is used to optimize multi-scale generator G. In detail, the map-level classification
loss of real images is given by

Lr
cls = Ex,xa ,y,c[

1
p

p

∑
i=1
−logMi(c|xi, xai, yi)], (6)

where the factor Mi(c|xi, xai, yi) represents a probability distribution over map level labels
computed by the map-level classifier Mi. xi and yi represent RS images and tile maps at the
ith resolution branch, respectively. Through minimizing this objective Lr

cls, Mi can classify
a real RS image xi to its corresponding level c. Additionally, the map-level classification
loss of the fake images is defined as

L f
cls = Ex,xa ,c[

1
p

p

∑
i=1
−logMi(c|xi, xai, Gi(x, xa|c))], (7)
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where Gi is the ith generator branch in the multi-scale generator. It can classify the gener-
ated fake images to the relevant level c by minimizing this objective function.

The level classifier contained three stride-1 convolutions and four stride-2 convolu-
tions. The output size of the level classifier was 1 × 1 × N, where N represents the number
of levels in the experiments.

5. Experiments and Analysis

In this section, we thoroughly evaluate the proposed approach on two challenging pair
datasets, that is, the public maps dataset and a self-annotated RS-image-to-map dataset,
and two different study areas including Shanghai and Wuhan in China.

5.1. Evaluation Metrics

To quantitatively and thoroughly evaluate the proposed model, we also perform
quantitative evaluation using the following metrics: Peak Signal to Noise Ratio (PSNR) [31],
Structural Similarity (SSIM) [31,32], Pixel Accuracy [4], and the metrics in a classification
task (Accuracy, Precision, Recall, F1 score).

5.1.1. Peak Signal to Noise Ratio (PSNR)

PSNR directly measures the difference in pixel values. Suppose x and y represent the
pixel values from the generated image and the original image, respectively. The size of
each image is m× n pixels. The mean squared error (MSE) is first calculated as:

MSE =
1

m× n ∑
i=0

∑
j=0

[x(i, j)− y(i, j)]2, (8)

where i and j define the pixel index positions in an image. Then, the PSNR can be ex-
pressed as

PSNR = 10× log10(
MAX2

I
MSE

), (9)

where MAX2
I is the maximum possible pixel value of the image. For example, each pixel is

represented by an 8 bit in binary; then, MAX2
I equals 2552.

5.1.2. Structural Similarity (SSIM)

SSIM estimates the holistic similarity between two images. SSIM is designed by
modelling any image distortion as a combination of the following three factors: loss of
structure, luminance distortion, and contrast distortion [31,32]. The SSIM is calculated as:

SSIM(x, y) = l(x, y) · c(x, y) · s(x, y), (10)

where

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(11)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(12)

s(x, y) =
σxy + C3

σxσy + C3
. (13)

Equation (11) is the luminance comparison function. It is used to measure the closeness
of the average luminance of two images (x and y). This factor is equal to 1 only if µx = µy.
Equation (12) is the contrast comparison function. It is used to measure the closeness of
the contrast between the two images (i.e., x and y). The standard deviation measures the
contrast σx and σy. This term is equal to 1 only if σx = σy. Equation (13) is the structure
comparison function. It is used to measure the correlation coefficient of image x and image
y [31]. Note that σxy is the covariance between the two images x and y. The positive value
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of the SSIM index is in [0, 1]. Zero means there is no correlation between images; one means
x = y. To avoid a null denominator, bring into three positive constants C1, C2, and C3.

5.1.3. Pixel Accuracy

The third evaluation metric is used in GcGAN [4], which is used to assess the accuracy
of aerial photo to map translation. Formally, given a pixel i with the ground-truth RGB
value (ri,gi,bi) and the predicted RGB value (r

′
i ,g
′
i ,b
′
i), the pixel accuracy (acc) is computed as

acc =

{
1 max(|ri − r

′
i |, |gi − g

′
i |, |bi − b

′
i |) < θ.

0 otherwise
(14)

Since maps only contain a limited number of different RGB values, it is reasonable to
compute pixel accuracy using this strategy (θ = 5 in this paper).

5.1.4. Accuracy, Precision, Recall, F1 Score, ROC Curves

As with other classification tasks, we use Accuracy, Precision, Recall, F1 Score to
evaluate the level classifier’s performance as follows:

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

F1 = 2× Precision× Recall
Precision + Recall

. (18)

We also use the receiver operating characteristic (ROC) curve as the level classifier’s
performance indicators.

5.2. Implementation Details
5.2.1. Training Details

CscGAN was implemented using the Pytorch deep learning framework [33]. We
adopted mini-batch SGD and applied the Adam solver with a batch size of 1, a learning
rate of 0.0002, and momentum parameters β1 = 0.5, β2 = 0.999.

5.2.2. Experimental Machine Configuration

The network models were trained on a PC with an Intel (R) CoreTM i7-6700 CPU at
4.00 GHz with 32 GB memory and an NVIDIA GeForce RTX 2080. All the models are tested
on an NVIDIA GeForce GTX 960M.

5.3. Evaluation of Maps Dataset

The proposed CscGAN was compared with existing state-of-the-art methods, includ-
ing pix2pix [2] and CycleGAN [30] on the maps dataset, as shown in Table 3. The pix2pix
uses an RS image x to realize the translation from the RS image x to the tile map y. Cycle-
GAN also achieves translation from the RS image x to tile map y, but the data requirements
are not as strict as pix2pix. The PSNR [31], SSIM [31,32], and pixel accuracy [4] mentioned
in Section 5.1 were used to evaluate these methods. Table 3 lists the experimental results,
and Figure 8 shows the visualization results generated by the different methods on the
maps dataset. Compared to the state-of-the-art methods, the proposed CscGAN achieved
outperformance in all evaluation metrics.
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(a) RS image (b) tile map (c) pix2pix  (d) CycleGAN (e) CscGAN

Figure 8. Visualization generation results via different methods on maps dataset.

Table 3. Comparison of the state-of-the-art methods on the maps dataset. The best results are
highlighted in bold.

Method PSNR SSIM Pixel Accuracy

pix2pix [2] 26.591 0.7 41.635%
CycleGAN [3] 25.017 0.664 37.603%
Our CscGAN 27.202 0.739 46.869%

Since the maps dataset has only one level, the CscGAN here did not include the
map-level classifier. The results generated by the CscGAN are more similar to the ground
truth than those generated by the other methods. For PSNR, SSIM and pixel accuracy, our
method increases by 0.611, 0.039, and 5.234%, respectively, compared to the second highest
model(pix2pix). As shown in Figure 8c,d, both the pix2pix and CycleGAN cannot generate
large areas such as rivers and green space well. The rivers and green spaces generated by
CscGAN significantly outperformed the other methods. It is proved that the multi-scale
generator enables the network to obtain more detailed information.

5.4. Evaluation of the Self-Annotated RS-Image-to-Map Dataset

Table 4 reports the comparison results of pix2pix [2], CycleGAN [30], StarGAN [5],
and the proposed CscGAN on the self-annotated RS-image-to-map dataset. Since this
dataset includes five levels, the one-to-one mapping-based methods, like pix2pix and Cy-
cleGAN, need to be trained as five independent models. As shown in Table 4, the proposed
CscGAN exhibited significantly improved performance for multi-levels map generation
in several evaluation metrics. Compared to existing methods, our method has the largest
growth in PSNR, SSIM and pixel accuracy over 5%, 0.18% and 13% respectively. We con-
jecture that multi-scale generator and multi-scale discriminator can model more detailed
information so that the CscGAN can generate better results at multiple levels. Additionally,
Table 5 lists the total parameter sizes and inference time of the different models. Compared
to other methods, the proposed CscGAN has smaller parameter sizes (only 81.5 MB), which
makes training time much less than other methods. The tiny increase of reference time
shows that the proposed CscGAN can achieve the best performance with tiny additional
computational cost, which means that the proposed method can achieve an excellent
balance between accuracy and efficiency.
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Table 4. The results of different methods evaluated on the RS-image-to-map dataset. Acc represents pixel accuracy, which is mentioned
in Section 5.1.3. Avg represents the average result of the five levels. Note that the best results are highlighted in bold.

Level
pix2pix [2] CycleGAN [3] StarGAN [5] CscGAN

PSNR SSIM Acc PSNR SSIM Acc PSNR SSIM Acc PSNR SSIM Acc

14 27.1 0.734 65.356% 23.899 0.652 60.165% 28.008 0.784 74.097% 28.011 0.785 74.361%
15 27.503 0.871 65.817% 21.163 0.65 51.984% 27.192 0.853 64.831% 27.194 0.852 64.835%
16 25.5 0.838 63.370% 21.344 0.698 54.083% 26.412 0.864 65.940% 26.371 0.864 66.057%
17 26.861 0.868 69.660% 21.548 0.732 60.208% 27.79 0.885 71.694% 27.83 0.886 71.707%
18 25.192 0.768 49.415% 18.115 0.532 34.526% 25.935 0.808 51.791% 25.98 0.809 51.053%

Avg 26.432 0.816 62.724% 21.214 0.653 52.193% 27.067 0.839 65.671% 27.077 0.839 65.602%

Table 5. The total parameter sizes and inference time of the different methods. Note that the best
results are highlighted in bold.

Methods Params Size (MB) Inference Time (ms)

pix2pix [2] 269.9 0.011
CycleGAN [3] 539.5 0.008
StarGAN[5] 64.9 0.010

CscGAN 81.5 0.014

In addition, due to space limitations, in Figure A1, we show the generated results of
different methods at each level. Compared to the CycleGAN and pix2pix, the CscGAN
produced more detailed and precise contents in tile maps. Furthermore, compared to
the results of StarGAN, the CscGAN also achieved competitive visualization results at
multiple levels, especially detailed contents such as text annotations and subtle loads in
the high-level maps.

5.5. Ablation Experiment and Study

The impact of each component in CscGAN on the final performance is verified in
this section. Table 6 presents the ablation results of the gradual addition of the level
classifier, multi-scale discriminator and multi-scale generator training on the baseline
pix2pix [2] framework. The results of ablation experiments were quantified by PSNR [31],
SSIM [32], and pixel accuracy [4]. As seen from Table 6, after adding the map-level classifier,
the PSNR, SSIM and pixel accuracy are remarkably higher (respectively increases by 0.521%,
0.018%, 1.994%) than the baseline. After adding the multi-scale discriminator, the PSNR
achieved the increment (about 0.114). The possible reason is that the improvement of the
discriminator’s ability indirectly leads to the enhancement of the generator’s ability. Finally,
adding the multi-scale generator, the PSNR, SSIM and pixel accuracy are remarkably higher
(increases by 0.01%, 0.004%, 1.183%). In addition to improving the quality of the generated
results, the multi-scale approach can effectively enhance the stability of GAN training,
especially in the generation of high-resolution images.

Furthermore, Figure 9d shows the generated visualization results, with using multi-
scale and not using multi-scale generator. As shown in Figure 9d, without using the
multi-scale generator, the training process was very unstable, resulting in the very terrible
results. On the contrary, with using the multi-scale generator, the problem of training
instability is alleviated and thus the correct maps can be generated (see Figure 9e).
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Table 6. Ablation study of the proposed CscGAN. Impact of integrating our different components (Level Cls, Mult D, and Mult G) into
the baseline on the RS-image-to-map dataset for ablation experiments. +Map-level Cls: Add a level classifier to pix2pix. +Mult D: Add
a multi-scale discriminator based on the previous model. +Mult G: Add a multi-scale generator based on the previous model. Note:
The best results are presented in bold.

Level
Baseline [2] +Map-Level Cls +Mult D +Mult G

PSNR SSIM Acc PSNR SSIM Acc PSNR SSIM Acc PSNR SSIM Acc

14 27.1 0.734 65.356% 27.923 0.782 73.549% 27.988 0.783 73.281% 28.011 0.785 74.361%
15 27.503 0.871 65.817% 27.103 0.845 63.661% 27.156 0.846 63.106% 27.194 0.852 64.835%
16 25.5 0.838 63.370% 26.248 0.859 64.723% 26.295 0.86 64.299% 26.371 0.864 66.057%
17 26.861 0.868 69.660% 27.478 0.878 70.486% 27.654 0.88 69.862% 27.83 0.886 71.707%
18 25.192 0.768 49.415% 26.014 0.807 51.174% 26.24 0.808 51.548% 25.98 0.809 51.053%

Avg 26.432 0.816 62.724% 26.953 0.834 64.718% 27.067 0.835 64.419% 27.077 0.839 65.602%

(b) Annotation image (c) Ground truth (d) w/o multi-scale G (e) multi-scale G(a) RS image

Figure 9. The comparison of generation results with the use of the multi-scale generator and without
the use of the multi-scale generator.

To further study the effectiveness of the level classifier, Figures 10 and 11 respectively
provide the confusion matrixes and ROC curve of real-fake map classification in the level
classifier on the self-annotation RS-image-to-map dataset. From Figure 10a, we can be
observed that the map-level classifier reached an accuracy of 94.8%, precision of 94.97%,
recall of 94.8%, and F1 score of 0.95 for real map classification. Additionally, we used
the multi-scale generator to generate a fake map as the input into the level classifier.
The classified results by the level classifier are shown in Figure 10b. Most of the fake
maps can be successfully classified to the corresponding level by the level classifier (the
accuracy is 89.27%, the precision is 90.14%, recall is 89.27%, and F1 score is 0.89). Moreover,
Figure 12a,b respectively presents the generated maps at the 17th, 18th level, whether using
the level classifier. Obviously, the level classifier makes the generated map details richer
and more accurate.
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(a) Real (b) Fake

Figure 10. The classification results by the level classifier. (a) The confusion matrix of classification
on the real data; (b) the confusion matrix of classification on the fake data.

Figure 11. ROC curve by the level classifier.
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RS image + 

Annotation image
Ground truth w/o Map-level Cls + Map-level Cls

(a) Generated results of the 17th level whether using the map-level classifier.

(b) Generated results of the 18th level whether using the map-level classifier.

RS image + 

Annotation image
Ground truth w/o Map-level Cls + Map-level Cls

Figure 12. The comparison of generation results with the use of the map-level classifier and without
the use of the map level classifier.

5.6. Generalization Analysis of Cross Study Areas

To verify the generalization ability of the proposed CscGAN in different areas, we
used RS images in the Shanghai area for training and the Hubei area for testing. Table 2 lists
the training and testing information of the used study areas. The comparison experiments
were conducted by pix2pix [2], CycleGAN [30], StarGAN [5], and CscGAN on the cross
study areas. Table 7 reports the evaluation results of the PSNR [31], SSIM [32] and pixel
accuracy [4] for the three models.

Table 7. The generalization results via different methods, we use the study areas in Shanghai for training while other areas in Wuhan
for testing. Note that the best results are highlighted in bold.

Level
pix2pix [2] CycleGAN [3] StarGAN [5] CscGAN

PSNR SSIM Acc PSNR SSIM Acc PSNR SSIM Acc PSNR SSIM Acc

14 26.918 0.787 71.016% 23.446 0.705 60.918% 28.178 0.845 77.308% 28.34 0.847 77.660%
15 27.822 0.885 71.607% 21.986 0.708 54.580% 28.140 0.882 71.680% 28.412 0.885 72.248%
16 25.749 0.85 67.660% 21.679 0.71 57.940% 27.126 0.880 69.640% 27.238 0.886 71.720%
17 26.552 0.902 74.775% 20.336 0.73 58.452% 27.723 0.917 75.833% 27.506 0.918 75.714%
18 26.924 0.808 48.979% 17.244 0.538 33.738% 27.246 0.841 49.229% 27.113 0.843 48.627%

Avg 26.793 0.846 66.807% 20.938 0.678 53.126% 27.683 0.873 68.738% 27.722 0.876 69.194%

Compared to the other state-of-the-art methods, the results of the proposed CscGAN
demonstrate that it can be better reused for multi-level map generation in other study
areas. For SSIM, the highest results were achieved by the proposed CscGAN at each level.
For PSNR and Acc, compared to the StarGAN at the 17th and 18th levels, although the
results of the proposed method slightly declined, the average results of the three metrics
were significantly improved (increases by 0.039%, 0.003%, 0.456%). Additionally, to clarify
the visualization quality of the generation maps, generation results at each level can be
shown in Figure A2. The CscGAN has a good effect on detailed information generation at
finer levels, e.g., rivers, text annotations, and green areas.
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5.7. Result Analysis and Discussion of Study Areas with Different Levels

To clearly discuss the quality of generated maps from large RS images at different
levels, Figures 13–17 exhibit the qualitative results from the level 14 to level 18 in differ-
ent districts in Shanghai. Four study districts (Songjiang District, Pudong New District,
Minhang District and Qingpu District) were selected to investigate the effectiveness of the
proposed algorithm.

(a) RS image + Annotation image

(b) Ground truth

(c) CscGAN

Figure 13. The generation results with level 14 via the proposed CscGAN in Songjiang District of
Shanghai. For clarity, the zoomed local areas (A1 and A2) are on the right of the figure.
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Figure 13 presents the large RS image, annotation image, ground truth, and generated
map in Songjiang District of Shanghai at the 14th level, where the results generated by the
proposed CscGAN are very similar to the RS image and the ground truth. The generated
results in Figure 13c show that both the coarse information including green land, rivers,
and some rough roads and the detailed information including map annotations and words,
are similar to the ground truth. For clarity, the zoomed local areas (A1 and A2) are on the
right of the figure. Note that, because there is slight mismatch between RS images and
real maps (see Figure 13a,b), the low resolution images at the 14th level are difficult to
distinguish the fake or real features by the discriminator.

Figure 14 exhibits the maps generated by the proposed CscGAN in the Pudong New
Area of Shanghai at the 15th level. Through observation, it can be found that the finer
roads generated at the 15th level are finer than at the 14th level.

(a) RS image + Annotation image

(b) Ground truth

(c) CscGAN

Figure 14. The generation results with level 15 via the proposed CscGAN in the Pudong New Area
of Shanghai. For clarity, the zoomed local areas (A1 and A2) are on the right of the figure.

Additionally, Figures 15–17 respectively depict the generation results with levels 16
to 18 in Minhang District and Qingpu District, in Shanghai. With the finer level, detailed
annotations and content in RS images become finer, so the generation maps are clearer and
more accurate than previous levels. Moreover, the generated lettering annotations were
verisimilitude at each level.
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(a) RS image + Annotation image

(b) Ground truth

(c) CscGAN

Figure 15. The generation results with level 16 via the proposed CscGAN in Minhang District of
Shanghai. For clarity, the zoomed local areas (A1 and A2) are on the right of the figure.

(a) RS image + Annotation image

Figure 16. Cont.
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(b) Ground truth

(c) CscGAN

Figure 16. The generation results with level 17 via the proposed CscGAN in Qingpu District of
Shanghai. For clarity, the zoomed local areas (A1 and A2) are on the right of the figure.

(a) RS image + Annotation image

(b) Ground truth

Figure 17. Cont.
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(c) CscGAN

Figure 17. The generation results with level 18 via the proposed CscGAN in Minhang District of
Shanghai. For clarity, the zoomed local areas (A1 and A2) are on the right of the figure.

6. Conclusions

This paper proposed an end-to-end trainable map generation network, termed Csc-
GAN, to perform high-quality map generation with multiple levels from multi-scale RS
images using only a single and unified model. In CscGAN, we designed two multi-scale
discriminators and a multi-scale generator to jointly learn both high-resolution and low-
resolution representations with rich details at different levels, and a map-level classifier
to further guide the network for learning the map representations most relevant to the
corresponding level. Furthermore, to carry out experiments at different map levels, we
constructed a new dataset with multiple level RS images, annotation images and corre-
sponding tile maps. Experiments on two map datasets (namely the maps dataset and the
self-annotated RS-image-to-map dataset) and two different study areas (i.e., Songjiang
District, Pudong New District, Minhang District, and Qingpu District in Shanghai and
Wuhan, Yingcheng, Xiaogan, Huanggang in Hubei) demonstrate that the CscGAN can
simultaneously train multiple levels of data using a single model and achieve a much-
improved performance and greater robustness than other methods. However, in finer
levels, dense building contours are still easily blurred. In future work, a powerful edge-
constrained network will be explored in our CscGAN framework, for providing a more
reliable synthetic map.
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Figure A1. Example results translated by different methods.
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Figure A2. Example results in the Wuhan area.
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