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Abstract: One of the most challenging research subjects in remote sensing is feature extraction,
such as road features, from remote sensing images. Such an extraction influences multiple scenes,
including map updating, traffic management, emergency tasks, road monitoring, and others.
Therefore, a systematic review of deep learning techniques applied to common remote sensing
benchmarks for road extraction is conducted in this study. The research is conducted based on
four main types of deep learning methods, namely, the GANs model, deconvolutional networks,
FCNs, and patch-based CNNs models. We also compare these various deep learning models applied
to remote sensing datasets to show which method performs well in extracting road parts from
high-resolution remote sensing images. Moreover, we describe future research directions and research
gaps. Results indicate that the largest reported performance record is related to the deconvolutional
nets applied to remote sensing images, and the F1 score metric of the generative adversarial network
model, DenseNet method, and FCN-32 applied to UAV and Google Earth images are high: 96.08%,
95.72%, and 94.59%, respectively.

Keywords: road extraction; common benchmarks; machine learning; deep learning; remote sensing

1. Introduction

Spaceborne, airborne, and drone-based sensors using advanced Earth observation and
remote sensing technologies have obtained large amounts and different types of high-resolution
images. Such images are extensively used in several applications, such as urban planning [1],
disaster management [2], and emergency tasks [3]. Among topographic object classes, road objects are
essential urban features. Therefore, the constant updating of road databases is necessary to achieve
several geospatial information systems (GIS) goals, such as emergency functions, automated means of
navigation, urban planning, and traffic control [4]. A road database can be created and updated using
feature extraction from spatial high-resolution satellite imagery [5]. Consequently, generating automatic
novel techniques for extracting road classes from high-resolution satellite images and keeping road
networks up-to-date in GIS databases are useful for a variety of applications [6]. High-resolution
remote sensing imagery can produce a massive amount of data and has become the main data source
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for extracting road regions and updating geospatial databases in real time [7]. Although road extraction
from remote sensing imagery recently gained considerable attention, this task remains challenging
owing to irregular and complex road sections and structures [8]. Other features, such as building roofs,
pedestrian areas, and car parking appear similar in satellite images, thereby resulting in insufficient
road contexts in images [9]. Meanwhile, roadside buildings, tree shadows, and vehicles on roads
can be identified from high-resolution remotely sensed imagery [10]. Given the aforementioned
issues, road class extraction from high-resolution remotely sensed imagery is difficult. Manual and
traditional approaches for road extraction from high-resolution remote sensing imagery are costly,
time consuming, and fraught with errors owing to human operators [11]. Therefore, various road
extraction approaches, such as supervised [12] and unsupervised [13] techniques, were suggested for
extracting road regions from remotely sensed imagery. Such approaches use textural [14], geometric,
and photometric [15] information to extract roads through classification [16]. Techniques for road
extraction can be categorized into two categories: (1) automatic and semiautomatic approaches and (2)
road area and centerline extraction methods. Automatic techniques are useful in real-time applications
and do not require human collaboration, unlike semiautomatic approaches. Road area extraction
techniques concentrate on road segmentation and classification, whereas road centerline extraction
methods focus on road skeleton recognition [17]. Recently, artificial intelligence algorithms have
shown considerable development in feature extraction and segmentation from remote sensing images,
thereby persuading researchers to distinguish road sections from high-resolution remote sensing
imagery owing to the considerable efficiency of deep learning approaches in different applications [18].
Deep learning is a rapidly growing area in machine learning and has become an effective tool
for expediting image processing and object detection. Moreover, deep learning has been widely
implemented in remote sensing images, especially in mapping urban land cover with highly accurate
results [19].

In this study, we conduct a systematic review of road extraction in remote sensing images from
a novel perspective by discussing the current deep learning techniques applied to remote sensing
datasets for road extraction and semantic segmentation. Previously, [20] only summarized the research
outcomes of road extraction based on heuristic approaches. The applied deep learning approaches are
categorized in this study on the basis of the type of deep convolutional neural networks. In addition,
their strengths and limitations are discussed, and further insights for future studies in this field are
provided. The remainder of this review paper is organized as follows. Section 2 provides a short
background on the application of deep learning models for remote sensing image classification and
road extraction. Section 3 presents the methodology for gathering relevant works. Section 4 discusses
the extensive literature by considering common and state-of-art methods, including methodology,
data, proposed approaches, difficulties, opinions, and precision. Section 5 describes the advantages
and disadvantages of the proposed deep learning models, and Section 6 concludes the study.

2. Background

This section provides a summary of traditional road extraction methods. In addition, it discusses
the development of deep learning methods in processing remotely sensed images and computer vision,
specifically, road semantic segmentation from high-resolution remote sensing imagery.

At present, road extraction and monitoring operations are performed manually, which is ineffective
and costly. Therefore, the automatic extraction and detection of roads from high-resolution images
would be efficient and cost effective. Previously, remotely sensed imagery, such as multispectral and
hyperspectral images, with high-spectral bandwidths was used for traditional remote sensing-based
road extraction [21]. The present application of extracting road sections from remote sensing imagery
at the macrolevel can be used in urban planning given the huge volume of available high-spectral
resolution satellite and low-spatial resolution remotely sensed images [22]. Road extraction methods
principally use the depth of spectral information to extract road sections from hyperspectral and
multispectral satellite images [23]. Within the last decade, extremely high-resolution remote sensing
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imagery, such as orthophoto and unmanned aerial vehicle (UAV) images obtained by advanced remote
sensing technologies, was increasingly utilized for shadow classification, road extraction, and vehicle
detection. Such fields confirmed the potential of images with high spatial resolutions [24].

Various studies have extracted road parts from high-resolution remotely sensed images using
two main techniques, namely, data-driven and heuristic methods. Data-driven methods generally
use the information of large data to conduct road extraction from satellite images. Recently,
several data-driven approaches were considered for extracting road classes from remote sensing
imagery containing conditional random fields (CRFs) [25], clustering [26], and Markov random fields
(MRFs) [27]. By contrast, heuristic methods involve texture progressive analysis [28] and mathematical
morphology [29], and often use certain information about road sections. Thus, these approaches
are useless in handling different types of roads compared with data-driven techniques. However,
traditional segmentation approaches fail to achieve high accuracy in road extraction and cannot handle
multiscale roads, particularly narrow road sections with high width variance. The reason for this
inability is that compared with normal images, high-resolution remote sensing images gain more detail.
Thus, narrow road regions become apparent in such images, thereby introducing novel difficulties
for road segmentation from high-resolution satellite images. Also, most of the preliminary studies
for road extraction are on the basis of unsupervised learning like global optimization and graph cut
methods [30] that rely on the color features and they have one general constraint, which is color
sensitivity. Therefore, if the colors of roads in remote sensing imagery consist of more than one color,
these segmentation algorithms will not attain good results and not perform well in road extraction and
classification. Therefore, new robust techniques, such as deep learning methods, are needed to extract
road networks with various scales accurately from remote sensing imagery [30].

In different fields, such as image classification, scene recognition, object detection, and semantic
segmentation, advanced cutting-edge convolutional neural networks (CNNs) presently exceed other
methods [31]. Compared to the unsupervised approaches that rely on the color for segmentation,
more than one feature other than color, such as texture, shape, and line can be extracted by deep
learning methods, among others. One of the most well-known methods initially identified to generalize
CNNs in computer vision is the AlexNet18 model, which won the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) challenge in 2012 [32]. Recently, a CNN model called the fully
convolutional network (FCN), which was suggested by [33], revealed promising results in dense
semantic segmentation. In addition, remotely sensed image processing, such as object identification
in high-resolution remote sensing images [34], semantic labeling of satellite images [35], and image
classification [36], was conducted using modern CNN models. The FCN demonstrated satisfactory
results in the semantic segmentation of high-resolution remote sensing imagery [37]. Specifically,
CNNs and the FCN were also synthesized for road semantic segmentation from remotely sensed
imagery to learn road features and extract road regions automatically [38,39]. One of the initial efforts
of implementing deep learning methods for road extraction from remote sensing images was made
by [40]. For detecting road parts from remote sensing data, they applied restricted Boltzmann machine
(RBMs). Also, they used preprocessing and postprocessing steps for achieving better results. Saito,
Yamashita, and Aoki [38] proposed a method for roads and buildings extraction from raw remotely
sensed images that was different from [40]. This approach was applied on a Massachusetts road dataset
that obtained better outcomes. In recent years, many studies proposed that a deeper neural framework
showed better results [41]; however, training of such a model is challenging because of the gradient
vanishing issue. To address this issue, a deep residual learning architecture is suggested by [42] to
simplify training by using an identity mapping [43].

3. Methodology

A systematic review was implemented to identify and select related literature as well as to achieve
our research purpose based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement regarding record objects chosen for meta-analyses and systematic reviews [44,45].
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The Web of Science (WoS) database was used to search for relevant manuscripts [46]. We restricted
the search results to peer-reviewed documents, such as journals and conference papers, to ensure the
authenticity and quality of the outcomes. We applied main expressions such as “Road Extraction,
Remote Sensing Images, and Deep Learning”; “Road Detection, Deep Learning, and High-Resolution
Satellite Images”; and “Road Semantic Segmentation, Deep Learning, and Remote Sensing Images”
over a 10-year period, from 2010 to 2019, to gather papers. The process flow of gathering manuscripts
is depicted in Figure 1.
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Figure 1. The process of extracting relevant papers based on the diverse combination of important
search expressions.

A set of inclusion and exclusion criteria was ascertained as competency factors to identify previous
studies and subjects based on the purpose of this work. The exclusion factors were as follows:

• The full text of the papers was not provided by publishers;
• Remote sensing images were not used in the papers.

The inclusion factors were as follows:

• Articles written in English;
• Peer-reviewed papers, such as conferences and journals;
• Published papers during the 10-year period (i.e., 2010–2019);
• Products that revealed a deep learning technique for road extraction from remote sensing images.

A total of 38 records were initially identified. Subsequently, we excluded redundant papers,
and those that did not use remote sensing images for road extraction; thus, only 25 studies were
accepted. Finally, we classified the documents selected based on purpose as an outcome integration
process and revealed the consequences in detail in Section 4. In Section 4, we present major findings,
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including the benefits and drawbacks of current products for road segmentation from remote sensing
imagery via deep learning models, as well as evidence for each main outcome. We also discuss several
recommendations for future research.

4. Results

This section elaborates on prior studies on deep learning methods that were applied to remote
sensing images to extract road sections. We split the results into several subsections based on the type
of deep learning methods used (Figure 2).
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Figure 2. Road semantic segmentation using different deep learning models from remote
sensing datasets.

4.1. Road Extraction Based on the Patch-Based CNN Model

In the patch-based CNN model, the possibility of road dispensation is firstly predicted
piece-by-piece with a particular stride and then the label map of the whole image is produced
by assembling all of the label patches. Figure 3 illustrates a general architecture of the patch-level
CNNs model. The initial section is convolutional and max pooling layers chased by fully connected
layers acting as a linear discriminator. In this section, we describe the prior studies that used the CNN
model for road extraction.
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Zhong et al. [39] provisionally implemented the newest CNN model to extract road and building
objects from satellite imagery. The model fused low-level fine-grained features and high-level
semantic meaning. In addition, further hyperparameters, such as the input image size, training epoch,
and learning rate, were analyzed to specify the capability of the method in the context of high-resolution
remote sensing images. The Massachusetts dataset, with a 1-m spatial resolution and 1500 × 1500
pixel size, containing 1711 images for the road and 151 images for the building datasets, was used
for the evaluation. The Massachusetts dataset is related to the state of Massachusetts. The dataset
covers over 2600 square kilometers with diverse rural, suburban, and urban areas [43]. With the
integration of the pretrained FCN method with a novel four-stride pooling layer output to the last score
layer, as well as fine-tuned with high-resolution spatial data, the extraction accuracy of the adjusted
model was upgraded significantly to over 78%. Wei et al. [47] used a technique on aerial images for
extracting road classes based on a road structure-refined CNN model, which provided road geometric
information and spatial correlation. The proposed model was merged with fusion and deconvolutional
layers to obtain structured output. Furthermore, a novel road structure-based loss function was
applied to cross-entropy loss to yield a weight map by using the minimum Euclidean distance of
every pixel to the road section and to model the road geometric structure. The Massachusetts road
dataset, including 1172 images randomly divided into 49, 14, and 1108 images for testing, validation,
and training, respectively, was used to calculate the proposed technique. Efficiency measures, namely, F1
score, recall, precision, and accuracy, were calculated for comparison, which were 66.2%, 72.9%, 60.6%,
and 92.4%, respectively. The outcomes proved that the suggested model could extract roads effectively
and achieve better accuracy compared with other existing road segmentation methods. However,
postprocessing was needed to improve results. The link to download the public Massachusetts dataset
and CNN code can be found in the online version, at https://www.cs.toronto.edu/~{}vmnih/data/,
https://github.com/AhmedAhres/Satellite-Image-Classification.

Alshehhi et al. [48] implemented a patch-based CNN model for extracting road and building
parts simultaneously from remote sensing imagery. Global average pooling was replaced with fully
connected layers to consider a medium of feature maps from the final convolutional layer. Furthermore,
the authors implemented a simple linear iterative clustering method during postprocessing to integrate
CNN features with low-level features, such as the compactness and asymmetry of buildings and roads.
This process integrated ungrouped areas of buildings and connected–disconnected road parts, as well
as improved the performance of the proposed method. The Massachusetts dataset, including 10 images
for testing, 137 images for training, and 4 images for validation, and the Abu Dhabi dataset with a
0.5 m spatial resolution per pixel, including 30 images for testing, 150 images for training, and 30
images for validation, were used for the evaluation. The authors used prevalent measure correctness to
calculate the performance of the suggested approach, which was 91.7% for the Massachusetts dataset
and 80.9% for the Abu Dhabi dataset. The results showed that the approach was effective in road
and building extraction. However, further processing was needed to determine boundaries precisely.

https://www.cs.toronto.edu/~{}vmnih/data/
https://github.com/AhmedAhres/Satellite-Image-Classification
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Liu et al. [49] presented an approach for road centerline extraction from high-resolution remote sensing
imagery that comprised four major stages. First, a CNN model was used to classify aerial images and
learn features from raw images. Second, edge-preserving filtering was applied to the classified images
with the original images to exploit road edges. Third, multidirectional morphological and shape
feature filtering was used during postprocessing to obtain trustworthy roads. Finally, an integrated
Gabor filter model and multiple directional nonmaximum suppression were applied to extract road
centerlines. The suggested method was applied to two datasets, namely, the EPFL dataset and the
Massachusetts road dataset. Three accuracy measures, namely, completeness, which was 95.40%;
correctness, which was 89.97%; and quality, which was 86.21%, were used to quantify the performance,
which indicated the advantage of the proposed method for road centerline extraction. However,
certain centerlines were not single-pixel wide in the proposed method. Li et al. [50] employed a
model based on a CNN to extract roads from high-resolution satellite imagery. First, a CNN model
was applied to allocate labels to every pixel and anticipate the possibility of each pixel relating to
road sections. Second, a line integral convolutional-based method was executed to maintain edge
information, conjoin tiny gaps, and soften a rough map. Finally, several image-processing operations
were implemented to acquire road centerlines. The authors used images from the Pleiades-1A satellite,
with a spatial resolution of 0.5 m, and the Geoeye satellite to test their model. The completeness
indicator was 80.57%, the correctness indicator was 96.57%, and the quality indicator was 78.27%,
which showed that the proposed model achieved high precision for road extraction in terms of
correctness. However, completeness and quality percentages were low, which was related to the
complexity of the texture of various features in the images.

4.2. Road Extraction Based on the FCNs Model

Compared to the CNN model that utilizes a dense layer to achieve a fixed-length feature vector
and only accepts images with a fixed size, the FCNs model uses the interpolation layer after the final
convolutional layer to upsample the feature map and restore the similar input size, as well as accepts
input images of any size. In the FCNs, the final dense layers are replaced with convolutional layers
and then output is a label map. A general architecture of FCNs model is presented in Figure 4. In the
following, the previous research related to the FCNs model and road extraction are explained.
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Varia et al. [51] applied a deep learning technique, namely, the FCN-32 for extracting road parts from
extremely high-resolution UAV imagery. UAV-based imaging systems, which commonly use drones,
can be used for the real-time assessment of several applications, monitoring tasks, and large-scale
mapping, and are managed autonomously by onboard computers or remotely by human operators [52].
UAV-based remote sensing systems are used in various remote sensing applications, such as object
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recognition [53] and digital elevation model (DEM) generation [54]. Compared with traditional
remotely sensed systems, UAVs have multiple advantages, including improved security, high speed,
low cost, and high flexibility. In addition, improved details can be provided by high-resolution images
taken by drone systems for object extraction and detection. The suggested techniques were evaluated
on a UAV image dataset with 189 training and 23 test images. The training time for the FCN-32
was approximately 370 s per image. The authors evaluated quality, correctness, and completeness
assessment measures to show the models’ efficiency for road extraction and found that the proposed
models achieved satisfactory results. Moreover, they are effective for road extraction from UAV images.
However, the models misclassified nonroad areas as road areas in certain areas with high complexity,
thereby resulting in a large number of false negatives (FN) and reducing the percentage of completeness
and quality in the final output. The suggested models were highly dependent on the number of images
fed into them for training. Thus, they should be applied to many images with a large variety for better
training and improved accuracy.

Kestur et al. [55] presented a novel architecture based on the FCN called the U-shaped FCN
(UFCN) to extract roads from UAV images. The model was used on a UAV dataset with 109
images, approximately 70% of which were used for training and 30% for testing. The authors
applied data augmentation during the training step to increase dataset size efficiently to improve
training. The prediction took 1.95, 7.68, 43.87, and 1.09 s per image for UFCN, SVM, 1D-CNN,
and 2D-CNN, respectively. The 1D-CNN model was slower than the UFCN model because of
the computationally intensive architecture of the 1D-CNN network. Metric indicators, namely, F1
score, recall, precision, and overall accuracy, were calculated to assess classification performance,
which were 89.6%, 86.8%, 92.5%, and 95.2%, respectively. The authors also compared their model with
a two-dimensional CNN model, a one-dimensional CNN model, and an SVM model. They found that
the model outperformed all the aforementioned methods in terms of accuracy and prediction time.
Although the result achieved by the proposed model was promising, the dataset could be extended
over a large area to use the suggested method for road extraction from extremely high-resolution
remote sensing imagery. An FCN-8 network was proposed by [56] for road extraction from SAR
images. The method was implemented on the TerraSAR-X dataset with 20% for testing and 80% for
training. The experimental outcomes proved that the proposed model was able to extract the road part
accurately. The access link to the open source code of FCN models for satellite image segmentaion can
be found at https://github.com/Mattymar/satellite-image-segmentation.

4.3. Road Extraction Based on the Deconvolutional Neural Networks (Dense Net)

Deconvolutional networks struggle to extract hierarchical features from images that closely pertain
to a number of deep learning methods from the machine learning community. These models comprise
an encoder and decoder part, which a bottom-up mapping from the input image to the latent feature
space is provided by the encoder part while the latent features are mapped back to the input image
using the decoder part. A general architecture of deconvolutional networks is shown in Figure 5.
Following this, the previous works related to using deconvolutional models for road extraction from
remote sensing datasets are highlighted.

Panboonyuen et al. [30] presented a technique based on a modified deep encoder–decoder neural
network to extract road objects from remote sensing imagery. To improve the suggested model,
the authors enhanced certain phases of the suggested approach containing the incorporation of the
exponential linear unit (ELU) function against the rectified linear unit function. In addition, the authors
increased the number of training datasets by rotating images to eight different angles incrementally
and used a landscape metrics (LM) method to eliminate false road parts and improve the general
accuracy of the output. The designed model was tested on the Massachusetts dataset containing 49, 14,
and 1108 images for testing, validation, and training, respectively. The most common metrics, namely,
F1 score, recall, and precision, were also used for the performance evaluation, which gained 85.7%,
86.1%, and 85.4%, respectively. The results proved that the suggested approach yields satisfactory
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results and outperforms state-of-the-art approaches in road extraction from remote sensing imagery in
terms of performance metrics. Wang et al. [57] introduced a semiautomatic technique based on the
finite state machine (FSM) and DNN, including two main steps, namely, training and tracking, for road
extraction from high-resolution remote sensing imagery. In the training step, the model was trained
to recognize the pattern of an input image. To generate training samples, a vector-guided labeling
approach that elicited huge image-direction mates from available vector road maps and images was
defined. In the tracking step, a fusion strategy was used to detect the size of a detection window,
and the trained DNN was used to recognize extracted image patches. In general, the DNN was applied
to the proposed method to determine a pattern from complicated scenes, and the FSM was used to
control the behavior of trackers and translate identified patterns into states. The model was applied to
two datasets, namely, aerial and Google Earth images, which were divided into 60%, 20%, and 20%
for training, testing, and validation, respectively. Completeness, correctness, and quality percentage
indices were used for the performance assessment, which were 75%, 70%, and 74%, respectively,
thereby proving that the suggested method could effectively exploit road classes from high-resolution
remote sensing imagery in areas that were not highly complex. However, the proposed method could
not operate properly in extremely complicated positions where road and other occlusions roughly
contribute equal reflectance characteristics.Remote Sens. 2020, 11, x FOR PEER REVIEW  9  of  22 
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Panboonyuen et al. [58] developed a new enhanced deep convolutional encoder–decoder model
based on SegNet to segment road classes from high-resolution remote sensing imagery. A new
activation function, namely, the ELU, was incorporated into the model to improve accuracy. The LM
method was applied to remove falsely categorized road classes and identify road patterns. In the
final step, the authors used CRFs to sharpen extracted roads. The proposed model was applied to
two aerial and satellite datasets: (1) the Massachusetts dataset, including 1171 images divided into
1108, 14, and 49 images for training, validation, and testing, respectively, and (2) the Thailand Earth
Observation System (THEOS) dataset containing 855 satellite images. The authors used F1 score,
recall, and precision performance measures, which achieved 87.6%, 89.4%, and 85.8%, respectively,
for the Massachusetts dataset and 64.9%, 58.4%, and 75.1%, respectively, for the THEOS dataset.
The results indicated that the suggested approach outperforms other existing road segmentation
techniques. However, this framework only works on extremely high-resolution remote sensing
images, and distinguishing road sections from low- and medium-resolution remote sensing imagery
is challenging. Constantin et al. [59] introduced a modified U-net CNN for extracting road classes
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from high-resolution remote sensing imagery. The authors applied a novel binary cross entropy loss
function and Jaccard distance fusion to train the model to decrease the number of false positives
(FPs) and enhance the accuracy of binary classification. The proposed method was tested on the
Massachusetts dataset, including 49 aerial test images, 14 validation data, and 1108 training data,
with extra data augmentation to extend the dataset. For the accuracy assessment, overall accuracy,
F1 score, recall, and precision were calculated, which were 97.14%, 74.54%, 75.48%, and 74.15%,
respectively. Although the proposed model achieved a high accuracy of over 97%, its accuracy for
other parameters was low. Therefore, additional pre- and postprocessing operations are necessary to
improve the classification efficiency of the proposed approach for road extraction.

Zhang et al. [60] developed a deep residual U-net model similar to a U-net architecture for road
semantic segmentation from high-resolution remote sensing imagery. The proposed network was
designed based on residual units, which simplify network training. Rich skip connections were
also used inside the model, which allowed few parameters and facilitated information propagation
while achieving improved performance. The authors used their model on the Massachusetts road
dataset, including 1171 images divided into 49, 14, and 1108 images as the test, validation, and training
data, respectively. The authors compared the suggested model with the U-net model and two
other deep networks for road extraction and found that the suggested technique was more efficient
in extracting roads from high-resolution remote sensing imagery in terms of precision and recall.
However, the introduced approach could not identify road sections in parking lots and under
trees. Hong et al. [61] employed a method based on richer convolutional features (RCFs) for road
segmentation from high-resolution remote sensing imagery. The proposed model contains four
principal phases. (1) Training and testing samples were generated based on dataset preprocessing on
the main image. (2) The RCF network was trained on the training samples and implemented on the
testing images to generate strict road feature maps. (3) Autothreshold segmentation was applied to
remove nonroad information and produce a road binary map. (4) Finally, road sections were extracted
and vectorized. The authors applied their method on the Massachusetts road dataset, including 865
images. Four metrics, namely, precision, recall, F1 score, and overall accuracy, were used to determine
the capability of the proposed method for road extraction, which were 85.8%, 98.5%, 91.5%, and 96.3%,
respectively. Although the suggested approach achieved high accuracy for road class extraction from
high-resolution remote sensing imagery, it could not gain precise road width information owing to
combined pixel and model structure issues.

Xin et al. [62] applied the DenseUNet model for road extraction from remote sensing images.
The DenseUNet model included skip connection and dense connection units that facilitated the merging
of various scales by joints at different network layers. Two main datasets, namely, the Massachusetts
and Conghua datasets, were used to calculate model efficiency. The image resolution of the Conghua
dataset was 0.2 m and consisted of three red, blue, and green bands (RGB). A total of 47 aerial images
were used in this dataset, with each image consisting of 3× 6000× 6000 pixels. In this dataset, 80% of the
data were used for training and the remaining 20% were used for model validation. The Massachusetts
dataset was separated into 49 images, 14 data items, and 1108 data items for testing, validation,
and training, respectively. The authors used precision, recall, F1 score, Intersection Over Union (IOU),
and the Kappa coefficient to calculate the efficiency of the proposed method for road extraction.
The respective values were 78.25%, 70.41%, 74.07%, 74.47%, and 70.32% for the Massachusetts dataset
and 85.55%, 78.51%, 76.25%, 80.89%, and 80.11% for the Conghua dataset. The outcomes showed that
the suggested technique has the advantage of low noise and high precision.

Li et al. [63] suggested a new convolutional neural network called the Y-Net, which includes two
main fusion and feature extraction modules for extracting road parts from high-resolution remote
sensing imagery. A feature extraction module consisting of a deep downsampling-to-upsampling
subnetwork was introduced for semantic feature extraction, and a convolutional subnetwork without
downsampling was introduced for detail feature extraction. The authors applied a fusion module to
combine features for segmenting road classes. Moreover, the proposed technique was tested on the
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public Massachusetts dataset and a private dataset from the Jlin 1 business satellite. Both datasets were
split into a training dataset with 12,376 images, a validation dataset with 474 images, and a testing
dataset with 531 images. The authors calculated mean region IOU (mean IOU), the Dice coefficient,
mean accuracy, the Matthew correlation coefficient, and pixel accuracy for the accuracy assessment of the
proposed model, which were 77.09%, 85.58%, 82.53%, 71.56%, and 97.36%, respectively. The experiment
results showed the superiority and potential of the model for road semantic segmentation from remote
sensing imagery. However, the proposed approach possesses several road extraction limitations.
A small portion of the remote sensing imagery is occupied by a number of road pixels; thus,
class imbalance is a considerable dilemma in road segmentation, particularly in narrow road sections.
Thus, the method does not perform well in such areas. In addition, the proposed method requires
additional time for training, which could be reduced by introducing transfer learning and generative
adversarial network (GAN) fusion in the model, thereby improving accuracy. In general, deep learning
models can achieve high accuracy in road extraction from remote sensing imagery compared with
other machine learning approaches.

Cheng et al. [64] presented a new deep learning technique called the cascaded end-to-end
(CasNet) deep learning model for detecting road classes and extracting road centerlines from extremely
high-resolution remote sensing imagery. The suggested model includes two networks. The first is
for detecting road regions, and the second is for extracting road centerlines, which are cascaded to
the previous one and take full advantage of feature maps provided previously. The authors used a
thinning method to achieve a single-pixel width and smooth road centerline. The model was evaluated
on Google Earth images with 224 images. The Earth images obtained using Google Earth were in the
form of aerial or satellite images with RGB color and different spatial resolutions based on the data
source [47]. The dataset was randomly divided into 180, 14, and 30 images for training, validation,
and testing, respectively. Several regularization methods and data augmentation approaches were
applied to reduce overfitting and increase the size of the dataset. Classification metrics, namely, quality,
correctness, and completeness, were introduced to evaluate the road extraction performance of the
proposed model, which were 88%, 92%, and 94%, respectively. The results showed that the method is
effective for road centerline extraction and road detection. However, the proposed method does not
perform well in areas where roads are covered by tree occlusions. Therefore, additional high-level
semantic information is needed to improve the performance of the method and to extract obstructions
effectively. Xu et al. [65] used a new technique based on a densely connected convolutional network
(DenseNet) by introducing local and global road information to segment roads from high-resolution
remote sensing images. The method was applied to Google Earth data with a 1.2-m spatial resolution
containing 224 images. The authors calculated F1 score, accuracy, precision, and recall measurement
indicators for the accuracy evaluation, which were 95.72%, 96.3%, 96.30%, and 95.15%, respectively.
The results proved that the introduced technique is efficient for road extraction. The experiment results
were compared with other semantic segmentation methods, such as the DeepLab V3+, FCN, and U-net
models, and showed that the proposed method outperformed the others.

Buslaev et al. [66] developed a deep learning technique based on the U-net family to extract roads
from remote sensing imagery. The authors used an encoder similar to the RezNet-34 network, and a
decoder was used based on the vanilla U-Net decoder. The authors also produced a loss function that
considers binary cross-entropy and IOU simultaneously. In addition, data augmentation was used
to improve the performance of the method. The model was evaluated on a dataset collected by the
DigitalGlobe satellite, with a 50 cm pixel resolution and 6226 images. Furthermore, 1243 validation
images were provided to calculate the performance of the model. IOU was used as a metric for the
accuracy assessment of the suggested method, which was 64%, thereby indicating satisfactory results for
road extraction. However, the model can be further improved by preparing high-quality labeled masks
and amending data augmentation. Zhou et al. [67] introduced the D-LinkNet model for road semantic
segmentation from remote sensing imagery. The proposed model contains an encoder–decoder
structure, dilated convolution, and a pretrained encoder for extracting road sections. A dilated
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convolution is a beneficial alternative to pooling layers, which is a valuable kernel for expanding
and modifying receptive feature point fields and keeping detailed information, such as narrowness,
connectivity, and complexity, without reducing the resolution of feature maps. The proposed technique
was tested on the DigitalGlobe road dataset with 6226, 1243, and 1101 data items for training, validation,
and testing, respectively. The IOU metric was evaluated and showed that the method has road
extraction capabilities but retains several issues concerning road connectivity and recognition.

Doshi [68] applied an integrated model based on the ResNet and an inception-style encoder called
the residual inception skip net to extract roads from satellite images. The introduced model was
implemented on a dataset with a 0.5-m pixel resolution and 6226 images. The dataset was gathered
by DigitalGlobe satellites. The dataset was randomly divided into 85% and 15% for training and
testing, respectively. The IOU metric was calculated to assess the accuracy of the model, which was
61.3%, thereby showing that the suggested united method can generally exceed the two other baseline
approaches (i.e., U-Net and DeepLab). However, various postprocessing strategies, such as the use of
CRFs, can definitely promote and optimize the performance of the suggested method. Xu et al. [69]
applied a deep CNN based on deep residual networks to extract roads from WorldView-2 satellite
images. A Gaussian filter was first applied as a preprocessing operation to eliminate noise. Next,
the M-Res-U-Net model was introduced for road semantic segmentation. The authors calculated
precision, recall, and F1 score to assess the classification performance, which were 90.04%, 95.17%,
and 92.77%, respectively. The proposed method could extract road classes efficiently and achieve
improvements for the assessment factors. However, the approach did not perform well in certain areas
wherein objects such as cars and building roofs had similar colors and spatial distributions. The authors
generated ground truths using vector maps by setting a buffer in which all road areas with similar
widths affected the accuracy of the model. Therefore, generating trustworthy labels and considering
topological relationships could improve accuracy. Henry, Azimi, and Merkle [56] used DeepLabV3+

and Deep Residual U-Net to extract road sections from SAR images. The authors also used a control
variable and mean squared error in the training process over the spatial tolerance of the network to
promote the capability of the method. Each road was manually labeled, from major apparent highways
to minor detectable roads. The authors applied the proposed approaches on a TerraSAR-X dataset
with 80% for training and 20% for testing. For the accuracy evaluation, IOU, precision, and recall
indices were calculated, which were 45.46%, 71.69%, and 75.17%, respectively. The results showed that
though the FCNN models obtained satisfactory quantitative outcomes, the models missed multiple
road sections and predicted unanticipated features, such as forests and hills.

He et al. [70] implemented a transfer learning technique for road segmentation from high-resolution
remote sensing imagery. First, the authors applied a deep network based on an improved U-net model
for training. Second, cross-modal data were used to fine tune the first two layers of a pretrained network
to adjust the local features of the cross-modal data. An autoencoder was used to convert the data into
three bands and extract local features for the cross-modal data of various bands. For the evaluation,
the proposed method was tested on 6626 WorldView-3 images with a 0.5-m spatial resolution per
pixel. The images were split into 6035 and 591 images for training and testing, respectively. F1 score,
precision, recall, and IOU indicators were used to evaluate performance, which were 58.03%, 59.23%,
59%, and 42.03%, respectively. According to the results, the suggested model could extract road sections
efficiently but could not achieve high accuracy in complex environments where other objects exhibited
reflectances similar to road classes. Xia et al. [71] applied a DeepLab architecture for road extraction
from high-resolution satellite images. The authors first implemented a semiautomatic approach to
produce labeled data. A road benchmark was generated automatically then revised manually based
on the construction characteristics and road patterns built by the transportation industry. The authors
studied data influenced by color distortion as a type of road. Subsequently, they trained a DCNN
model with deep layers to learn different road attributes. The designed method was tested on a
GF-2 dataset, with spatial resolutions of 1 and 4 m for the panchromatic and multispectral scanners,
respectively. The experiment results illustrated that the suggested approach can recognize road
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classes from complicated positions with an accuracy of more than 80% in indistinguishable regions.
However, smoothness estimation for curved lines is not successfully achieved by the proposed
approach. Gao et al. [72] introduced a new framework called the refined deep residual CNN to
extract roads from high-resolution satellite imagery. The proposed method comprises two main units,
namely, residual connected and dilated perception units. The authors applied a postprocessing step
based on a tensor-voting technique and math morphology to incorporate split roads and promote
the performance of the proposed model. The suggested method was implemented on two datasets:
(1) Massachusetts road images with a 1-m spatial resolution per pixel, including 60, 6, and 10 images for
training, validation, and testing, respectively, and (2) GF-2 road images with a 0.8-m spatial resolution
consisting of 60, 16, and 10 images for training, validation, and testing, respectively. The authors
calculated IOU, accuracy, recall, precision, and F1 score indicators to assess the quantitative performance
of the suggested approach, which were 65.91%, 98.10%, 77.94%, 83.88%, and 80.58%, respectively.
The experimental results confirmed the efficiency advantage of the proposed technique for road
extraction from remote sensing imagery. However, further processing is needed to achieve high
accuracy in outline boundaries and complex urban areas. Xie et al. [73] applied a new road extraction
method using a high-order spatial information global perception framework (HsgNet), which uses
LinkNet as its basic network and embeds a middle block between encoder and decoder. The middle
block learns to maintain various feature dependencies and channels’ information, long-distance
spatial relationship and information, and global-context semantic information. They implemented
the proposed model on the DeepGlobe dataset that consists of 622 test images, 622 validation images
and 4971 training images with spatial resolution of 0.5 m and image resolution of 1024 × 1024,
as well as the SpaceNet dataset that includes 567 test images and 2213 training images with image
resolution of 512 × 512. For evaluating the performance of the proposed method for road extraction,
they calculated measurement metrics such as precision, recall, F1 score and IOU that obtained 83%,
82%, 71.1%, and 71.1%, respectively, for the DeepGlobe dataset and 81.6%, 84.5%, 83%, and 71%,
respectively, for the SpaceNet dataset. The experimental results showed that the suggested model
performed well for road extraction from high-resolution remote sensing imagery. The links to download
the public datasets and official code repositories of aforementioned deep learning models can be
found in the online version at https://github.com/robmarkcole/satellite-image-deep-learning; https:
//github.com/jeradhoy/DeepSatelliteData, https://github.com/divamgupta/image-segmentation-keras.

4.4. Road Extraction Based on the GANs Model

GANs comprises two main generative and discriminator models, in which the generative term
tries to obtain the data dispensation and the discriminator part tries to determine the likelihood that a
representation refers to training data instead of being created by a generative model [74]. The generic
architecture of GANs model is presented in Figure 6. In this section, previous work related to applying
the GANs model for road segmentation is highlighted.

Costea et al. [75] presented a new method named dual-hot generative adversarial networks
(DH-GAN) to detect intersections and roads from UAV images at the higher semantic level of road
graphs during the first step. Then, they applied a smoothing-based graph optimization method for
pixelwise road segmenting and finding the road graph. They used F1 score, precision, and recall
for evaluating the performance of the model, which were 86%, 89.84%, and 82.48% that proved the
efficiency of the proposed model for road extraction, and also was able to minimize the memory costs.
Varia, Dokania, and Senthilnath [51] applied the GANs model for road extraction from UAV images.
They used the U-Net model for the generator part and the model was trained on 189 UAV images and
evaluated on 23 test images. The training took 300 s per image for GANs-UNet. They achieved an
accuracy of 96.08 for the F1 score, which shows that the proposed model was more efficient for road
extraction from UAV images. Shi, Liu, and Li [74] implemented the GANs model for attaining a smooth
road segmentation map from Google Earth images with 550 images: 320 images were used for training,
100 images for validation, and 130 images for testing. They also used data augmentation procedures to
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increase the size of the dataset. An encoder–decoder SegNet model was used for generative part to
generate a high-resolution segmentation map. The accuracy that they achieved for recall, precision,
and F1 score was 91.01%, 88.31%, and 89.63%, respectively, that shows the superiority of the proposed
model for road extraction. The access link to the GANs model code for image segmentation can be
found at https://github.com/eriklindernoren/Keras-GAN/tree/master/pix2pix.Remote Sens. 2020, 11, x FOR PEER REVIEW  14  of  22 
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5. Discussion

Several deep learning techniques have been suggested for extracting road classes from
high-resolution remote sensing imagery. However, demands to obtain improved precision for
segmented road outcome sets remain. Compared with other machine learning methods, deep learning
techniques have shown notable development in object segmentation from images. However,
their efficiency in road extraction can be scaled based on the processing power, model complexity,
and the size of the training data. This review of existing research proves that compared with other
machine learning and traditional techniques, deep learning methods have obtained higher precision in
extracting road parts from high-resolution remote sensing imagery.

Based on previous studies, we categorize all the CNNs into four main models: the patched-based
CNN model [40]; the FCN-based model [76,77]; deconvolutional net-based models, such as U-Net [78],
SegNet [79], and DeepLab [80]; and the GAN-based model [81]. GANs contain two sections called the
generator and discriminator parts, which have recently gained considerable attention [82]. The generator
part struggles to make fake images from realistic ones, whereas the discriminator part strives to identify
feigned images from actual images. Finally, dynamic balance can be achieved by the two parts,
and an image can be segmented by the generator portion. In FCN models, each pixel can be inferred
end-to-end by examining the patch-to-pixel anticipation. In these models, convolutional layers are
replaced by final dense layers in which the output of the label map is the last convolutional layer.
Deconvolutional net-based models are identified by deconvolutional layers, which are called decoder
sections. Finally, the image block around a pixel can be used to train and anticipate input in the
patch-based CNN model. The throughput outcomes of the aforementioned studies have shown that
the deconvolutional networks are the most popular models that most of the researchers apply for the
purpose of road semantic segmentation from high-resolution remote sensing imagery. We elaborate
on the advantages and disadvantages of the discussed approaches to develop a general comparison
(Table 1).

Table 1 shows that each model has its own limitations and strengths. For example,
simple interpolation is utilized in the upsampling of the FCN models, thereby causing the models
to achieve low precision. However, pixel-to-pixel reasoning can be obtained as well as end-to-end
can be learned by FCNs inspired by CNN-based models that need expansive samples, ignore the

https://github.com/eriklindernoren/Keras-GAN/tree/master/pix2pix
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correlation among neighboring pixels, and require a high processing step to recognize precise road
boundaries. While FCNs models encounter problems with road connectivity and cannot make
smoothness predictions for curved lines as well as the segmentation map encounters with low spatial
constancy, the DeconvNet model can obtain higher spatial precision and contains high adaptability
compared with FCNs, as the former uses low-level information in deconvolutional layers. However,
a large amount of storage and memory as well as a high computing process is required for applying
this model. By contrast, the GANs model is more efficient because this model can achieve a constant
segmentation map with road boundary information. However, the model encounters problems with a
lack of convergence, gradient destruction, and complex training.

Table 1. Strengths and limitations of various deep learning methods for road extraction.

Approaches Complexity Output Smoothness

Models based on GANs

• Model breakdown and lack
of convergence for complex
and large data

• Complex training

• Efficient and robust
• Provide constant output

• Capable of achieving
boundary information and
smooth segmentation map

Models based on CNNs

• Require few parameters
• Require extensive samples
• Low computing process

• Not highly efficient in
providing constant output

• Do not perform well in highly
complex positions

• Ignore thecorrelation among
neighboring pixels

• Attain pixel-to-pixel reasoning

• Require high processing to
identify boundaries and
create a smooth
segmentation map

Models based on FCNs

• Low adaptability with
complex data and depend
on images and masks
for training

• Issues with road connectivity
• Low position accuracy, lack of

spatial consistency

• Cannot successfully
achieve smoothness
estimation for curved lines

Models based on
deconvolutional nets

• Require large amounts of
memory and storage

• Require additional time for
training and high
computing process

• High spatial accuracy
• Efficient and robust for

achieving consistent output

• Able to obtain a smooth
segmentation map

In addition, we attempt to compare the accuracy of different deep learning models applied to
remote sensing datasets based on the common metrics [83] used to evaluate the efficiency of the
proposed approaches for road extraction. Popular evaluation measures are calculated based on a
confusion matrix comprising four main factors, namely, false negative (FN), true negative, true positive,
and FP [83,84]. A general comparison of all the methods used in all datasets is provided to elaborate
on the most efficient technique for road extraction (Figure 7). All the aforementioned works and
corresponding values are plotted using an x-axis and y-axis, respectively. Only the methods that
include a dataset and research performance reports are compared.

We consider the F1 score metric, which is a trade-off measure between recall and precision,
to compare the results achieved by different deep learning models for road extraction, except for
the models such as U-Net, D-linkNet, and RISN applied to the DigitalGlobe satellite images, as the
authors utilized only the IOU indicator for the performance evaluation. However, this indicator is
only approximately 65% and does not demonstrate high precision. Figure 8 shows that the F1 score
percentage is high for the GANs-UNet model, DenseNet method, and FCN-32 applied to UAV and
Google Earth images, with accuracies of 96.08%, 95.72%, and 94.59%, respectively. One of the elegant
fully convolutional neural networks named U-Net model was used for a generative model in the
GANs framework to create a high-resolution segmentation map with more accuracy. Also, the model
was applied on UAV images that consist of very high spatial resolution with a variety for the angle of
capture, color, shapes, and orientation, which lead to achieving a highly precise road segmentation
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map compared to the other deep learning models. Figure 8 illustrates the results achieved for road
segmentation from UAV images (Figure 8a,b) with image dimension of 128 × 128, Google Earth images
(Figure 8c) with a spatial resolution of 1.2 m and image dimension of 256 × 256, and the Massachusetts
dataset (Figure 8d) with a spatial resolution of 1 m and image dimension of 375 × 375, by using
the FCN-32, GANs-UNet, DenseNet, DeepLab V3+, CNN, and RSRCNN methods. The first and
second columns are original and ground truth images, while the third and fourth columns depict the
results achieved by the state-of-the-art methods. As it can be seen from Figure 8, the GANs model
applied on UAV images performed better and predicted less FP and FN pixels when compared to other
methods. Also, a smooth segmentation map with more details of boundary information is attained by
the proposed model. In contrast, the CNN model applied on the Massachusetts dataset was unable to
achieve high accuracy in road extraction compared to the RSRCNN method that was applied on the
same dataset. The extracted road parts by CNN has a significant issue of fuzzy boundaries and “salt
and pepper” phenomena because the CNN model only counts on texture and spectral features; the
mixed pixels in road borders lead to misclassification while the other methods improve the classification
performance by restraining the effect of mixed pixels by the segmentation process. In the models such
as DenseNet and GANs, road features are extracted from every convolutional layer and then integrated
on multiscales. Multiscale merging of road features not only uses high-level semantic information
to avoid influence of width changes, curvatures, and shadows to achieve precise road boundaries,
but also utilizes low-level information to preserve detailed information of road features. As a result,
the CNN model predicted more nonroad pixels that lead to extract larger road parts compared to the
reference map with low accuracy.
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6. Conclusions

Spatial data, especially for road networks, should be updated regularly owing to rapid changes in
artificial and natural features. Providing road data using traditional methods is ineffective, as such
approaches are costly and time consuming. By contrast, extracting road types using advanced remote
sensing technologies can be economically and practically efficient. Numerous proposed methods
for road extraction and road data updates using remote sensing images are described in this review.
In this research, we discover that most studies concentrate on using powerful methods to overcome
constraints. Therefore, the development of advanced machine learning methods, such as deep CNNs,
for feature segmentation and extraction from remote sensing images has encouraged researchers to
apply such models to extract road networks from high spatial resolution remote sensing imagery,
owing to the considerable efficiency of deep convolutional approaches in different applications.



Remote Sens. 2020, 12, 1444 18 of 22

Although the methods utilized for road extraction used different data, this study can provide the
following important outcomes.

1. The capabilities of deep learning methods for road extraction are more effective than those of
regular approaches.

2. When the complexity of images is high and various road types are present, the accuracy of the
models is low. Therefore, mixing robust pre- and postprocessing techniques is recommended and
useful to achieve satisfactory results.

3. The appropriateness of deep learning approaches for road extraction pertaining to different
variables, such as architecture, data, and hyperparameters, is determined.

4. The low efficiency of the proposed methods in terms of data quality, training dataset, and model
hyperparameters is presented.

5. Occlusions, such as shadows, cars, and buildings, are similar to road features, such as colors,
reflectance, and patterns. Road extraction remains challenging owing to such issues.

6. Further research is required to build detailed techniques with high precision. CNNs trained by
one dataset may be inconsistent with other scenes. Nonetheless, if training datasets are adequate
and a deep learning model can be created effectively, then the model can be implemented properly
on most prevalent datasets.

In this review, state-of-the-art deep convolutional models that represent common and newly
advanced methodologies are described. In conclusion, introducing several new methods related to road
semantic segmentation is important, and research on different proposed techniques with cutting-edge
technology is increasing.
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