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Abstract: Due to the large data volume, the UAV image stitching and matching suffers from high
computational cost. The traditional feature extraction algorithms—such as Scale-Invariant Feature
Transform (SIFT), Speeded Up Robust Features (SURF), and Oriented FAST Rotated BRIEF (ORB)—
require heavy computation to extract and describe features in high-resolution UAV images. To
overcome this issue, You Only Look Once version 3 (YOLOv3) combined with the traditional
feature point matching algorithms is utilized to extract descriptive features from the drone dataset
of residential areas for roof detection. Unlike the traditional feature extraction algorithms, YOLOv3
performs the feature extraction solely on the proposed candidate regions instead of the entire
image, thus the complexity of the image matching is reduced significantly. Then, all the extracted
features are fed into Structural Similarity Index Measure (SSIM) to identify the corresponding
roof region pair between consecutive image sequences. In addition, the candidate corresponding
roof pair by our architecture serves as the coarse matching region pair and limits the search
range of features matching to only the detected roof region. This further improves the feature
matching consistency and reduces the chances of wrong feature matching. Analytical results
show that the proposed method is 13× faster than the traditional image matching methods with
comparable performance.

Keywords: image matching; deep learning; YOLOv3; roof region detection; drone images; high-
performance computing

1. Introduction

Image registration is a traditional computer vision problem for applications in various
domains ranging from military, medical, surveillance, robotics, as well as remote sensing [1].
With advances in robotics, cameras can be effortlessly mounted on a UAV to capture the
ground images from a top view. A UAV is often operated in a lawn-mower scanning
pattern to capture a region of interests (ROI). These captured ROI images are then stitched
together to provide an overview representation of the entire region. Drones are relatively
low-cost and can be operated in remote areas.

The process of image stitching is useful in a number of tasks, such as disaster pre-
vention, environment change detection, road surveillance, land monitoring, and land
measurement. The task of image matching can be divided into two sub-tasks: feature
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detection and feature description. Researchers have extensively used advanced handcraft
feature descriptor algorithms, such as SIFT [2,3], SURF [4,5], and ORB [6]. In the task of
feature detection, the distinctive and repetitive features are first detected and input into
a non-ambiguous matching algorithm [7,8]. These features are further summarized by
region descriptor algorithms such as SIFT, SURF, or ORB. These handcrafted descriptors
work by summarizing the histogram of gradient in the region surrounding the feature.
SIFT is the pioneer in the work of descriptor handcrafting that is robust to scale and ori-
entation changes. SURF and ORB are approximate and fast versions of SIFT. Features are
then matched based on several measures such as brute force matching and Flann-based
matching, which is based on the nearest descriptor distance and the matches that satisfy a
ratio test as suggested by Lowe et al. [2]. As the raw matches based on these measures often
contain outliers, the Random Sample Consensus (RANSAC) [9] is often adopted to perform
a match consistency check to filter the outliers. The drone image motion is generally caused
by the movement of the camera. Hence, the camera motion can be modeled as a global
motion in which every pixel in the image shares a single motion. The global motion is
generally modeled as a transformation matrix, which can be estimated by as few as four
matching pairs.

Recent advances in deep learning and convolutional neural networks have been ap-
plied in various fields such as natural language processing and subsequently in computer
vision, especially in the tasks of object detection and object classification [10,11]. The con-
cept of the convolutional neural network was first introduced in LeNet [12]. AlexNet [13]
made it well-known after winning the 2012 ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC) [14]. Various studies have shown that training a deep network on a large
dataset can lead to a better testing accuracy [13–16]. The advances in the hardware such
as the graphics processing unit (GPU) made it possible to process larger data in a shorter
time. Recent deep learning methods specifically YOLOv3 [17] have shown consistent good
results for object detection and classification.

The most straightforward idea for enhancing the computational time of the drone
image registration is the use of high-performance computing (HPC) approach. This study
introduces a novel method to integrate the GPU-based deep learning algorithm into
traditional image matching methods. The use of a GPU is a significant recent advance
for making the training stage of deep network methods more practical [18–21]. The
proposed method generates robust candidate regions by adopting YOLOv3 [17] and
performs the traditional image matching only on the candidate regions. Similar to Fast
R-CNN [22,23], the use of candidate regions are applied for the image matching tasks
instead of image classification.

Structural similarity (SSIM) is then adopted to determine the similarity of the candi-
dates’ regions. The mismatched regions are then filtered and the overlaps are matched to
confirm the corresponding relationship of the overlapping regions on two adjacent images.
The traditional feature extraction algorithm is then run to extract features from the matched
regions and match the features. The search region is thus limited to very small area of the
image, reducing the matching error. In the urban, the roof is an important information
infrastructure [20]. Therefore, it led to a significant reduction in the computational require-
ments as the image matching is only performed on the candidate roof regions which is
well suited for real-time image registration applications. In this paper, it is shown that
our proposed method has achieved 13× faster than the traditional methods of SIFT, SURF,
and ORB.

2. Traditional Image Stitching Methods and Deep Learning

Image stitching has been long studied in the fields of computer vision and remote
sensing. Traditional image matching methods involve handcrafting descriptors that are
robust to photometric and geometric variations at some distinctive repetitive feature
locations. The computational cost of the image stitching process rises linearly with the
image size as more features are detected and matched for the image stitching. Recent
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advances in convolutional neural networks and deep learning have shown remarkable
results in the field of language processing and image processing. Deep learning has
revolutionized high-level computer vision tasks such as object detection and classification.
However, further research is needed on adapting deep learning methods in low-level
computer vision tasks such as image matching.

2.1. Traditional Image Matching

Traditional image matching methods can be classified as feature-based or pixel-based
matching. For drone image registration, the motion is only caused by the movement of the
drone. This motion can be approximated by only a single global motion, shared by all the
pixels in the image. Hence, feature-based matching is popular in drone image registration.
Moreover, feature-based matching is robust to photometric and geometric variations. Only
a few distinctive repetitive feature points are detected, and their descriptors are matched.
Well-known feature detection methods include the Harris corner detector [7], Hessian
affine region detector [24], and Shi Tomasi feature detector [8]. Feature descriptors are
handcrafted, such as SIFT [2], SURF [4], and ORB are based on the histogram of gradient
(HOG) for a local region surrounding a keypoint location and also the pixel gradient.
SIFT [2] is a pioneering feature descriptor, and is the basis for the faster approximate
variants SURF [4] and ORB [6].

2.1.1. Scale-Invariant Feature Transform (SIFT)

David Lowe presented the Scale-Invariant Feature Transform (SIFT) algorithm in
1999 [2]. SIFT is perhaps one of the earliest works on providing a comprehensive key-
point detection and feature descriptor extraction technique. The SIFT algorithm has four
basic steps.

First, building a multi-resolution pyramid over the input image, and applies difference
of Gaussians (DoG), as shown in Equation (1)

D(x, y, σ) = (G(x, y, kσ)− G(x, y, σ)) ∗ I(x, y)
= L(x, y, kσ)− L(x, y, σ)

(1)

In Equation (1), k denotes a constant multiplicative factor, k =
√

2.
Secondly, a keypoint localization where the keypoint candidates are localized and

refined by eliminating the low contrast points.
Thirdly, to characterize the image at each keypoint, the Gaussian smoothed image L at

each level of the pyramid is processed with the closest scale, hence all the computations are
performed in a scale-invariant manner. At each pixel L(x,y), the gradient magnitude m(x, y)
and orientation θ(x, y) of the feature points in the image can be calculated as shown in
Equation (2) and Equation (3).

m(x, y) =

√(
∂L
∂x

)2
+

(
∂L
∂y

)2
(2)

θ(x, y) = tan−1

( ∂L
∂y
∂L
∂x

)
(3)

The final step of the SIFT algorithm is the local image descriptors where location, scale,
and orientation are determined for each keypoint.

2.1.2. Speeded Up Robust Features (SURF)

Herbert Bay et al. presented a novel image feature detection and extraction algorithm
called Speeded Up Robust Features (SURF) [4]. SURF is based on the Hessian matrix
which can find feature points [4]. Hessian matrix is a square matrix of second-order partial
derivatives of a scalar-valued function. It describes the local curvature of a function of
many variables. The Hessian matrix measures the local change around each point. It
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chooses the points at the maximum determinant. Given a point X = (x, y) in image I, the
Hessian matrix H(X, σ) at point X and scale σ is defined as

H(X, σ) =

[
Lxx(X, σ) Lxy(X, σ)
Lxy(X, σ) Lyy(X, σ)

]
(4)

where Lxx(X, σ) denotes the convolution of the Gaussian second-order derivative ∂2

∂x2 g(x)
with image I at point X, Lxy(X, σ), and Lyy(X, σ) are defined similarly. For orientation
assignment, it uses wavelet responses in both horizontal and vertical directions by
applying adequate Gaussian weights. For feature description also SURF uses the wavelet
responses. A neighborhood around the keypoint is selected and divided into subregions
and then for each subregion the wavelet responses are taken and represented to get SURF
feature descriptor. The sign of Laplacian which is already computed in the detection
is used for underlying interest points. The sign of the Laplacian distinguishes bright
blobs on dark backgrounds from the reverse case. In matching cases, the features are
compared only if they have same type of contrast (based on sign) which allows faster
matching [5].

2.1.3. Oriented FAST and Rotated BRIEF(ORB)

Oriented FAST and Rotated BRIEF (ORB) is a computed feature extractor and descrip-
tor algorithm presented by Ethan Rublee [6].

ORB is a fusion of the FAST keypoint detector and BRIEF descriptor with some
modifications. Initially to determine the keypoints, it uses FAST, as shown in Equation (5).

CRF =

{
1, i f |IP − Ik| > t
0, else

(5)

FAST corner detector uses a circle of 16 pixels to classify whether a candidate point p
is actually a corner or not. Each pixel in the circle is labeled from integer number 1 to 16
clockwise. IP is the intensity of candidate pixel p. Ik is the intensity of number 1 to 16.
Corner Response Function (CRF) gives a numerical value for the corner strength at a pixel
location based on the image intensity in the local neighborhoods. The t is a threshold
intensity value. Then a Harris corner measure is applied to find top N points among
them. FAST does not compute the orientation and is rotation variant. It computes the
intensity weighted centroid of the patch with located corner at center. The direction of the
vector from this corner point to centroid gives the orientation. Moments are computed
to improve the rotation invariance. The descriptor BRIEF poorly performs if there is an
in-plane rotation. In ORB, a rotation matrix is computed using the orientation of patch and
then the BRIEF descriptors are steered according to the orientation [6].

2.1.4. RANdom SAmple Consensus (RANSAC)

These descriptors between image pairs are then matched against each other to identify
the best match with the minimum distance by brute force method. As the matches often
contain outliers, a consistency check such as RANSAC [9] is often used to remove inconsis-
tent matches. Figure 1 shows the match points of an input image pair after adopting the
RANSAC algorithm [9]. The consistent matches are then used to model a transformation
matrix for estimating a global motion for every pixel.
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Figure 1. The match points of an input image pair before and after adopting RANSAC algorithm [9].
(a) initial match, (b) filtered match points.

2.2. Deep Learning Algorithms

The development of neural networks-based systems have drastically increased and
demonstrated extraordinary performance [22]. The neural networks-based methods have
recently emerged as potential alternatives to the traditional methods [24,25]. The recent suc-
cess of deep learning in computer vision has led to the adoption of the convolutional neural
network (CNN) in low-level computer vision tasks such as image matching. Hardware
advances such as GPU enable training of a very deep CNN that incorporates hundreds of
layers [11].

Object Detection Network

Most current object detection frameworks are either one-stage or two-stage. Re-
gions with convolutional neural network (R-CNN) [26], fast R-CNN [22], and faster
R-CNN [27,28] are two-stage object detection frameworks. Two-stage object detectors
often achieve high object detection accuracy at a high computational cost. One-stage ob-
ject detectors, including single shot multibox detector (SSD) [29] and YOLOv3 [17], they
formulate the object detection of an input image as a regression problem that outputs
class probabilities as well as bounding box coordinates. One-stage object detectors have
gained popularity recently, as they achieve comparable object detection accuracy and better
speed than two-stage object detectors. Specifically, YOLOv3 [17] has reported achieving
consistent high accuracy in object detection. On a Pascal Titan X, YOLOv3 [17] runs in real
time at 30 FPS, and has a mAP-50 of 57.9% on COCO test-dev.

In this paper, we construct a YOLOv3-based [17] end-to-end training convolutional
neural network to detect “roof”. YOLOv3 [17] used a single neural network to directly
predict the bounding box and class probability. The detailed information about “YOLOv3
object detection” in next section.
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3. Proposed Method

This study presents a novel method to generate a few plausible candidate regions
using YOLOv3 [17] object detection for two subsequent drone images on NVIDIA TITAN
Xp. The proposed method performs traditional image matching procedures, such as feature
extraction and description methods, only in the candidate roof region, thus significantly
reducing complexity compared to conventional methods (such as SIFT [2], SURF [4], and
ORB [6]). Figure 2 shows the complete flow chart of the algorithm.

Figure 2. Overall flow chart of the proposed algorithm.

All the default YOLOv3 [17] parameter settings were applied, except that the network
was only trained for a single class “roof”. The image was divided into S × S grid cells
of 13 × 13, 26 × 26 and 52 × 52 for detection on the corresponding scales. Each grid cell
is responsible for outputting three bounding boxes, B = 3. Each bounding box outputs
five parameters x, y, w, h, and confidence (refers Equation (6)) which define the bounding
box location as well as a confidence score indicating the likelihood that the bounding box
contains an object.

Box Con f idence = Pr(Object) ∗ IOU
(

truth
predict

)
(6)

Pr(Object) denotes the probability that the box contains an object. If a cell has no
object, then the confidence scores should be 0, otherwise the confidence score should equal
the intersection over union (IOU) between the predicted box and ground truth. IOU is
a ratio between the intersection and the union of the predicted boxes and the ground
truth boxes, when IOU exceeds the threshold, the bounding box is correct, as shown in
Equation (7). This standard is used to measure the correlation between ground truth,
boxtruth and prediction, boxpredict; a higher value represents a higher correlation.
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IOU
(

truth
predict

)
=

(
boxpredict ∩ boxtruth

)
(

boxpredict ∪ boxtruth

) (7)

IOU is frequently adopted as an evaluation metric to measure the accuracy of an
object detector. The importance of IOU is not limited to assigning anchor boxes during
preparation of the training dataset but is also very useful when adopting the non-max
suppression algorithm for cleaning up whenever multiple boxes are predicted for the same
object. The IOU is assigned to 0.5 (the default threshold is usually 0.5), which means that
at least half of the ground truth and the predicted box cover the same region. When IOU is
greater than 50% threshold, the test case is predicted as containing an object.

Each grid cell is assigned 1 conditional class probability, Pr(class|object), which is the
probability that the object belongs to the class “roof” given an object is presence. The class
confidence score for each prediction box is then calculated as Equation (8), which gives the
classification confidence as well as the localization confidence.

Class Con f idence = Box Con f idence × Pr(class|object) (8)

The detection output tensor is of size S × S × B × (5 + C). The value 5 is for the four
bounding attributes and one confidence score. Figure 3 shows the detection process using
YOLOv3 [17]. Figure 4 shows a backbone network adopted in YOLOv3 [17] for a multiscale
object detection. This study adopted the network model for a single class object “roof”.
The object “roof” became our candidate regions.

Figure 3. YOLOv3 [17] based model for candidate region. It formulates the candidate region or roof detection as a regression
problem. For the illustration purpose, this example has a grid cell size 7 × 7 here. During detection process, the image is
first split into S × S size grid cells, and three bounding boxes are estimated for each grid cell. Each bounding box outputs
four box attributes indicating its size and location. The final detection is based on the box confidence and class probability.
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Figure 4. Backbone network used by YOLOv3 [17] for a three-scale object detection.

3.1. Dataset and Training Process
3.1.1. Experiment Environment

The experiment environment includes Intel(R) core (TM) i7-8770 @3.2GHz (CPU) and
24 GB of memory, NVIDIA GeForce TITAN Xp GPU with 24 GB memory and using CUDA
9.0. Table 1 shows the hardware and software configurations for the training process.

Table 1. Computing hardware and training environment for YOLOv3-based candidate regions.

Operating System Ubuntu 16.04 LTS
Central processing Intel i7-8700 3.2GHz
Random-access memory (RAM) DDR4 2400 24GB
Graphics card TITAN Xp (Pascal)
Software Darknet, CUDA9.0

3.1.2. The Datasets

To evaluate the effectiveness of this research method, we used a set of real images
acquired by a UAV equipped with imaging sensors spanning the visible range. The camera
is SONY a7R, characterized by a Exmor R full frame CMOS sensor with 36.4 megapixels. All
images have been acquired from the National Science and Technology Center for Disaster
Reduction, New Taipei, on 13 October 2016, at 10:00 a.m. The images are characterized by
three channels (RGB) with 8 bits of radiometric resolution and a spatial resolution of 25 cm
ground sample distance (GSD). Table 2 shows the UAV platform and sensor characteristics.
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Table 2. UAV platform and sensor characteristics.

Characteristic Name Description

Platform ALIAS
Flight altitude Above Ground Level (AGL) 200 m

Sensor SONY a7R
Resolution 7360 × 4912

Output data format JPEG (Exif 2.3)/RAW (Sony ARW 2.3)
Spatial resolution 25 cm (GSD)

Weather Overcast

In this study, the dataset comprises 99 drone images with 6000 × 4000 pixel size,
captured in the Xizhi District, New Taipei City, Taiwan. As YOLOv3 [17] is designed to
train and test the images of 416 × 416 pixel size, the original images were cropped into
1000 × 1000 pixel size with overlapping areas of 70% between the subsequent images. The
cropped images were then randomly split into training and testing data at ratio 9:1.

In order to train the network to output the location of the object, all the ground truth
objects in the images need to be labeled first. We used the LabelImg open source project on
GitHub (tzutalin.github) [29], which is currently the most widely used annotation tool. An
open-source software application “LabelImg” [29] was adopted to create the ground truth
bounding boxes for the object detection task. Figure 5 shows a screenshot of the process
of creating the ground truth bounding boxes using the labelImg software. As the drone
images mostly covered the residential areas, only a single class of object “roof” was labeled.
The annotations of training images in the XML format were used directly in the YOLOv3
end-to-end training network.

Figure 5. LabelImg software interface used to generate the ground truth object labels.

3.2. Evaluation Methods

The precision is the ratio of true positives (true predictions) to the total number of
predicted positives

Precision =
TP

TP + FP
(9)
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TP denotes the number of true positives. FP denotes the number of false positives and
FN is the number of false negatives. The recall is the ratio of true positives to the total of
ground truth positives.

Recall =
TP

TP + FN
(10)

The average precision (AP) is the area under the precision–recall curve, and p(k)
denotes the precision value at recall = k.

AvgPrecision =
N

∑
k=1

p(k)∆k (11)

The loss function is a function that maps an event or value of one or more variables
onto a real number intuitively representing some ‘cost’ associated with the event. Therefore,
the performance of the training model can be measured by calculating the loss function.

YOLOv3 uses multiple logistic classifiers instead of Softmax to classify each box,
since Softmax is not suitable for multi-label classification, and increasing the number
of independent multiple logistic classifiers does not decrease the classification accuracy.
Therefore, the optimization loss function can be expressed as shown in Equation (12).

loss (object) = λcoord
k×k
∑

i=0

M
∑

j=0
Iobj
ij

[
(xi − x̂i)

2 + (yi − ŷi)
2
]
+

λcoord
k×k
∑

i=0

M
∑

j=0
Iobj
ij (2− wi × hi)

[
(wi − ŵi)

2 +
(

hi − ĥi

)2
]
−

k×k
∑

i=0

M
∑

j=0
Iobj
ij
[(

Ĉilog(Ci) +
(
1− Ĉi

)
log(1− Ci)

)]
−

λnoobj
k×k
∑

i=0

M
∑

j=0
Inoobj
ij

[(
Ĉilog(Ci) +

(
1− Ĉi

)
log(1− Ci)

)]
−

k×k
∑

i=0
Iobj
ij ∑

c∈classes
[ p̂i(c)log(pi(c)) + (1− p̂i(c))log(1− pi(c))]

(12)

In Equation (12), the loss function term1 (λcoord
k×k
∑

i=0

M
∑

j=0
Iobj
ij

[
(xi − x̂i)

2 + (yi − ŷi)
2
]
)

calculates the loss related to the predicted bounding box position (x, y). term2

(λcoord
k×k
∑

i=0

M
∑

j=0
Iobj
ij (2−wi × hi)

[
(wi − ŵi)

2 +
(

hi − ĥi

)2
]

) calculates the loss related to the pre-

dicted box width and height (w, h). Terms term3 (
k×k
∑

i=0

M
∑

j=0
Iobj
ij
[(

Ĉilog(Ci) +
(
1− Ĉi

)
log(1−Ci)

)]
)

and term4 (λnoobj
k×k
∑

i=0

M
∑

j=0
Inoobj
ij

[(
Ĉilog(Ci) +

(
1− Ĉi

)
log(1−Ci)

)]
) compute each bounding

box predictor and the loss associated with the confidence score. Ci is the confidence score, and
Ĉi is the intersection over union of the predicted box with the ground true. Ĉi is expressed

in Equation (13). The final term (
k×k
∑

i=0
Iobj
ij ∑

c∈classes
[p̂i(c)log(pi(c)) + (1− p̂i(c))log(1− pi(c))])

is the classification loss.

Ĉi = Pr(Object)× IOU
(

truth
predict

)
(13)

In this study, the dataset comprises 99 drone images. We have used 50 drone im-
ages which totally consist of 2200 house roofs divided into 2000 training samples and
200 testing samples. The length of the training time is 4 h. The training time of the deep
learning algorithm is excluded from the T computation. Figure 6 shows the precision-recall
curve generated by the model trained with our dataset (training sample = 2000, testing
sample = 200). The average precision obtained is AP = 80.91%.
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Figure 6. A precision-recall curve. The average precision obtained is AP = 80.91%.

We trained the YOLOv3 [17] roof detection model on the datasets. Figure 7 depicts
the roof detection results on the dataset.

Figure 7. Use of two subsequent drone images to perform image matching task by YOLOv3 [17].

3.3. Evaluation and Testing Process

Structural similarity (SSIM) [30] has been used to find the corresponding candidate
regions between images in each image pair. Three traditional feature extraction and
matching algorithms, SIFT [2], SURF [4], and ORB [6] were then run for image matching
within the corresponding candidate regions. The quality of the candidate region pair
was evaluated by four evaluation methods, namely, execution time (T) [31,32], match rate
(MR) [31–33], match performance (MP) [34], and root mean squared error (RMSE) [35–38].
The execution time (T) measures the algorithms efficiency.

MR = 2×Matches/(Keypoint1 + Keypoint2) (14)

MP = MR/T (15)

RMSE =

√√√√1
k

p,q=k

∑
p,q=1

(
xp − xq

)2
+
(
yp − yq

)2 (16)

Matching rate (MR) is the ratio between the number of correct matching feature
points and the total number of matching feature points detected by the algorithm. In



Remote Sens. 2021, 13, 127 12 of 23

Equation (14), (Keypoint1, Keypoint2) refers to the numbers of keypoints detected in the
first and second images respectively, and Matches is the number of matches between
these two series of interest points. In Equation (15), we using match performance (MP) to
understand the matching status per unit time. In Equation (16), k is the filtered match pair
number, where p ∈ [1, k], q ∈ [1, k], and (xp, yp) and (xq, yq) are the spatial coordinates
of the corresponding matching points on the registration image and the reference image,
respectively. A smaller RMSE means a higher registration accuracy, and RMSE < 1 means
that the registration accuracy the sub-pixel level.

4. Experimental Results
4.1. Xizhi District, New Taipei City CASE 1

After the training of YOLOv3 is completed, the weights generated after the training
can be used to detect the candidate overlapping areas of other UAV images. Figure 8a
shows the first image (taken image time = t) that is reference image for the proposed
YOLOv3-based roof region detection. Figure 8b, there are three roof regions were detected
and highlighted by YOLOv3-based roof region detection. Figure 8c–e shows the candidate
regions in the reference image detected by YOLOv3 object detector.

Figure 8. Drone images were used to perform the image matching task. (a) the reference image,
(b) three roof regions were detected and highlighted by YOLOv3-based roof region detection.
(c–e) are the candidate regions in the reference image detected by YOLOv3 object detector.

Figure 9a shows the second image (taken image time = t + interval shooting time)
that is to be registered for the proposed YOLOv3-based roof region detection. Figure 9b
there are three roof regions were detected and highlighted by YOLOv3-based roof region
detection. Figure 9c–e shows the candidate regions in the registered image detected by
YOLOv3 object detector.
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Figure 9. Drone images were used to perform the image matching task. (a) the image to be regis-
tered, (b) three roof regions were detected and highlighted by YOLOv3-based roof region detection.
(c–e) are the candidate regions in the registered image detected by YOLOv3 object detector.

The candidate roof regions were matched to find the corresponding region pair using
SSIM [30]. Table 3 shows the SSIM measure between candidate regions and their execution
times respectively. After obtaining the corresponding region pairs, traditional feature
matching algorithms, SIFT [2], SURF [4], and ORB [6], were performed as shown in
Figures 10–12 (the right image is registered image, the left image is reference image).

Table 3. SSIM between candidate regions to find a matched roof region.

Figure SSIM SSIM Execution Time (ms)

Figures 8c and 9c 0.7743 3.27
Figures 8c and 9d 0.6528 3.12
Figures 8c and 9e 0.2644 2.83

Figures 8d and 9c 0.6236 3.03
Figures 8d and 9d 0.8026 3.18
Figures 8d and 9e 0.2836 2.91

Figures 8e and 9c 0.2731 3.08
Figures 8e and 9d 0.2836 3.15
Figures 8e and 9e 0.7263 3.22

Figure 10. Traditional image matching is performed on the candidate roof region pair. The figure shows from left to right:
(a) SIFT [2], (b) SURF [4], and (c) ORB [6] feature extraction and matching.
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Figure 11. From left to right: (a) SIFT [2], (b) SURF [4], and (c) ORB [6] feature extraction and matching.

Figure 12. From left to right: (a) SIFT [2], (b) SURF [4], and (c) ORB [6] feature extraction and matching.

To compare the proposed method with the traditional image matching algorithms,
SIFT [2], SURF [4], and ORB [6], feature extraction and matching were performed using
these algorithms on the original image pairs, as shown in Figures 13–15, respectively. We
recorded the number of keypoint, time, and match point coordinates to computed match
rate (MR), match performance (MP), and root mean squared error (RMSE).

Figure 13. Traditional image matching by SIFT [2]. The corresponding matched key points are linked
by color lines.



Remote Sens. 2021, 13, 127 15 of 23

Figure 14. Traditional image matching by SURF [4]. The corresponding matched key points are
linked by color lines.

Figure 15. Traditional image matching by ORB [6]. The corresponding matched key points are linked
by color lines.

In this paper, we used the ENVI (Environment for Visualizing Images) software to
computed the root-mean-squared error (RMSE). The manually selected GCPs (ground
control points) combined with match point coordinates used in the root mean squared
error (RMSE) calculation. As shown in Figure 16, the 20 pairs of red markers denote the
manual selected of GCPs.

Figure 16. 20 pairs of red markers denote the manual selection of ground control points used in the
RMSE calculation.
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Table 4 and Figure 17 summarize the comparison of traditional image matching
algorithms, SIFT [2], SURF [4] and ORB [6], with the YOLOv3-based candidate region
matching algorithms YOLOv3+SIFT, YOLOv3+SURF, and YOLOv3+ORB. As shown in
Table 4, the proposed method was more than 13× faster compared to the traditional image
matching algorithm.

Table 4. Comparison between the traditional image matching methods and the YOLOv3-based candidate region image
matching method for image pair in Figure 8.

Method Keypoint1 Keypoint2 Matches
Match Rate

(%)

Execution Time (ms) Match
Performance

(%)
RMSEYOLOv3

Time
Matching

Time

SIFT 2000 2001 1126 56.29 0 1183.68 0.05 0.9647
YOLOv3+SIFT 490 490 477 97.35 28.98 29.79 1.66 0.8578

SURF 1582 1507 1024 66.30 0 1064.84 0.06 0.9285
YOLOv3+SURF 80 80 78 97.50 28.98 22.94 1.88 0.8864

ORB 1500 1486 586 39.25 0 506.63 0.08 0.9751
YOLOv3+ORB 619 619 603 97.42 28.98 10.99 2.43 0.8962

Figure 17. Results of four evaluation methods comparing the traditional image matching algorithms with the YOLOv3-based
image matching algorithm. (a) Match rate (MR), (b) time (ms), (c) match performance (MP), and (d) root-mean-squared
error (RMSE).

Figure 18 shows the registration result by using the proposed YOLOv3-based match-
ing method.
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Figure 18. Registration result of Figures 8a and 9a using: (a) YOLOv3+SIFT, (b) YOLOv3+SURF, (c) YOLOv3+ORB.

Our proposed method is compared with the traditional image matching algorithms
such as SIFT [2], SURF [4], and ORB [6]. For our quantitative evaluation indexes execu-
tion time (T), match rate (MR), match performance (MP), and root mean squared error
(RMSE). For the traditional image matching algorithm, the SIFT [2] algorithm had largest
number of matching number, it had the longest execution time and lowest match rate. The
SURF [4] algorithm’s match rate (MR) and root mean squared error (RMSE) have the best
performance among the traditional image matching algorithms. The ORB [6] has the best
execution time (T) among the traditional image matching algorithm. As shown in Table 4,
experimental results show that the proposed method performance was better than the
traditional image matching algorithm. The proposed method can be rapidly implemented
and has high accuracy and strong robustness.

4.2. Xizhi District, New Taipei City CASE 2

In this paper, we have evaluated the performance of the YOLOv3-based roof region
detection with other cases. Figure 19 shows the reference image and candidate regions in
the reference image detected by YOLOv3 object detector.

Figure 19. Drone images were used to perform the image matching task. (a) Reference image,
(b) three roof regions were detected and highlighted by YOLOv3-based roof region detection. (c,d) are
the candidate regions in the reference image detected by YOLOv3 object detector.
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Figure 20 shows the registered image and candidate regions in the registered image
detected by YOLOv3 object detector.

Figure 20. Drone images were used to perform the image matching task. (a) Image to be registered,
(b) three roof regions were detected and highlighted by YOLOv3-based roof region detection. (c,d) are
the candidate regions in the registered image detected by YOLOv3 object detector.

Table 5 shows the SSIM measures between candidate regions and their execution times.

Table 5. SSIM between candidate region to find a matched roof region.

Figure SSIM SSIM Execution Time (ms)

Figures 19c and 20c 0.7143 3.53
Figures 19c and 20d 0.3597 3.48

Figures 19d and 20c 0.4001 3.46
Figures 19d and 20d 0.7688 3.58

Traditional feature matching algorithms, SIFT [2], SURF [4], and ORB [6], were run on
the corresponding region pairs as shown in Figures 21 and 22. The right image is registered
image, the left image is reference image.

Figure 21. After the corresponding candidate region was identified between the image pair, traditional image matching was
performed on the candidate roof region pair. Figure shows from left to right: (a) SIFT [2], (b) SURF [4], and (c) ORB [6]
feature extraction and matching.
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Figure 22. From left to right: (a) SIFT [2], (b) SURF [4], and (c) ORB [6] feature extraction and
matching algorithms.

To compare the proposed method with the traditional image matching algorithms,
SIFT [2], SURF [4], and ORB [6] feature extraction and matching were performed on the
original image pairs as shown in Figures 23–25.

Figure 23. Traditional image matching by SIFT [2]. The corresponding matched key points are linked
by color lines.

Figure 24. Traditional image matching by SURF [4]. The corresponding matched key points are
linked by color lines.
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Figure 25. Traditional image matching by ORB [6]. The corresponding matched key points are linked
by color lines.

The manually selected GCPs (ground control points) combined with match point
coordinates have been collected with the root mean square error (RMSE). As shown
in Figure 26.

Figure 26. 20 pairs of red markers denote the manual selection of ground control points used in the
RMSE calculation.

Table 6 and Figure 27 summarize the comparison between traditional image matching
algorithms, SIFT [2], SURF [4], and ORB [6] with the YOLOv3-based candidate region
matching algorithms YOLOv3+SIFT, YOLOv3+SURF, and YOLOv3+ORB. As shown in
Table 6, the proposed method was more than 15× faster compared to the traditional image
matching algorithm.

Table 6. Comparison between traditional image matching methods and the YOLOv3-based candidate region image
matching method for image pair in Figure 19.

Method Keypoint1 Keypoint2 Matches
Match Rate

(%)

Execution Time (ms) Match
Performance

(%)
RMSEYOLOv3

Time
Matching

Time

SIFT 2000 2000 614 30.70 0 1094.49 0.03 0.9184
YOLOv3+SIFT 130 186 124 78.48 16.72 25.91 1.84 0.9069

SURF 309 520 239 57.66 0 936.49 0.06 0.9713
YOLOv3+SURF 37 32 27 78.26 16.72 21.40 2.05 0.8715

ORB 1500 1496 381 25.43 0 295.57 0.06 0.9742
YOLOv3+ORB 129 105 95 81.20 16.72 9.94 3.05 0.9242
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Figure 27. Results of four evaluation methods on the traditional image matching algorithms and YOLOv3-based im-
age matching algorithm. (a) Match rate (MR), (b) time (ms), (c) match performance (MP), and (d) root-mean-squared
error (RMSE).

Figure 28 shows the registration result from the proposed YOLOv3-based matching
method. As shown in Table 6, the results show that the proposed method performed was
better than the traditional image matching algorithm especially in the execution time (T),
where it performs 15× faster than the traditional methods. The proposed method can be
rapidly implemented and has high accuracy and strong robustness.

Figure 28. Registration result of Figures 19a and 20a using: (a) YOLOv3+SIFT, (b) YOLOv3+SURF, (c) YOLOv3+ORB.
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5. Conclusions

Traditional feature-based image matching algorithms dominated the image matching
for decades. A fast image matching algorithm is desired as image resolution and size are
growing significantly. With the advances of GPU, deep learning algorithms are adopted
in various computer vision and language processing fields. In this paper, we proposed
a YOLOv3-based image matching approach for fast roof region detection from drone
images. As the feature-based matching is performed only on the corresponding region
pair instead of the original image pair, the computation complexity is reduced significantly.
The proposed approach showed comparable results and performed 13× faster than the
traditional methods. In the future work, our model will be trained using overlapping
regions with different object conditions. The proposed approach to other UAV images.
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