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Abstract: Soil mineralogy can be used to study changes in the environment affecting the soil surface,
such as dust from the desert through Aeolian processes, which is one of the sources that determine
the mineral nature of the soil. Ground- and field-based hyperspectral longwave infrared images,
acquired before and after dust dispersion on the soil surface, were processed and analyzed by
applying a procedure for determining soil surface mineralogy from the emissivity spectrum, using
two indices—SQCMI (the Soil Quartz Clay Mineral Index) and SCI (the Soil Carbonate Index)—to
identify changes in the abundance of quartz, clay minerals and carbonates on the surface, caused
by the settling dust particles. Mineralogical changes were identified, depending on the mineral
composition of the dust compared to the soil surface mineralogy.

Keywords: hyperspectral remote sensing; longwave infrared image; emissivity spectrum; soil
mineralogy; desert dust

1. Introduction

Soil mineralogy, which holds important information on soil origin and development, can be used
to study changes in the environment affecting the chemo-physical properties of the surface. Dust from
the desert, through Aeolian processes, is one of the sources that determine the nature of the soil; the
settling dust particles are one of the major sources of soil mineral nutrients, especially in arid and
semiarid regions [1,2]. The most common minerals in soils, as well as in desert dust particles, quartz,
clay minerals, and carbonates, present with fundamental spectral features in the thermal infrared,
mainly in the longwave infrared (LWIR, 8–12 µm) region, due to the fundamental vibration modes of
the silicon–oxygen bond (Si–O) in quartz and clay minerals, and the carbon–oxygen bond (C–O) in
carbonates. Hyperspectral remote sensing in the LWIR region, a useful tool for mineral mapping [3–8],
can be used to determine the content of these minerals in the soil surface and identify changes in
their abundance. In a previous study [9], we developed a procedure for determining soil mineralogy
using LWIR images. The emissivity spectra of tens of soil samples were calculated and analyzed to
identify mineral-related emissivity features and their relative intensities. Two created indices—SQCMI
(Soil Quartz Clay Mineral Index), indicating the amount of quartz relative to clay minerals, and SCI
(Soil Carbonate Index), indicating the concentration of carbonates in the soil—enabled us to determine
the mineralogy, from more to less abundant, in each soil sample. Pursuant to those results, we applied
the procedure to ground- and field-based hyperspectral LWIR images to study the ability to identify
changes in the abundance of quartz, clay minerals and carbonates in the soil resulting from the
dispersion of desert dust-like materials on the surface, and to assess the interaction of the soil surface
with desert dust particles.
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2. Materials and Methods

Ground-based images of soil samples, collected from the surface (0–5 cm depth) at different sites
in Israel, were acquired with the Telops Hyper-Cam sensor [10], located at a distance of about 2 m from
the samples, covering the LWIR spectral region (8.0–11.7 µm) with 122 bands and a spectral resolution
of 4 cm−1. After a first LWIR image was acquired (Figure 1), desert loess soil, a sediment formed by the
accumulation of Aeolian dust particles (e.g., [11]), was dispersed on the surface of each soil sample
and a second LWIR image was acquired. The emissivity spectrum of each soil sample was calculated
as described in [9], and then the SQCMI and SCI values of each sample, without and covered with the
desert loess soil (henceforth dust_1), were calculated according to Equations (1) and (2). These values
were used to study whether and how the settled particles affect the mineral-related spectral features
and, therefore, the determination of quartz, clay minerals, and carbonates contents in each soil sample.

SQCMI = Nελ = 9.56 µm/(Nελ = 8.21 µm x Nελ = 8.85 µm) (1)

and,
SCI = Nελ = 11.24 µm x Nελ = 10.51 µm/Nελ = 8.85 µm (2)

where Nε is the normalized emissivity value at the indicated wavelength (λ). In general, a larger
SQCMI value indicates a higher amount of quartz relative to clay minerals; a smaller SCI value
indicates a higher concentration of carbonates in the soil sample [9]. In addition, two other desert loess
soils (henceforth dust_2 and dust_3) and dune sand, with different mineral contents, were dispersed,
separately, on the surface of a loess soil sample.
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Figure 1. Red-green-blue (RGB) image (a) and longwave infrared (LWIR) image (band 10.62 µm) (b) of
soil samples (each placed on a 0.04 m2 plate) and a gold plate (gray dashed square), measuring the
downwelling radiance (used to calculate the emissivity spectrum of each soil sample, as described
in [9]); emissivity spectra of selected soil samples (colored squares) are shown in the next section
(with respective colors).

To identify regional-scale mineralogical changes on the soil surface, field campaigns were
conducted in two study areas, consisting of agricultural fields with different soil types (Figure 2).
In each area, after a first LWIR image was acquired, desert dust-like materials (henceforth dust) were
dispersed on the surface, and then a second LWIR image was acquired and the emissivity spectrum of
each pixel was calculated, resulting in before- and after-dust-dispersion emissivity images. Then, the
SQCMI and SCI values of each pixel in each image were calculated as described above, resulting in
before- and after-dust-dispersion SQCMI and SCI images.
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values and mineralogy of each soil sample and dispersed dust are given in Table 1.  

Figure 2. (a) and (c) RGB images of the two study areas; gold plate (gray square) and aluminum foil
signs (delimiting 1-m2 regions in which dust-like materials were dispersed) were placed in each area.
(b) and (d) Respective LWIR images (band 10.62 µm); the sensor was located at a distance of 3 and 8 m
from points A and B, respectively, resulting in a spatial resolution of 0.5 and 1 cm, respectively.

3. Results and Discussion

3.1. Ground-Based Data

Calculated emissivity spectra of the soil samples are shown in Figure 3; the resulting index values
and mineralogy of each soil sample and dispersed dust are given in Table 1.

Table 1. Spectral indices and mineralogy of soil samples and dispersed dust.
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1 Determined according to [9]; Q, quartz; CM, clay minerals; C, carbonates. SQCMI (Soil Quartz Clay Mineral
Index). SCI (Soil Carbonate Index).
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Figure 3. (a) Emissivity spectra of soil samples; each spectrum is the average of tens to hundreds of
pixels in the image. (b) and (c) Normalized emissivity spectra (continuum removal normalization in
specific spectral ranges [12]), of the soil samples emphasizing mineral-related absorption features of
quartz and clay minerals (b) and carbonates (c), as described in [9]; gray dashed lines indicate the
wavelengths mentioned in Equations (1) and (2).

The effect of settling dust_1 on the soil surface mineralogy is shown in Figure 4. The addition of
carbonates-rich dust_1 (lowest SCI value, Table 1) resulted in decreased SCI values, expressing the
increase in the amount of carbonates, in all soil samples except for the carbonate-rich 5/brown desert
skeletal soil (Figure 4b). Changes in the amount of quartz relative to clay minerals were noticed mainly
in the clay minerals-rich 6/terra rossa soil (increased SQCMI value, indicating an increase in the relative
amount of quartz), and in the quartz-rich 1/loess soil (decreased SQCMI value, indicating a decrease
in the relative amount of quartz). The addition of quartz-rich dust_2 to the surface of 1/loess soil
resulted in similar, but smaller, mineralogical changes compared to the addition of dust_1, expressed
by negative ∆SQCMI and ∆SCI values (Figure 5), where ∆ is the difference between after and before
the dust dispersion. On the other hand, addition of dust_3 or dune sand, which are very rich in quartz
(Table 1), to the surface of 1/loess soil resulted in an increase in the relative amount of quartz and a
decrease in the amount of carbonates, expressed by positive ∆SQCMI and ∆SCI values (Figure 5). All
in all, the identification of mineralogical changes depended on the mineral composition of the dust
compared to the soil surface mineralogy.
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Figure 4. Soil Quartz Clay Mineral Index (SQCMI) (a) and Soil Carbonate Index (SCI) (b) values of soil
samples: without dust_1 (empty circles), and covered with 50 g m−2 dust_1 (filled circles); x represents
the index values of dust_1.Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 10 
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Figure 5. ∆SQCMI (a) and ∆SCI (b) values resulting from the dispersion of 50 g m−2 (small triangles)
and 100 g m−2 (big triangles) of dust_1 (blue), dust_2 (green), dust_3 (orange) and dune sand (red) on
the surface of 1/loess soil; x-axis offset for clarity.

3.2. Field-Based Data

The mineral composition of the soil surface in each study area, as determined from the emissivity
image before dust dispersion, is given in Table 2. Dividing the after-dust-dispersion emissivity image
by the before-dust-dispersion image and applying the spectral angle mapper (SAM) algorithm [13,14]
to the resultant divided image, with a unity spectrum as the endmember spectrum (representing
“no change” between the two images), enabled detecting changes on the surface (Figures 6a and 7a,b)
resulting from settling of the dust particles. Note that the addition of dust_1, with different mineralogy
than the brown alluvial soil, is more noticeable than the addition of dust_2, despite the former’s smaller
amount (50 g m−2 and 250 g m−2, respectively, Figure 6a). On the other hand, the addition of dust_2
to the surface of the loess soil, with different mineralogy, is noticeable (Figure 7a, b). Once a change
was detected, its mineral nature was determined by comparing the index values after and before dust
dispersion, giving ∆SQCMI and ∆SCI images (Figure 6b,c and Figure 7c–f). The addition of dust_1
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to the surface of the brown alluvial soil resulted in negative ∆SCI values, indicating an increase in
the amount of carbonates (Figure 6c). The addition of dust_2 to the surface of the loess soil resulted
in negative ∆SQCMI and ∆SCI values, indicating a decrease in the relative amount of quartz and an
increase in the amount of carbonates, respectively, (Figure 7c–f), whereas the addition of dust_3 or
dune sand resulted, in both study areas, in positive ∆SQCMI and ∆SCI values, indicating an increase
in the relative amount of quartz and a decrease in the amount of carbonates, respectively.

Table 2. Spectral indices and mineralogy of soil surface.

Study Area Soil Type SQCMI 1 SCI 1 Mineralogy (More to Less Abundant)

Brown alluvial 1.019 ± 0.007 1.003 ± 0.008 Q C CM
Loess 1.038 ± 0.010 1.026 ± 0.011 Q CM C

1 Each value is the average ± standard deviation of all soil pixels in the image.
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Figure 6. (a) Spectral angle mapper (SAM) algorithm rule map of the brown alluvial soil study area
emphasizing changes on the surface resulting from the dispersion of 50 g m−2 dust_1 (region 1),
250 g m−2 dust_2 (region 2), 250 g m−2 dust_3 (region 3) and 250 g m−2 dune sand (region 4); a larger
angle (θ) indicates bigger changes on the surface. ∆SQCMI (b) and ∆SCI (c) images; blue color in (b)
and (c) represents ∆SQCMI and ∆SCI ≈ 0, i.e., no mineralogical changes. The non-homogeneity of θ,
∆SQCMI and ∆SCI values within a region, resulting from the dispersion procedure, emphasizes the
sensitivity for detecting local mineralogical changes in the soil surface.
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Figure 7. SAM algorithm rule map (a), ∆SQCMI image (c) and ∆SCI image (e) of the loess soil study
area emphasizing changes on the surface resulting from the dispersion of 100 g m−2 dust_2 (region 1),
100 g m−2 dune sand (region 2) and 50 g m−2 dune sand (region 3). SAM algorithm rule map (b),
∆SQCMI image (d) and ∆SCI image (f) resulting from the dispersion of 250 g m−2 dust_2 (region 1),
250 g m−2 dune sand (region 2) and 50 g m−2 dune sand (region 3); green color in (c)–(f) represents
∆SQCMI and ∆SCI≈0, i.e., no mineralogical changes.
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4. Conclusions

We demonstrate the ability to identify mineralogical changes in the soil resulting from dispersion
of desert dust-like materials on the surface, applying a procedure that we developed previously [9].
Ground- and field-based hyperspectral LWIR images, acquired before and after dust dispersion on the
soil surface, were used to calculate the SQCMI and SCI values and identify mineralogical changes in
the amount of quartz relative to clay minerals, and the amount of carbonates in the soil surface. The
identification of mineralogical changes depended on the mineral composition of the dust compared to
the soil surface mineralogy, and the amount of settling dust.

The mapping of soil mineral abundance and monitoring of mineralogical changes resulting from
settled desert dust aerosols are of interest on a regional scale. Acquiring field and/or airborne LWIR
images, before and after a significant dust event, and applying the developed procedure, will yield the
best assessment of the interaction of the soil surface with desert dust aerosols. Moreover, the procedure
can be used to study the mineralogical effects of other processes, natural and unnatural, affecting the
soil surface.
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