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Abstract: Satellites provide a temporally discontinuous record of hydrological conditions along
Earth’s rivers (e.g., river width, height, water quality). The degree to which archived satellite
data effectively capture the overall population of river flow frequency is unknown. Here, we use
the entire archives of Landsat 5, 7, and 8 to determine when a cloud-free image is available over
the United States Geological Survey (USGS) river gauges located on Landsat-observable rivers.
We compare the flow frequency distribution derived from the daily gauge record to the flow frequency
distribution derived from ideally sampling gauged discharge based on the timing of cloud-free
Landsat overpasses. Examining the patterns of flow frequency across multiple gauges, we find that
there is not a statistically significant difference between the flow frequency distribution associated
with observations contained within the Landsat archive and the flow frequency distribution derived
from the daily gauge data (α = 0.05), except for hydrological extremes like maximum and minimum
flow. At individual gauges, we find that Landsat observations span a wide range of hydrological
conditions (97% of total flow variability observed in 90% of the study gauges) but the degree to which
the Landsat sample can represent flow frequency distribution varies from location to location and
depends on sample size. The results of this study indicate that the Landsat archive is, on average,
representative of the temporal frequencies of hydrological conditions present along Earth’s large
rivers with broad utility for hydrological, ecologic and biogeochemical evaluations of river systems.
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1. Introduction

Rivers serve as the chief source of renewable water to humans and to freshwater habitats [1] and
thus they represent an important nexus between the water cycle, civilization, and aquatic ecology.
Effective water resource management depends on the ability to monitor river systems and understand
how they are responding to changes in climate and land use. While hydrological simulations can
provide useful data for evaluating river system dynamics, they are often unable to resolve unpredictable
processes and events, leading to high uncertainty, particularly when operating over large areas [2].
Observational monitoring of rivers is therefore essential for a complete understanding of the real-world
complexities of river systems.

The stream gauge is the traditional instrument used for monitoring river hydrology.
Gauges provide temporally continuous data that can be highly accurate given proper gauge maintenance.
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From gauge records, flow frequency distributions, or the frequency distribution of river flow through
time, can be used to calculate return period and estimate future flood hazard under the assumption of
stationarity [3]. However, gauges only monitor fixed points along river reaches and thus are unable to
provide a comprehensive view of surface water hydrology across river networks [4]. Additionally,
gauges tend to be biased in their geographic location, most often being installed along narrow, stable
reaches, near populated regions, in developed countries, and on perennial river types [5]. Further,
the availability of gauge data has been declining since the 1970s [6], limiting the ability to understand
how changes in land use and the water cycle are impacting global rivers.

Satellite remote sensing of Earth’s rivers offers an alternative, complementary approach to in situ
gauging [7]. Remote sensing data are often spatially continuous and thus can be used to observe an
entire river network within the constraints of a given satellite’s payload and orbit. Remote sensing
also enables non-intrusive measurement of rivers that avoids the inconsistencies associated with
individually-maintained gauge stations. While optical remote sensing is the most popular method
for studying rivers from space, it is susceptible to cloud cover, low sun angle, seasonal darkness,
and nighttime conditions [8]. Other approaches like microwave remote sensing can be used to observe
rivers during the day and night, and during almost all weather conditions [9–11], and high-resolution
commercial imagery is emerging as a useful tool for unprecedented fine-scale monitoring of river and
stream processes [12,13].

Satellite instruments cannot directly detect river discharge itself, but they can measure other
properties of rivers that vary with discharge including river width [14], river height [15], and river
velocity [16], as well as water quality [17]. Earth observation satellites have been operational since the
early 1970s and have yielded long-term remote sensing data archives that serve as a valuable resource
for monitoring rivers [18–20]. For example, remote sensing observations can be related to gauged
discharge and can be used to build percentile-based rating curves [21,22]. However, the vast majority
of Earth’s river reaches are ungauged [23] and for these ungauged reaches, the range of hydrological
conditions that satellite data cover is uncertain. A satellite’s record is a discontinuous temporal sample
of the overall population of hydrological conditions along rivers. However, the ability of satellite
remote sensing data archives to represent flow frequency is unquantified. Does the satellite sample
effectively represent flow frequency distribution in rivers?

Recent technological innovations have made this question more germane. Cloud computing
image processing platforms like Google Earth Engine have substantially lowered the barriers to
entry of planetary-scale analysis of entire satellite image archives [24]. These platforms have led to
the development of freely-available global-scale maps of surface water occurrence and change from
long-term aggregations of optical imagery [25,26] as well as open-source image processing algorithms
that can be used to track changes in river morphology over decades [27]. Additionally, new global
datasets of rivers including the Global River Widths from Landsat (GRWL) database [28], which
contains the location and width of rivers observable by Landsat, allows for improved classification and
analysis of rivers from satellites.

We are nearing the half-century anniversary of the first civilian satellite focused on Earth’s land
surface (ERTS-1 launched in 1972 and later renamed Landsat 1). Indeed, Landsat is the longest running
Earth observation satellite program and it is a standard source of remote sensing data for land cover
characterization used in hydrological applications [29]. In particular the archives of Landsat 5, 7 and 8
(hereinafter simply referred to as Landsat), which all share the same Worldwide Reference System
(WRS-2), contain freely-available, cross-calibrated sensor data with compatible spatial and temporal
resolutions. Landsat provides ~30 m optical and infrared observations across a 185 km swath along
a sun-synchronous near-polar 16 day repeat orbit. Thus, Landsat produces consistent multispectral
imagery at a high spatial resolution but at a temporally sparse interval, particularly when cloud cover
prevents land surface retrieval. We focus on Landsat here because it is the most commonly used remote
sensing platform for studying surface water from space [8] and it has been the basis for several popular
geospatial products for studying rivers [25,28,30–32].
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However, an important unknown is whether the accumulated observations of rivers from Landsat,
or the Landsat sample, correspond to the true population of hydrological conditions in rivers. If the
available Landsat sample adequately captures the on-the-ground frequency distribution of river
flow, then Landsat-based surveys of river characteristics can be interpreted to be representative of
the hydrological conditions present along Earth’s rivers. Quantifying the ability of the Landsat
archive to represent hydrological conditions, represented here by flow frequency, is motivated by
several unexplored applications in the field of remote sensing of rivers. These include (1) using
water occurrence information from the Landsat archive to estimate discharge by constructing river
width-based rating curves; (2) using water occurrence information to quantify the seasonality of river
and stream inundation extent, an important metric for estimating biogeochemical exchange between
rivers and the atmosphere [33]; (3) using water color information to understand the variability and
dynamics of river water quality [19].

If the Landsat archive is of adequate length or, in other words, if the Landsat sample size is large
enough, then fundamental assumptions can be made regarding the representativeness of the Landsat
record of hydrological conditions along Earth’s large rivers. Thus, given the long Landsat archive
(Landsat 5 launched on 1 March 1984), we hypothesize that long-term aggregations of Landsat imagery
capture the flow frequency of Earth’s large rivers. Here, we test this hypothesis by conducting a simple
temporal sampling analysis of the United States Geological Survey (USGS) gauge records based on
cloud-free overpass timing of Landsat 5, 7 and 8 (Figure 1). While a similar approach has been taken to
predict the observational potential of the future Surface Water and Ocean Topography (SWOT) satellite
mission [34], there has been no evaluation conducted for the widely used Landsat archive.
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Figure 1. Map showing the United States Geological Survey (USGS) gauges used in this study and
Landsat 5, 7, and 8 data availability based on the number of images with less than 30% cloud cover.
Regions affected by cloud cover and low sun angle tend to have lower data availability. Rivers equal to
or wider than Landsat’s 30 m resolution at mean discharge shown as blue lines [28].

2. Materials and Methods

2.1. Gauge Data

We represent the true flow frequency of rivers using daily streamflow records from gauge stations
in the United States (US) and operated by the USGS (Figure 1). To exclude gauges that are located
on rivers too narrow to be observable by Landsat, we only consider the 1134 USGS gauges that were
used to validate the Global River Widths from Landsat (GRWL) database [28]. These gauges (1) have
upstream drainage areas larger than 1000 km2; (2) have records that span at least 10 years; (3) are
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located within 1 km Euclidean distance of a GRWL centerline; (4) are not immediately adjacent to lakes,
reservoirs or river confluences (determined using the GRWL flag field and by visually examining
each gauge location [28]); (5) have in situ river width data available [35]. We only analyze discharge
records occurring between 1 March 1984 and 14 August 2019, because this time period spans the range
of available data from the Landsat 5, 7 and 8 missions at the time of this study’s analysis. To help
ensure a representative distribution of discharge at each gauge, we omit from our analysis 102 gauges
that contain less than 5 years of discharge records within the 35 year study period. Additionally,
because discharge conditions can be obscured by the presence of river ice [36], we exclude all gauge
measurements that were taken when river ice was recorded at the gauge (USGS Quality Code set
to “ice”). Similarly, we exclude discharge records that the USGS reported as provisional, estimated,
underestimated, or overestimated (USGS Quality Code set to “p”, “E”, “<”, or “>”). Combined, these
exclusions remove 5.2% of the daily discharge measurements but they produce a more accurate and
representative discharge record for this study. The gauges used here are located on rivers, with a
median width at mean annual discharge of 76 m and a first and third quartile of 50 to 117 m, respectively,
as measured by the USGS [28].

2.2. Landsat Data

To assess the ability of Landsat to capture the true flow frequency distribution, we match coincident
Landsat 5, 7, and 8 overpasses with daily discharge measurements at each USGS gauge over the 35-year
study period (Figure 2a,c). Note that this matching process is idealized in that the discharge value at
the gauge is exactly assigned to the corresponding Landsat image. This approach effectively assumes
that river discharge can be accurately estimated from Landsat width measurements, an active field of
research [7,22,27,37–39]. This simplifying assumption is a necessary first step that neglects potential
errors in remote sensing and discharge algorithms, but allows for our stated focus on analyzing Landsat
sampling capabilities. We conduct this Landsat availability analysis using the Google Earth Engine
platform [24], which hosts the entire digitized Landsat archive. Each Landsat satellite observes the same
location at least once every 16 days, although in areas with frequent cloud cover, the actual interval of
cloud-free observations can be much longer (Figure 1). To account for the impact of cloud cover, we also
determine when an available Landsat scene is cloud-free within a 500-m radius around the gauge.
We use a 500-m radius around each gauge because this distance is longer than the corresponding in situ
river width at mean discharge of all but 14 gauges considered in this study [28]. We identify clouds
based on the USGS Landsat Bitwise Quality Assessment (BQA) product [40]. To account for the impact
of the ETM+ Scan Line Corrector failure on data quality [41], we conservatively omit all Landsat 7
observation dates after 31 May 2003, when the failure occurred. In total, the number of observations
considered in this analysis after excluding clouds and problematic gauge measurements is 327,177.

2.3. Statistical Comparison at Individual Gauges

At each individual USGS gauge, we compare the flow frequency distribution of the idealized
Landsat sample to the flow frequency distribution of the daily gauge record (Figure 2). The upper
panel in Figure 2 shows an example of where the Landsat sample and the gauge record have flow
distributions that are relatively similar, whereas the lower panel shows an example where the Landsat
sample does not represent the gauged flow distribution with high fidelity. We use the non-parametric
Kolmogorov–Smirnov (K-S) test [42] to characterize the statistical difference between the Landsat
sample and the daily record of flow at each gauge. We use a significance level of α = 0.05 for all
statistical tests in this study.
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Figure 2. Hydrographs, cumulative density functions (CDFs), and a percentile plot from two example
gauge stations. For visual clarity, hydrographs show a 5 year subset of the full record (1984–2019),
while CDFs correspond to the full record length. Gaps in the hydrographs correspond to United
States Geological Survey (USGS) flow observations that are estimated, provisional, and/or frozen.
(a) Hydrograph of USGS Gauge 06225500 at Wind River near Crowheart, Wyoming, and (b) the
corresponding flow frequency CDF (KSD statistic = 0.09, p-value < 0.001). (c) USGS Gauge 15129000 at
Alsek River near Yakutat, Alaska, and (d) the corresponding flow frequency CDF (KSD statistic = 0.17,
p-value = 0.055). (e) Fiftieth percentile (median) flow calculated from the full gauge record (x-axis) vs.
from the Landsat sample (y-axis), with the two example gauge stations represented as colored circles.
Gray circles represent median flows from other gauge stations.

Note that the K-S p-value is highly sensitive to sample size, causing it to be an impractical statistic
for comparing across individual gauges. For example, a gauge with more Landsat observations
(a larger sample size) is more likely to be considered significantly different than the same gauge with
fewer observations (a smaller sample size), according to the K-S p-value [43,44]. Thus, the K-S p-value
often yields contrary results, in which a large sample with a distribution that appears similar to that of
its population will be considered to be significantly different (e.g., Figure 2a,b), while a small sample
that appears to highly deviate from the gauge record will not be considered to be significantly different
(e.g., Figure 2c,d). Due to this contradictory behavior, we do not place emphasis on the K-S p-value
in this analysis but rather focus on the descriptive K-S D-statistic (KSD statistic), which provides a
clear summary of the difference in flow frequency distributions between the Landsat sample and
gauge record.

Additionally, we analyze the ability of Landsat to capture hydrological extremes at each individual
gauge by determining the maximum and minimum percentile of gauged flows sampled by Landsat.
We then explore potential factors affecting the ability of the Landsat sample to represent true flow
frequency distributions across gauges including climate (cloudiness), watershed area and flow regime
(flashiness). Flashiness is quantified according to the Richards–Baker Flashiness Index that sums the
differences in daily flow divided by the total flow over a given time period [45]. This non-dimensional
index is commonly used and has been observed to vary from 0 to ~1.5, although large rivers are
generally less flashy and tend to exhibit index values of less than ~0.5 [34]. We correlate these factors
with the KSD statistic using the Spearman rank correlation test [46] across all gauges and we examine
the spatial patterns in the KSD statistic.

2.4. Statistical Comparison Across Multiple Gauges

To determine the ability of Landsat to represent river flow frequency across space, we compare
the Landsat sample to the daily gauge record at different flow frequencies (Figure 2e). This approach
tests whether different locations can be combined to represent flow frequency and is analogous to the
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classic hydrological concept of downstream hydraulic geometry [47]. In such a conceptual framework,
the approach taken in Section 2.3 is equivalent to at-a-station hydraulic geometry. At each gauge,
we calculate (1) discharge from the full gauge record and (2) discharge from the Landsat sample at
multiple flow percentiles. Figure 2b,d shows two examples of calculating these two metrics at the
50th flow percentile (median flow). In addition to median flow, we calculate the two metrics at the
following flow percentiles: 0% (minimum flow), 5%, 10%, 90%, 95%, and 100% (maximum flow).

For each of these percentiles, we compare the Landsat sample discharge to the gauge record
discharge at every gauge using the non-parametric Mann–Whitney–Wilcoxon test (MWW) [48].
To avoid bias from outliers, we use the Theil–Sen median estimator [49] to derive a robust linear
regression between the Landsat-sampled discharge and the gauge record discharge at each percentile.
Additionally, we also calculate relative root mean square error,

rRMSE j =

√√√
1
N

N∑
i=1

Qi, j − Q̂i, j

Q̂i, j

2, (1)

and the relative bias,

rBIAS j =
1
N

N∑
i=1

Qi, j − Q̂i, j

Q̂i, j

, (2)

where N is the total number of gauges used in this study, Qi,j is the flow (m3s−1) from the Landsat
sample distribution at a given percentile, j, at gauge i and Q̂i, j is the flow from the gauge distribution at
the same percentile and same gauge. By comparing the Landsat sample to the gauge record across all
the gauges at each selected percentile, we evaluate the ability of Landsat to represent a given flow
frequency through spatial averaging.

2.5. Minimum Length of Landsat Observations

We expect that the ability of satellites to effectively represent river flow frequency is related to the
length of the observational archive and hence the sample size. Theoretically, longer sampling periods
enable better capture of the flow frequency distribution during the sample period. To examine the
effect of observation length on Landsat’s capacity to represent flow frequency, we simulated different
observation period lengths over which Landsat-sampled discharge from the gauge record. For each
gauge in our analysis, we created 50 random permutations of a continuous temporal range with an n
year duration (n = 1, 2, 3, . . . , 10). To allow for random permutations of a 10 year period, we only
included gauges that contained more than 15 years of continuous data (N = 927). Within each temporal
range, we compared the Landsat-sampled flows and those from daily gauge records from the same
period. Specifically, we calculated flow values at 0%, 1%, 5%, 50%, 95%, 99%, and 100% percentiles.
From these data, we calculated the coefficient of determination (R2), relative error metrics (rBias,
rMAE, and rRMSE), and absolute error metrics (Bias, MAE, and RMSE). Together, these statistics help
characterize the ability of Landsat to represent flow conditions with increasing observation duration.

3. Results

3.1. How Well Can the Landsat Archive Capture Flow Conditions at Individual Gauges?

We find that the Landsat archive contains observations corresponding to the near full range of
discharge conditions for the vast majority of gauges (Figure 3a). For example, at 90% of the study
gauges, the idealized Landsat sample captures at least 97% of the full range of discharge percentiles
recorded by the gauge. The majority of gauges (55%) show no significant difference between the
Landsat sample and the gauge record of flow according to the K-S p-value at the 95% confidence
interval. However, as previously noted, the K-S p-value is exceedingly sensitive to sample size and
often produces contradictory results when comparing samples of different sizes, as we do here. On the
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other hand, the descriptive KSD statistic, which does not exhibit this contradictory behavior, ranges
from 0.016 to 0.36, with a median value of 0.083. Among the sites with no significant difference between
the Landsat-sampled and gauged flow frequency, the KSD statistic ranged from 0.016 to 0.27, with a
median value of 0.06. Thus, while there is considerable variation in the potential ability of Landsat to
reconstruct flow frequency from gauge to gauge, the average difference between the idealized Landsat
sample and the gauge flow frequency distribution is small.
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Figure 3. Individual gauge analysis, whereby each point represents metrics at a single gauge station.
(a) Empirical CDF of the proportion of flow percentiles of the gauge record that the Landsat sample
represents at each gauge. (b) Cloud occurrence correlates negatively with the ability of Landsat to
capture flow frequency as represented by the KSD statistic. (c) Watershed area weakly correlates with
the KSD statistic. (d) The Richards–Baker Flashiness Index does not correlate with the KSD statistic.

To determine potential drivers of Landsat’s ability to capture river flow frequency, we examine
correlations between the KSD statistic and the environmental variables of cloudiness, watershed area,
and flow flashiness. We find a negative correlation (p < 0.001) between the proportion of cloud-free
observations at a gauge and the KSD statistic (Figure 3b). This pattern is evident for locations where
there is a statistically significant difference between the Landsat sample and the gauge record (gray
points in Figure 3b) as well as locations that exhibit no significant difference (black points in Figure 3b;
Spearman rank correlation coefficients of r = −0.40 and r = −0.47, respectively). We also find a weak
negative correlation between the KSD statistic and watershed area (r = −0.09 and −0.16; p = 0.02 and
p < 0.001; Figure 3c) for locations with significant difference and locations with a significant difference,
respectively. Conversely, we find no significant correlations between flow flashiness and the KSD
statistic at sites with statistically significant differences (r = 0.012, p = 0.78) nor at sites with statistically
insignificant differences (r = 0.018, p = 0.66; Figure 3d). Landsat-observable rivers are large and span
a relatively narrow range of the Richards–Baker Flashiness Index, from 0.016 to 0.84, compared to
small streams that can vary up to 1.5 [34]. The lack of correlation between flashiness and the KSD
statistic implies that flow regimes on large Landsat-observable rivers do not affect Landsat’s ability to
capture flow frequency distribution. We find no readily apparent spatial patterns in the D-statistic
(see Figure S1 for an interactive map showing flow frequency distributions of the Landsat sample and
the gauge record for each stream gauge). While more sophisticated statistical approaches could be
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employed to predict locations where Landsat best captures river flow frequency, this task is beyond
the scope of this study.

3.2. How Well Can the Landsat Archive Capture Flow Conditions across Multiple Gauges?

Comparing the Landsat sample to the gauge record across all gauge stations reveals consistent
patterns between a given flow percentile and the ability of Landsat to potentially represent flow at that
percentile (Figure 4). For a wide range of flows (i.e., the 1% through the 95% percentiles in Figure 4),
we find no statistically significant difference between the Landsat sample and the full gauge record
according to the MWW test. Thus, except for extreme hydrological conditions like maximum and
minimum flow, the idealized Landsat sample is not statistically different from the daily flow measured
by multiple gauges (α = 0.05). Error metrics tend to be highest at extreme flow conditions and lowest
at median flow. For intermediate percentiles that show no statistically significant difference, rRMSE
values range from 12% to 78% and rBIAS values range from −6.4% to 8%.
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Figure 4. Full gauge record flow percentiles vs. Landsat-sampled flow percentiles for each USGS
gauge studied (N = 1134). The black line represents the 1:1 line and the red line represents the
Theil–Sen median estimator best fit (equation shown in red). R2: coefficient of determination; rBias:
relative bias; rRMSE: relative root mean square error; KSD: Kolmogorov–Smirnov D-statistic; MWW p:
Mann–Whitney–Wilcoxon p-value.

Examining the error statistics of the extreme flow percentiles yields additional insights.
At minimum flow, the Landsat sample always either matches or overestimates minimum flow,
as seen by the points always being above the 1:1 line in the 0% percentile panel of Figure 4, resulting in
a high positive relative bias of 200%. Conversely, at maximum flow, the Landsat sample either equals
or underestimates maximum flow, producing a negative relative bias of −31%. These underestimates
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tend to increase in magnitude with increasing discharge (errors exhibit heteroscedasticity), resulting in
a Theil–Sen median estimator that significantly deviates from unity at the 100% percentile (red line).
These patterns also persist at the 99% percentile, in which the Landsat sample tends to underestimate
discharge, albeit to a lesser degree than at maximum flow.

3.3. What Is the Minimum Length of Landsat Observations Needed to Represent Flow Frequency?

Our findings confirm that long periods of Landsat observation correspond with an improved
ability of the Landsat archive to contain observations that can effectively represent river flow frequency.
Generally, after 3 years of Landsat observation, all percentiles except for minimum and maximum
flow are in close agreement with the reference values derived from the gauge record, with R2 values
above 0.9 (Figure 5a). Moreover, with the exception of minimum and maximum flow, we find a general
trend of decreasing relative error statistics (rBias, rMAE, and rRMSE; Figure 5b) and absolute error
statistics (Bias, MAE, RMSE; Figure 5c) with increasing duration of observation. Thus, as satellite
observation duration increases, the distribution of flow frequency observed by Landsat expectedly
converges with the flow frequency of the daily gauge record, except for extreme flows like minimum
and maximum discharge.
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Figure 5. Landsat’s representation of flow conditions with increasing observation duration.
(a) Variations in R2 value with increasing observation duration. (b) Relative metrics (rBias, rMAE,
rRMSE) comparing gauge daily records and Landsat-sampled gauge records. (c) Absolute error metrics
(Bias, MAE, RMSE, unit: cms) comparing gauge daily records and Landsat-sampled gauge records.
Median statistical values plotted for each percentile.

Additionally, our results reveal that the degree of increasing similarity between the Landsat
sample and the gauge record flow frequency distributions strongly depends on the flow percentile
being studied. With increasing observation duration, smaller percentile flows generally show a more
dramatic improvement in performance relative to larger flows. For example, Figure 5a shows a more
substantial increase in R2 for low flow percentiles (0%, 1%, and 5% flow) at a 3 year duration relative
to the larger flow percentiles. This pattern also persists for the relative error metrics whereby the
decreasing trend is greatest in smaller percentiles, with the exception of minimum and maximum
flow. We note that low flow frequencies correspond to higher relative errors compared to higher flow
frequencies, likely because of their smaller denominators in Equations (1) and (2). Conversely, high
flow frequencies correspond to higher absolute error metrics relative to lower flow frequencies and the
non-linear gap between the percentile curves may result from the positive skewness of flow frequency
distributions in most rivers.
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4. Discussion

4.1. Interpretations of Primary Findings

Our results indicate that Landsat can effectively capture river flow frequency over large spatial
areas given an adequate duration of observation and accurate remote sensing and discharge algorithms.
Although Landsat’s sampling capability varies at individual gauge sites, we find that spatially averaging
over multiple gauges enables effective representation of flow frequency, with the exception of extremely
high and low flows (Figure 4). Landsat more aptly captures flow frequency at the lowest flows
rather than at the highest flows, likely because of the positive skew characteristic of flow frequency
distributions (e.g., Figure 2b). Small changes in flow frequency at the highest flows represent large
variations in discharge that are difficult to capture due to the 16 day repeat orbit of Landsat. Cloudy
conditions often accompany high flows, which further inhibits Landsat’s ability to characterize the
frequency of high flow events. The duration of observation also plays an important role in the ability
of Landsat to capture river flow frequency. As expected, a longer observation duration will produce a
better representation of river flow frequency, albeit with diminishing returns (Figure 5). Several error
metrics initially improve rapidly with time until approximately a 3 year duration, after which they
improve more gradually. Thus, we suggest that at least 3 years of Landsat observations should be
aggregated before they adequately contain observations representative of river flow frequency.

4.2. Implications for River Remote Sensing Applications

River flow frequency analysis is a key tool for a variety of hydrological applications including
flood hazard and risk evaluations, hydraulic engineering, and water resources management [50,51].
Flow frequency is also related to a river’s water quality and distribution of freshwater habitats [52–54].
While satellite remote sensing cannot measure discharge directly, it can measure other attributes of
rivers that scale with discharge including river morphology and water quality [47,55]. For example,
Landsat can observe surface water inundation extent from which river surface area and width can be
extracted, which both scale with discharge [27,56–58].

This study’s findings indicate river water occurrence data derived from long-term aggregations of
Landsat observations correspond to the flow frequency of Earth’s large rivers. For example, on average,
median river width derived from long-term temporal composites of classified Landsat data [25,26]
corresponds to median river flow. Our results also indicate that these same relationships can be
extended to a wide range of flow frequencies, except for extremely high and low flows. This result has
key utility for developing percentile-based width rating curves for estimating discharge [14,22] or for
estimating variability in river surface area [59]. We emphasize that at any single given location, these
relationships do not necessarily apply but rather that these relationships are valid when averaging
over space. Thus, applying at-a-station hydraulic geometry [47] at individual single cross-sections
solely from Landsat water occurrence data may often be invalid. However, our results suggest that
developing at-a-station hydraulic geometry relationships across multiple cross-sections over a large
area is valid for non-extreme flow frequencies and given an adequate Landsat sample size with
potential implications for remote sensing of discharge approaches [15,37–39].

Our results also have implications for riparian ecology and river water quality applications.
Flow is a “master” variable in river ecology and water quality [54] and, like river width and surface
area, Landsat can also measure water quality parameters [31,60]. Specifically, Landsat imagery is
commonly paired with in situ water samples to derive empirical relationships with optically-active
constituents such as suspended sediment concentrations [61,62], chlorophyll-a [60,63], and colored
dissolved organic matter (CDOM) [64,65]. While these water quality parameters generally vary
with discharge, the relationship between river flow and water quality varies. Suspended sediment
generally increases non-linearly with flow [66] but chlorophyll-a and CDOM can increase, decrease,
or vary independently of flow depending on river size, season, and watershed properties [67–70].
Understanding flow conditions captured by satellite observations is therefore important for deriving
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representative surveys of river water quality measurements. The most extreme flow events are rarely
observed by Landsat, but Landsat observes a wider range of flows (97% of flow percentiles at 90%
of gauges) than well-designed water quality field sampling programs which sample 80% of flow
percentiles at best [71]. Thus, as remote sensing of water quality methods typically relies on in situ
field measurements, it is critical that field sampling programs collect measurements at high and low
flows to match the wide range of hydrological conditions captured by Landsat observations.

4.3. Limitations and Future Directions

While the results of this study are encouraging for river remote sensing applications, our study
does have limitations. First, we assume that daily discharge measured from the USGS study gauges
represents the true flow frequency of rivers, but river gauges are biased in their placement and
fluctuations in river discharge often can occur over subdaily timescale [5,72]. Related to this point,
our results may differ in regions outside the US, which have dissimilar conditions. The gauge stations
used in this study measure the majority (52%) of US Landsat-observable river reaches but only 6.6% of
Earth’s observable rivers are located within the US, according to the GRWL database [28]. Future work
could explore this uncertainty by using an international gauge database [73] or a global hydrological
simulation [74] to sample streamflow worldwide. Second, we emphasize that Landsat will not
necessarily produce a representative sample of flow at any given single location along a river network.
However, our results indicate that, given an adequate period of observation, spatially-averaged Landsat
observations can capture flow frequency distribution over large spatial areas. Further, Landsat does
not adequately capture minimum and maximum flow conditions in most locations. Third, while this
study does not assume stationarity, we emphasize that river flow frequency is non-stationary such that
flow frequencies derived over one time period cannot necessarily be used to infer flow frequencies over
another period [3]. Finally, this study does not consider the uncertainty associated with the Landsat
remote sensing measurements themselves. So, while we find that the timing of Landsat observations is
adequate to capture river flow frequency, the ability of Landsat to accurately measure the parameter of
interest (e.g., river width, suspended sediment concentration, discharge) itself remains unconstrained
here. Constraining this uncertainty is application and algorithm specific [7,20] and beyond the scope of
this analysis. Additionally, determining the drivers of the heterogeneity in Landsat’s ability to represent
flow frequency from location to location (Figure S1) is a recommended topic for further research.

Similar approaches to this study may be used to understand river sampling capabilities of satellite
missions other than Landsat. Satellite programs with optical sensors and shorter revisit times, such as
Sentinel 2 (2–5 days) and Planet (~1 day), likely capture river flow frequency over a shorter study
duration, although this advantage of more frequent retrieval will be bottlenecked by persistent cloud
cover in some regions. Other sensor technologies enable remote sensing of rivers over a broader array
of atmospheric and solar illumination conditions. Indeed, thermal, passive microwave, radar and
lidar remote sensing have distinct advantages over optical remote sensing and can provide alternative
observations of river systems. Similar to this study, a recent analysis found that 3 years of SWOT
data were sufficient to represent the flow frequency distribution over the Mississippi River basin [34].
SWOT will have a longer repeat orbit (21 days) and narrower swath width (100 km) than Landsat but
these attributes are counterbalanced by the ability of its Ka-band radar instrument to collect surface
returns during cloudy and nighttime conditions [11].

5. Conclusions

This study’s findings show that the Landsat archive can effectively represent river flow frequency
over large areas given an adequate period of observation and accurate remote sensing and discharge
algorithms. At individual locations, the ability of Landsat to capture flow frequency in large rivers is
positively correlated with the cloud occurrence, weakly correlated with watershed area, and does not
correlate with flow flashiness (Figure 3; Figure S1). While the Landsat record captures a wide range of
flow conditions (97% of the flow percentiles at 90% of sites), its ability to capture the flow frequency
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distribution varies widely from location to location (KSD statistic ranges from 0.016–0.36). This implies
that, at any single site along a river, the Landsat archive cannot be assumed to adequately capture
flow frequency. Nevertheless, we find that spatially averaging over multiple locations effectively
enables representation of hydrological conditions at a given flow frequency, with the exception of
hydrological extremes like maximum and minimum flow (α = 0.5; Figure 4). Such an averaging process
could hence be used to improve existing Landsat-based discharge algorithms. Landsat can better
capture flow frequency at the lowest flows than at the highest flows likely because of the positive skew
characteristic of river flow frequency distributions. We also find that a longer Landsat observation time
period positively impacts the representation of river flow frequency, albeit with diminishing returns
with increasing observation time (Figure 5). We suggest that, on average, a minimum of 3 years of
aggregated observations is necessary if Landsat is used to reconstruct flow frequency distribution.
We emphasize that this analysis only considers the timing of Landsat observations in relation to river
flow frequency and does not consider the ability of Landsat to accurately measure the parameter
of interest (e.g., river width, suspended sediment, discharge). We also note that the gauges used in
this analysis only measure a relatively small portion of the global observable river network, solely
located within the United States. Regardless, the results of this study support the hypothesis that
long-term aggregations of Landsat data can be used to capture the flow frequency of Earth’s large
rivers. Thus, Landsat-based surveys of river characteristics can be interpreted to be representative
of the hydrological conditions present along Earth’s large rivers, with wide-ranging utility for river
hydrology, water quality, and ecology.
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