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Abstract: Deep convolutional neural networks (CNNs) have been successfully applied to spectral
reconstruction (SR) and acquired superior performance. Nevertheless, the existing CNN-based
SR approaches integrate hierarchical features from different layers indiscriminately, lacking an
investigation of the relationships of intermediate feature maps, which limits the learning power of
CNNs. To tackle this problem, we propose a deep residual augmented attentional u-shape network
(RA2UN) with several double improved residual blocks (DIRB) instead of paired plain convolutional
units. Specifically, a trainable spatial augmented attention (SAA) module is developed to bridge
the encoder and decoder to emphasize the features in the informative regions. Furthermore, we
present a novel channel augmented attention (CAA) module embedded in the DIRB to rescale
adaptively and enhance residual learning by using first-order and second-order statistics for stronger
feature representations. Finally, a boundary-aware constraint is employed to focus on the salient
edge information and recover more accurate high-frequency details. Experimental results on four
benchmark datasets demonstrate that the proposed RA2UN network outperforms the state-of-the-art
SR methods under quantitative measurements and perceptual comparison.

Keywords: spectral reconstruction; residual augmented attentional u-shape network; spatial aug-
mented attention; channel augmented attention; boundary-aware constraint

1. Introduction

Hyperspectral imaging systems can record the actual scene spectra over a large set of
narrow spectral bands [1]. In contrast to the ordinary cameras record only reflectance or
transmittance of three spectral bands (i.e., Red, Green, and Blue), hyperspectral spectrome-
ters can encode hyperspectral images (HSIs) by obtaining continuous spectrums on each
pixel of the object. The abundant spectral signatures are beneficial to many computer vision
tasks, such as face recognition [2], image classification [3,4] and object tracking [5], etc.

Traditional scanning HSIs acquisition systems rely on either 1D line or 2D plane
scanning (e.g., whiskbroom [6], pushbroom [7] or variable-filter technology [8]) to encode
spectral information of the scene. Whiskbroom imaging devices apply mirrors and fiber
optics to collect reflected hyperspectral signals point by point. The subsequent pushbroom
HSIs acquisition systems capture HSIs with dispersive optical elements and light-sensitive
sensors in a line-by-line scanning manner. As for the variable-filter imaging equipment,
it senses each scene point multiple times, each time in a different spectral band. In fact,
the scanning operation of these devices is extremely time-consuming, which severely limits
the application of HSIs under dynamic conditions.

To make HSIs acquisition of dynamic scenes available, the scan-free or snapshot
hyperspectral technologies have been explored, e.g., coded aperture snapshot spectral
imagers [9], mosaic [10], and light-field [11], etc. Computed-tomography imaging spec-
trometer converts a three-dimensional object cube into multiplexed two-dimensional pro-
jections and these data can be used later to reconstruct the hyperspectral cube computation-
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ally [12,13]. Coded aperture snapshot spectral imager uses compressed sensing advances
to achieve snapshot spectral imaging and an iterative algorithm is used to reconstruct
the data cube [9,14]. A novel hyperspectral imaging system combines a stereo camera to
perform the accurate HSIs measurements through the geometrical alignment, radiometric
calibration and normalization [10]. However, these systems depend on post-processing
with a huge computational complexity and record HSIs with decreased spatial and spectral
resolution. Meanwhile, the deployments of these facilities remain prohibitively expensive
and complicated.

Due to the limitations of scanning and snapshot hyperspectral systems, as an alterna-
tive solution, spectral reconstruction from ubiquitous RGB images has attracted extensive
attention and research, i.e., given an RGB image, the corresponding HSI with higher spec-
tral resolution can be recovered via fulfilling a three-to-many mapping directly. Obviously,
SR is an ill-posed transition problem. Early work on SR leverages sparse coding or shal-
low learning models to rebuild HSI data [15–19]. Nguyen et al. [15] trained a shallow
radial basis function network that leveraged RGB white-balancing to normalize the scene
illuminations to further recover the scene reflectance spectra. Later, Robles-Kelly [16]
extracted a set of reflectance properties from the training set and obtained convolutional
features using sparse coding to perform spectral reconstruction. Typically, Arad [17] and
Aeschbacher et al. [19] exploited potential HSIs priors to create an over-complete sparse
dictionary of hyperspectral signatures and corresponding RGB projections, which facili-
tated the following reconstruction of the HSIs. More recently, with the aid of the low-rank
constraints, Zhang et al. [20] proposed to make full use of the high-dimensionality structure
of the desired HSI to boost the reconstruction quality. Unfortunately, these methods only
model low-level and simple correlation between RGB images and hyperspectral signals,
which limits their expression ability and leads to poor performance in challenging situa-
tions. Accordingly, it is indispensable to further improve the results of the reconstructed
HSIs for SR.

Recently, witnessing the great success of CNNs in the field of hyperspectral spatial
super-resolution [21,22], numerous CNN-based algorithms have been widely explored
in the SR task [23–28]. For example, Galliani et al. [23] modified a high-performance
network originally designed for semantic segmentation to learn the statistics of natural
image spectra and generated finely resolved HSIs from the RGB inputs. This is a milestone
work, since it is the first time to introduce deep learning into the SR task. To promote
the research of SR, NTIRE 2018 challenge on spectral reconstruction from RGB images is
organized, which is the first SR challenge [29]. Meanwhile, a great quantity of excellent
approaches have been proposed in this competition [30–34]. Impressively, Shi et al. [34]
designed a deep HSCNN-R network consisting of multiple residual blocks and acquired
promising performance, which was developed from their previous HSCNN model [25].
Stiebel et al. [30] investigated a lightweight Unet and added a simple pre-processing layer
to enhance the quality of recovery in a real world scenario. Not long ago, the second
SR challenge, NTIRE 2020 on spectral reconstruction from RGB images [35], has been
successfully held and a new data set is released, which further promote the development
of SR methods based on CNNs [36–41] as well as more recent works [42–45]. To explore
the interdependencies among intermediate features and the camera spectral sensitivity
prior, Li et al. [36] proposed an adaptive weighted attention network and incorporated
the discrepancies of the RGB images and HSIs into the loss function. As the winning
method on the “Real World” track of the second SR competition, Zhao et al. [37] organized
a 4-level hierarchical regression network with pixelShuffle layer as inter-level interaction.
Hang et al. [44] attempted to design a decomposition model to reconstruct HSIs and a self-
supervised network to fine-tune the reconstruction results. Li et al. [45] presented a hybrid
2D–3D deep residual attentional network to take fully advantage of the spatial–spectral
context information. These two SR challenges are divided into the “Clean” and “Real World”
tracks. The “Clean” track aims to recover HSIs from the noise-free RGB images created by
a known camera response function, while the “Real World” one requires participants to
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rebuild the HSIs from JPEG-compression RGB images obtained by an unknown camera
response function. It is worth noting that the camera response functions for the same tracks
of the two challenges are different. Also, to provide a more accurate simulation of physical
camera systems, the NTIRE2020 “Real World” track is updated with additional simulated
camera noise and demosaicing operation.

Attention mechanisms have been a useful tool in a variety of tasks, for instance,
image captioning [46], classification [47,48], single image super-resolution [49–51], and
person re-identification [52]. Chen et al. [46] proposed a SCA-CNN that incorporated
spatial and channel-wise attention for image captioning. Dai et al. [50] presented a deep
second-order attention network by exploring second-order statistics of features rather than
first-order ones (e.g., global average pooling) [47]. Zhang et al. [53] proposed an effective
relation-aware global attention module which captured the global structural information
for better attention learning. Only a few very recent methods for SR [36,37,45] considered
channel-wise attention mechanism using first-order statistics.

Compared with the previous sparse recovery and shallow mapping methods, the end-
to-end training paradigm and discriminant representational learning of CNNs bring con-
siderable improvements of SR. However, the existing CNN-based SR approaches only
devote to realizing the RGB-to-HSI mapping by the means of designing the deeper and
wider network frameworks, which integrates hierarchical features from different layers
without distinction and fails to explore the feature correlations of intermediate layers, thus
hindering the expression capacity of CNNs. Actually, the importance of the information
of all spatial regions of the feature map is different in the SR task. The feature response
among channels also plays a different role for the SR performance. Additionally, most
of CNN-based SR models do not consider the problem of spectral aliasing at the edge
position, thus resulting in relatively-low performance.

To address these issues, a deep residual augmented attentional u-shape network
(RA2UN) is proposed for SR. Concretely, the backbone of the proposed network is stacked
with several double improved residual blocks (DIRB) rather than paired plain convolutional
units to extract increasingly abstract feature representations through powerful residual
learning. Moreover, we develop a novel spatial augmented attention (SAA) module
to bridge the encoder and decoder, which is employed to highlight the features in the
informative regions selectively and boost the spatial feature representations. To model
interdependencies among channels of intermediate feature maps, a trainable channel
augmented attention (CAA) module embedded in the DIRB is presented to adaptively
recalibrate channel-wise feature responses by exploiting first-order statistics and second-
order ones. Such CAA modules make the network dynamically focus on useful features and
further strengthen intrinsic residual learning of DIRBs. Finally, we establish a boundary-
aware constraint to guide network to pay close attention to salient information in boundary
localization, which can alleviate spectral aliasing at the edge position and recover more
accurate edge details.

In summary, the main contributions of this paper can be depicted as below:

• We propose a novel RA2UN network constituted of several DIRB blocks instead
of paired plain convolutional units for SR, which can extract increasingly abstract
feature representations through powerful residual learning. Experimental results
on four established benchmarks demonstrate that the proposed RA2UN network
outperforms the state-of-the-art SR methods under quantitative measurements and
perceptual comparison.

• A trainable SAA module is developed to bridge the encoder and decoder to emphasize
the features in the informative regions selectively, which can strengthen the interaction
and fusion between the low-level and high-level features effectively and further boost
the spatial feature representations.

• To model interdependencies among channels of intermediate feature maps, we present
a novel CAA module embedded in the DIRB to adaptively recalibrate channel-wise
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feature responses and enhance residual learning by using first-order and second-order
statistics for stronger feature expression.

• A boundary-aware constraint is established to guide the network to focus on the
salient edge information, which is helpful to alleviate spectral aliasing at the edge
position and preserve more accurate high-frequency details.

2. Materials and Methods

2.1. The Proposed RA2UN Network

Figure 1 gives an illustration of our proposed RA2UN network. The backbone architec-
ture mainly consists of several DIRB blocks. The SAA module is bridged the different DIRB
counterparts between encoder and decoder and the CAA one is embedded in each DIRB.
As for each DIRB, batch normalization layers are not performed, since the normalization
operation can prevent the network’s power to learn spatial dependencies and spectral
distribution. Meanwhile, we adopt Parametric Rectified Linear Unit (PReLU) instead of
ReLU as activation function to introduce more nonlinear representation and obtain stronger
robustness. The entire DIRB is formulated as

y = ρ(R(x, Wl,1) + x) (1)

z = ρ(R(y, Wl,2) + y) (2)

where x and z denote the input and output of the DIRB block. y is the output of the first
residual unit of the DIRB block. Wl,1 and Wl,1 represent the weight matrixes of the first
and second residual units of the l-th DIRB block. R(·) denotes the residual mapping to
be learned which comprises two convolutional layers and one PReLU function. ρ is the
PReLU function. Our proposed RA2UN keeps the same spatial resolution of feature maps
throughout the proposed model, which can maintain plentiful spatial details information
for recovering the accurate spectrum from the RGB inputs in the network. The specific
parameters settings for the backbone frameworks are given in Table 1. It can be seen
that the output size of each DIRB of our RA2UN is not decreased in the encoding and
decoding parts, i.e., we remove the down-sampling operation, which can loss partial spatial
details and fail to remain the original pixel information as the network goes deeper, further
reducing the accuracy of SR inevitably. In the encoder section, a simple convolutional layer
is firstly employed to extract shallow feature from input images. Then several DIRBs are
stacked for deep features extraction. Finally, we perform the final reconstruction part via
one convolutional layer.

Figure 1. Network architecture of the proposed RA2UN network. The input of the RA2UN network is RGB images and
the output is the corresponding reconstructed HSIs. The detailed network and parameters setting can be referenced from
Table 1.
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Table 1. Parameters settings for the backbone frameworks of our proposed RA2UN. (·) stands for
the dimension of the convolutional kernels (input channels, kernel size2, filter number). The stride
and padding of the convolution kernels are set to 1. The dimensions of the feature map are denoted
by C× H ×W(H = W). C, H and W denote the channel, height and width of the feature map.
{·} indicates the DIRB block. Four rows in kernels column denote the dimensions of the four
convolutional kernels of each DIBR block. [·] is the improved residual unit.

No. Layer
Encoding Parts Decoding Parts

Kernels Output Size Kernels Output Size

1 Conv (3, 32, 32) 32× 64× 64 (32, 32, 31) 31× 64× 64

2 DIRB-1



[
(32, 32, 64)
(64, 32, 64)

]
[
(64, 32, 64)
(64, 32, 64)

]


64× 64× 64



[
(64, 32, 32)
(32, 32, 32)

]
[
(32, 32, 32)
(32, 32, 32)

]


32× 64× 64

3 DIRB-2



[
(64, 32, 128)
(128, 32, 128)

]
[
(128, 32, 128)
(128, 32, 128)

]


128× 64× 64



[
(128, 32, 64)
(64, 32, 64)

]
[
(64, 32, 64)
(64, 32, 64)

]


64× 64× 64

4 DIRB-3



[
(128, 32, 256)
(256, 32, 256)

]
[
(256, 32, 256)
(256, 32, 256)

]


256× 64× 64



[
(256, 32, 128)
(128, 32, 128)

]
[
(128, 32, 128)
(128, 32, 128)

]


128× 64× 64

5 DIRB-4



[
(256, 32, 256)
(256, 32, 256)

]
[
(256, 32, 256)
(256, 32, 256)

]


256× 64× 64



[
(256, 32, 256)
(256, 32, 256)

]
[
(256, 32, 256)
(256, 32, 256)

]


256× 64× 64

6 DIRB-5



[
(256, 32, 256)
(256, 32, 256)

]
[
(256, 32, 256)
(256, 32, 256)

]


256× 64× 64



[
(256, 32, 256)
(256, 32, 256)

]
[
(256, 32, 256)
(256, 32, 256)

]


256× 64× 64

7 Bottom



[
(256, 32, 256)
(256, 32, 256)

]
[
(256, 32, 256)
(256, 32, 256)

]


256× 64× 64 ———— ————

2.2. Spatial Augmented Attention Module

In general, the importance of the information of all spatial regions of the feature map is
different in the SR task. To focus more attention on the features in the informative regions,
a SAA module is designed between the encoder and the decoder, which can boost the
interaction and fusion between the low-level and high-level features effectively. The specific
diagram of SAA module is displayed in Figure 2. Our proposed SAA module consists of
paired symmetric and asymmetric convolutional groups. The asymmetric convolutions
refer to use 1D horizontal and vertical kernels (i.e., 1× 3 and 3× 1 sizes), which not only
strengthen the square convolution kernels but also capture multi-direction contextual
information to obtain discriminative spatial dependencies.
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Figure 2. The overview of spatial augmented attention module. ⊕ denotes the element-wise summation.

Given an intermediate feature map denoted as F = [f1, f2, · · · , fc, · · · , fC] containing C
feature maps with spatial size of H ×W, we firstly feed F to the parallel paired symmetric
and asymmetric convolutional groups

C1 = ρ(Conv3×1
1,2 (ρ(Conv1×3

1,1 (F)))) (3)

C2 = ρ(Conv1×3
2,2 (ρ(Conv3×1

2,1 (F)))) (4)

C3 = ρ(Conv3×3
3,2 (ρ(Conv3×3

3,1 (F)))) (5)

where ρ denotes the PReLU activation function. Conv1×3
1,1 (·), Conv3×1

2,1 (·) and Conv3×3
3,1 (·)

project the feature F ∈ RC×H×W to a lower size RC/t×H×W along the channel dimension.
Then the next convolution layers Conv3×1

1,2 (·), Conv1×3
2,2 (·) and Conv3×3

3,2 (·) map the low-
dimensional features to the multi-direction spatial feature descriptors C1, C2, C3 ∈ R1×H×W ,
which contain rich contextual information. Besides, this design increases only a small
amount of parameters and computational burden. To compute the spatial attention, the fea-
ture descriptors are summed and normalized to [0, 1] through a sigmoid activation σ

As(F) = σ(C1 + C2 + C3) (6)

where As(F) ∈ R1×H×W represents the spatial attention, which encodes the degree of
importance for the spatial positions of the original feature F and determines which spatial
locations should be emphasized. Finally, we perform the element-wise multiplication ⊗
between As(F) and F

Fs = As(F)⊗ F (7)

where Fs is the refined feature. During the processing, the spatial attention values are
broadcasted along the channel-wise direction. Such SAA module is bridged the encoder
and decoder to highlight the features in the important regions selectively and boost the
spatial feature representations.

2.3. Channel Augmented Attention Module

In contrast to the preceding SAA module extracting the inter-spatial relationships of
features, our presented CAA module attempts to explore inter-channel dependencies of
features for SR. To obtain more powerful learning capability of the network, we present a
novel CAA module to model interdependencies between channels by using first-order and
second-order statistics jointly for stronger feature representations (see Figure 3).
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Figure 3. The overview of channel augmented attention module. ⊕ denotes the element-wise summation.

We first aggregate spatial information of the feature map F ∈ RC×H×W(F = [f1, f2, · · · ,
fc, · · · , fC], fc ∈ RH×W) by using global average pooling

s1st
c =

1
H ×W

H

∑
i=1

W

∑
j=1

fc(i, j) (8)

where s1st
c denotes the c-th element of the first-order channel descriptor S1st ∈ RC and

fc(i, j) is the response at location (i, j) of the c-th feature map fc. As for the second-
order channel descriptor, we reshape the feature map F ∈ RC×H×W to a feature matrix
D ∈ RC×n, n = H ×W and compute the sample covariance matrix

X = DIDT (9)

where I = 1
n

(
I− 1

n 1
)

, and X ∈ RC×C, X = [x1, x2, · · · , xc, · · · , xC], xc ∈ R1×C. I and 1
represent the n× n identity matrix and matrix of all ones. Then the c-th dimension of the
second-order statistics S2nd ∈ RC is formulized as

s2nd
c =

1
C

C

∑
i=1

xc(i) (10)

where s2nd
c denotes the c-th element of the second-order channel descriptor S2nd ∈ RC and

xc(i) is the i-th value of the c-th feature map xc. To make use of the aggregated information
S1st and S2nd, both descriptors are fed into a shared multi-layer perceptron (MLP) with a
sigmoid function to generate the channel attention. The MLP is constituted of two fully
connected (FC) layers and a non-linearity PReLU function, where the output dimension
of the first FC layer is RC/r and the output size of the second one is RC. r is the reduction
ratio. In summary, the channel attention map is indicated as

Ac(F) = σ(FC2(ρ(FC1(S1st))) + FC2(ρ(FC1(S2nd)))) (11)

where FC1(·) and FC2(·) are the weight set of two FC layers. Ac(F) ∈ RC denotes the
channel attention recording the importance and interdependences among channels, which
is to rescale the original input feature F

Fc = Ac(F)⊗ F (12)

where ⊗ is element-wise multiplication and the channel attention values can be copied
along the spatial dimension according to the broadcast mechanism. Inserted into the DIRB
block, the CAA module can recalibrate channel-wise feature responses adaptively and
enhance residual learning.
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2.4. Boundary-Aware Constraint

In the process of hyperspectral imaging, the spectral aliasing of the edge position is
easy to occur, so that the reconstruction accuracy of boundary spectrum is low. To alleviate
the spectral aliasing and recover more accurate high-frequency details of HSIs, we establish
a boundary-aware constraint to guide the training process in the proposed RA2UN:

l = lm + τlb (13)

lm =
1
N

N

∑
p=1

(|I(p)
HSI − I(p)

SR |/I(p)
HSI) (14)

lb =
1
N

N

∑
p=1

(|B(I(p)
HSI)− B(I(p)

SR )|)) (15)

where lm represents the mean relative absolute error (MRAE) loss term to minimize the nu-
merical error between ground truths and the reconstructed results. lb denotes the boundary-
aware constraint component to lead the network to focus on the salient edge information
simultaneously. τ is a weighted parameter. N is the total number of pixels. I(p)

HSI and

I(p)
SR denote the p-th pixel value of the ground truth IHSI and the spectral reconstructed

result ISR. B(·) represents the edge extraction function. To be specific, B(·) firstly performs
Gaussian filtering to eliminate the influence of noise and then adopts Prewitt operator [54]
to get boundaries of ground truths and the reconstructed results. The Gaussian filter-
ing kernel is [[0.0751, 0.1238, 0.0751], [0.1238, 0.2042, 0.1238], [0.0751, 0.1238, 0.0751]] and the
sigma is 1.0. The Prewitt operators are [[−1.0, 0.0, 1.0], [−1.0, 0.0, 1.0], [−1.0, 0.0, 1.0]] and
[[−1.0,−1.0,−1.0], [0.0, 0.0, 0.0], [1.0, 1.0, 1.0]] in the x and y directions, respectively. In or-
der to better observe the effect of edge extraction, we visualize several example images
in Figure 4. The first row shows several original images from the NTIRE2020 dataset.
The second row displays the effect of edge extraction. From the mathematical perspective,
compared with the single MRAE loss term lm, the compound loss function l can make the
space of the possible three-to-many mapping functions smaller for the ill-posed SR problem
and avoid falling into a local minimum to obtain more accurate spectral recovery, which will
be demonstrated in Section 4.1. Finally, τ is empirically set to 1.0 in the proposed network.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. The first row (a–d) shows several original images from the NTIRE2020 dataset. The second
row (e–h) displays the effect of edge extraction and the white lines represent boundary information.
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3. Experiments Setting
3.1. Datasets and Implementations

In this paper, we evaluate the proposed RA2UN on four benchmark datasets, i.e.,
NTIRE2018 “Clean” and “Real World” tracks, NTIRE2020 “Clean” and “Real World” tracks.
Following the competition instructions, the NTIRE2018 dataset contains 256 natural HSIs
for official training set and 5 + 10 additional images for official validation set and testing
set with the size of 1392× 1300. All images have 31 spectral bands (400–700 nm at roughly
10nm increments). The NTIRE2020 dataset consists of 450 images for official training set,
10 images for official validation set and 20 images for official testing set with 31 bands
from 400 nm to 700 nm at 10 nm steps. Each band is the size of 512× 482. The NTIRE2020
datasets are collected with a Specim IQ mobile hyperspectral camera. The Specim IQ
camera is a stand-alone, battery-powered, push-broom spectral imaging system, the size of
a conventional SLR camera (207× 91× 74 mm) which can operate independently without
the need for an external power source or computer controller. The NTIRE2018 datasets
are acquired using a Specim PS Kappa DX4 hyperspectral camera and a rotary stage for
spatial scanning.

For the dataset settings, due to the confidentiality of ground truth HSIs for the of-
ficial testing set of both SR contests, we choose the official validation as the final test-
ing set and randomly select several images from the official training set as the final
validation set in this paper. The rest of the official training set is adopted as the fi-
nal training set. Specifically, the NTIRE2020 final validation set contains 10 HSIs in-
cluding “ARAD_HS_0079”, “ARAD_HS_0089”, “ARAD_HS_0255”, “ARAD_HS_0304”,
“ARAD_HS_0363”, “ARAD_HS_0372”, “ARAD_HS_0387”, “ARAD_HS_0422”, “ARAD_
HS_0434” and “ARAD_HS_0446”. The NTIRE2018 final validation set chooses 5 HSIs
including “BGU_HS_00001”, “BGU_HS_00036”, “BGU_HS_00204”, “BGU_HS_00209” and
“BGU_HS_00225”.

During the training process, we crop 64× 64 RGB and HSI sample pairs from the
original NTIRE2020 and NTIRE2018 datasets. The batch size of our model is 16 and
the parameter optimization algorithm chooses Adam [55] with β1 = 0.9, β2 = 0.99 and
ε = 10−8. The parameter t value of the SAA module is 4 and reduction ratio r of CAA
module is 16. The learning rate is initialized as 1.2× 10−4 and the polynomial function
is set as the decay policy with power = 1.5. We stop network training at 100 epochs and
the proposed RA2UN network has been implemented on the Pytorch framework on an
NVIDIA 2080Ti GPU.

3.2. Evaluation Metrics

To objectively test the results of our proposed method on the NTIRE2020 and NTIRE2018
datasets, the mean relative absolute error (MRAE), root mean square error (RMSE), and spec-
tral angle mapper (SAM) are adopted as metrics. The MRAE and RMSE are provided by
the challenge, where MRAE is chosen as the ranking criterion rather than RMSE to avoid
overweighting errors in the higher brightness region of the test image. The SAM is employed
to measure the spectral quality. The MRAE, RMSE and SAM are defined as follows

MRAE =
1
N

N

∑
p=1

(∣∣∣I(p)
HSI − I(p)

SR

∣∣∣/I(p)
HSI

)
(16)

RMSE =

√√√√ 1
N

N

∑
p=1

(
I(p)

HSI − I(p)
SR

)2
(17)

SAM =
1
M

M

∑
v=1

(
arccos(< I(v)HSI , I(v)SR > /(||I(v)HSI ||2||I

(v)
SR ||2))

)
(18)
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where I(p)
HSI and I(p)

SR denote the p-th pixel value of the ground truth and the spectral

reconstructed HSI. < I(v)HSI , I(v)SR > represents the dot product of the v-th spectral vector I(v)HSI

and I(v)SR of the ground truth and the spectral reconstructed HSI. || · || is l2 norm operation.
N is the total number of pixels and M is the total number of spectral vectors. A smaller
MRAE, RMSE or SAM indicates better performance.

4. Experimental Results and Discussions

4.1. Discussion on the Proposed RA2UN: Ablation Study

In order to demonstrate the effectiveness of the SAA module, the CAA module and
the boundary-aware constraint, we conduct the ablation study on the NTIRE2020 “Clean”
track dataset. The results are summarized in Table 2. Ra refer to the baseline network
without any attention module, which is trained by individual MRAE loss term lh. In Table
2, the baseline result reaches to MRAE = 0.03668.

Table 2. Ablation study on the final validation set of NTIRE2020 “Clean” track dataset. We record the best MRAE values in
5.76× 105 iterations.

Description Ra Rb Rc Rd Re R f Rg Rh

SAA Module 8 4 8 8 4 4 8 4

CAA Module 8 8 4 8 4 8 4 4

Boundary-aware Loss 8 8 8 4 8 4 4 4

MRAE (↓) 0.03668 0.03637 0.03396 0.03636 0.03362 0.03590 0.03381 0.03303

Spatial Augmented Attention Module. Firstly, we only add the SAA module to
basic model in Rb and acquire the decline in MRAE. It implies that the SAA module is
helpful to emphasize the features in the important regions and boost the spatial feature
representations. Then the results of Re and R f further prove the effectiveness of the SAA
module, based on that the CAA module is employed or the boundary-aware constraint
is established.

Channel Augmented Attention Module. As elaborated in Section 2.3, a CAA module
is developed to explore feature interdependencies among channels. Compared with the
baseline result, Rc achieves 7.42% decrease in the MRAE value. The reason may be that CAA
module can recalibrate channel-wise feature responses adaptively and realize powerful
learning capability of the network. Compared with the results from Rb and Rd, the results
of Re and Rg further demonstrate the superiority of the CAA module, respectively.

Boundary-aware Constraint. In contrast to the baseline experiment Ra, Rd is op-
timized by stochastic gradient descent algorithm with the MRAE loss term lh and the
boundary-aware constraint lb. The result of Rd indicates that the boundary-aware con-
straint is helpful to recover more accurate HSIs. Furthermore, other results of R f , Rg and
Rh all verify the effectiveness of the boundary-aware constraint. In particular, we can get
the best MRAE value with the two modules and the boundary-aware constraint in Rh.

4.2. Results of SR and Analysis

In this study, we compare the proposed RA2UN against 6 existing methods including
Arad [17], Galliani [23], Yan [26], Stiebel [30], HSCNN-R [34] and HRNet [37]. Among them,
the Arad is an early SR approach based on sparse recovery, while the others are based on
CNNs. For a fair comparison, all models retrain on the final training set, save on the final
validation set and evaluate on the final testing set for the two tracks of the NTIRE2020 and
NTIRE2018 datasets. The quantitative results of final test set of NTIRE2020 and NTIRE2018
“Clean” and “Real World” tracks are listed in Tables 3 and 4. Since the camera response
function is unknown, Arad is only suitable for measuring on “Clean” tracks. It can be
seen that our RA2UN performs the best results under MRAE, RMSE and SAM metrics on
all the tracks. As for the ranking metrics MRAE, the proposed method achieves relative
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reduction of 14.02%, 6.89%, 14.21% and 1.27% over the second best results on corresponding
established datasets. In addition, we can obtain the smallest SAM values, which indicate
that our reconstructed HSIs contain better spectral quality.

Also, we show the visual comparison of the five selected bands on different example
images of the final test set in Figures 5–8. The ground truth, our results and error images
are displayed from top to bottom. The error images are the heat maps of MRAE between
the ground truth and the recovered HSI. The bluer the displayed color, the better the
reconstructed spectrum. As can be seen, our approach yields better recovery results and
have less reconstruction error than other competitors. Besides, the spectral response curves
of four selected spatial points are painted in Figure 9. The red line is our result and the black
one denotes the groundtruth spectrum. The rest are the results of the comparison methods.
Obviously, the reconstructed results of RA2UN are much closer to the groundtruth spectrum
than the others.
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Figure 5. Visual comparison of the five selected bands on “ARAD_HS_0455” image from the final
testing set of NTIRE2020 “Clean” track. The best view on the screen.
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Figure 6. Visual comparison of the five selected bands on “ARAD_HS_0451” image from the final
testing set of NTIRE2020 “Real World” track. The best view on the screen.

Table 3. The quantitative results of final test set of NTIRE2020 “Clean” and “Real World” tracks. The best and second best
results are bold and underlined.

Method Clean Real World

MRAE (↓) RMSE (↓) SAM (↓) MRAE (↓) RMSE (↓) SAM (↓)

Ours 0.03446 0.01158 2.39933 0.06554 0.01712 3.35699
Stiebel [30] 0.04008 0.01518 2.73916 0.07141 0.01912 3.68491
HSCNN-R [34] 0.04406 0.01543 2.94031 0.07039 0.01893 3.60987
HRNet [37] 0.04202 0.01575 2.83058 0.07042 0.02035 3.71418
Yan [26] 0.10351 0.02844 4.90422 0.09942 0.03005 4.54294
Galliani [23] 0.07949 0.02788 4.52770 0.10794 0.03307 4.79334
Arad [17] 0.07873 0.03305 5.57166 ——— ——— ———
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Figure 7. Visual comparison of the five selected bands on “BGU_HS_00265” image from the final
testing set of NTIRE2018 “Clean” track. The best view on the screen.

Table 4. The quantitative results of final test set of NTIRE2018 “Clean” and “Real World” tracks. The best and second best
results are bold and underlined.

Method Clean Real World

MRAE (↓) RMSE (↓) SAM (↓) MRAE (↓) RMSE (↓) SAM (↓)

Ours 0.01141 10.4923 0.80815 0.02868 22.0813 1.52763
HSCNN-R [34] 0.01330 12.8519 0.96004 0.03014 23.5697 1.65147
HRNet [37] 0.01369 13.5165 1.00645 0.02905 22.8282 1.57253
Stiebel [30] 0.01536 15.5253 1.14655 0.03118 24.0600 1.70200
Yan [26] 0.03036 24.2971 1.67274 0.04576 31.8332 2.18224
Galliani [23] 0.05130 37.6802 1.77410 0.07749 49.2496 2.32531
Arad [17] 0.08094 59.4085 5.02125 ——— ——— ———
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Figure 8. Visual comparison of the five selected bands on “BGU_HS_00259” image from the final
testing set of NTIRE2018 “Real World” track. The best view on the screen.

(a) (b) (c) (d)

Figure 9. Spectral response curves of selected several spatial points from the reconstructed HSIs. (a,b) are for the NTIRE2020
“Clean” and “Real World” tracks respectively. (c,d) are for the NTIRE2018 “Clean” and “Real World” track respectively.
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5. Conclusions

In this paper, we propose a novel RA2UN network for SR. Concretely, the backbone
of RA2UN network consists of several DIRB blocks instead of paired plain convolutional
units. To boost the spatial feature representations, a trainable SAA module is developed
to highlight the features in the important regions selectively. Furthermore, we present a
novel CAA module to adaptively recalibrate channel-wise feature responses by exploiting
first-order statistics and second-order ones for enhance learning capacity of the network.
To find a better solution, an additional boundary-aware constraint is built to guide network
to learn salient information in edge localization and recover more accurate details. Exten-
sive experiments on challenging benchmarks demonstrate the superiority of our RA2UN
network in terms of numerical and visual measurements.
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