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Abstract: With the development of deep learning technology, an enormous number of convolutional
neural network (CNN) models have been proposed to address the challenging building extraction
task from very high-resolution (VHR) remote sensing images. However, searching for better CNN
architectures is time-consuming, and the robustness of a new CNN model cannot be guaranteed. In
this paper, an improved boundary-aware perceptual (BP) loss is proposed to enhance the building
extraction ability of CNN models. The proposed BP loss consists of a loss network and transfer
loss functions. The usage of the boundary-aware perceptual loss has two stages. In the training
stage, the loss network learns the structural information from circularly transferring between the
building mask and the corresponding building boundary. In the refining stage, the learned structural
information is embedded into the building extraction models via the transfer loss functions without
additional parameters or postprocessing. We verify the effectiveness and efficiency of the proposed
BP loss both on the challenging WHU aerial dataset and the INRIA dataset. Substantial performance
improvements are observed within two representative CNN architectures: PSPNet and UNet, which
are widely used on pixel-wise labelling tasks. With BP loss, UNet with ResNet101 achieves 90.78%
and 76.62% on IoU (intersection over union) scores on the WHU aerial dataset and the INRIA dataset,
respectively, which are 1.47% and 1.04% higher than those simply trained with the cross-entropy loss
function. Additionally, similar improvements (0.64% on the WHU aerial dataset and 1.69% on the
INRIA dataset) are also observed on PSPNet, which strongly supports the robustness of the proposed
BP loss.

Keywords: remote sensing images; deep learning; convolutional neural networks; building extraction;
boundary-aware perceptual loss

1. Introduction

In recent years, deep neural networks, especially convolutional neural networks (CNNs), have
been widely used in remote sensing areas. They perform incredibly on visual tasks such as scene
classification [1,2], change detection [3–5], artificial object detection [6] and extraction [7,8]. Among
them, extracting buildings, as a set of the most important artificial objects from very high-resolution
(VHR) images, is challenging and draws attention from remote sensing communities. Similar to the
semantic segmentation task, building extraction is also a low-level pixel-wise labelling task aiming to
classify each pixel into a building/no building class. It is the foundation for high-level tasks such as city
planning [4,9] and population evaluation [10]. For pixel-wise labelling tasks, the fully convolutional
network (FCN) [11] is the most popular and classical deep learning model; however, the boundary
areas of the results predicted by the FCN model are always inaccurate and blurred. Early studies [12]
note that this problem is caused by the local features extracted in the lower layers of the FCN model
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being lost and replaced by semantic features that are extracted in the deeper layers. For building
extraction, this problem is more critical since the background and scenarios of the VHR remote sensing
image are much more complex and diverse, and the shape of the building is tremendously more
regular and sharper than that of the natural objects. Blur and inaccurate boundaries seriously affect
the quality of visual evaluation and further building vectorization [13]. To overcome this problem,
within the semantic information obtained with a deep CNN model, some researchers have attempted
to fuse multisource images such as lidar images, SAR images, and DEM images. to enhance the
structural information into CNN-based models for better building boundary performance [4,7,14,15].
However, the effectiveness of structural information embedding heavily relies on the quality of extra
multi-resource images.

Many works focus on designing CNN architectures with better feature extraction abilities.
Extending from the original FCN, the encoder–decoder architecture with jump connections is proposed
in UNet [16]. UNet consists of a pair of symmetrical encoders and decoders, and the features extracted
in the encoder are directly linked to the corresponding level of layers in the decoder. The UNet
architecture was initially designed for the medical segmentation task, which is also boundary sensitive.
After that, a number of works [17,18] extending from UNet have been proposed to extract buildings
from VHR remote sensing images. In addition to UNet, SegNet [19] proposed an index-preserved
pooling operation, which is beneficial for recovering local information in upsampling operations.
Recently, nested network architectures such as UNet++ and [20] WebNet [8] have been designed to
enhance the efficiency of feature transfer, which is helpful for extracting both the local and semantic
features. Another popular operation named dilated convolution [21] is widely used in building
extraction tasks to enlarge the receptive field of CNN models and obtain better long-range semantic
features without pooling operations. The further works PSPNet [22] and DeepLabV3+ [23] apply a
group of dilated convolution layers with different dilate rates to enrich the receptive fields and achieve
better structural and semantic accuracy.

Although the feature extraction ability improves as the number of novel CNN architectures
is proposed, the parameter amount also increases. For this, researchers have proposed some
parameter-free methods for performance improvements for pixel-wise labelling tasks. With a guide
map (generally the original image), DeepLabv1 [21] applies the densely conditional random field
(denseCRF) [24] to embed the structural information from the original input images. CRFasRNN [25]
further wraps the DenseCRF as a recurrent neural network (RNN) model and trains it together with
semantic segmentation pipeline networks end-to-end. The loss function, which is an indispensable
component of a deep learning system, also has the concern of researchers. Bertels et al. [26] attempted
to train UNet with different loss functions, such as L1 loss, Jaccard loss, Dice loss, and Lovasz loss, on
several medical segmentation datasets, and the results illustrate the critical roles of the loss functions
in pixel-wise labelling tasks. Additionally, some other researchers attempt to design boundary-aware
loss to enhance the performance of CNN models on the boundary areas. TernausNet [27] and
SegNet [19] build loss functions to focus the CNN models on pixels of the boundary area that pay more
“attention”. Nevertheless, loss functions such as Dice loss and Jaccard loss are designed and directly
optimized on metric scores such as intersection over union (IoU) and have no apparent improvements
on the boundary areas. The other loss functions, such as TernausNet [27] and SegNet [19], need
additional information and complex training schedules. Moreover, the loss functions mentioned above
only consider the per-pixel difference but ignore the difference in structural information. Structural
information, such as angles, straight lines, and curves, is crucial for building extraction. The importance
of the structural information is deeply researched in super-resolution and style transfer areas, where the
perceptual loss [28] function is a common method for embedding the structural information into a CNN
model. In general, the perceptual loss consists of a loss network and loss functions. The loss functions
are used to minimize the error in a feature space that is extracted by layers of the loss network. In most
cases, the loss network is a commonly used backbone network pretrained on the image classification
task, for example, VGG [29]. In the remote sensing area, methods based on perceptual loss are of less
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concern. To the best of our knowledge, the most related work was proposed by Chen et al. [30], where
a naive perceptual loss function was designed to enhance the performance of semantic segmentation.

With the inspiration of perceptual loss, we propose an improved boundary-aware perceptual
(BP) loss for the purpose of easily embedding the structural information into the building extraction
network in an elegant end-to-end fashion.

The main contributions of this paper are listed as follows.

1. We first propose an improved boundary-aware perceptual loss to refine and enhance the building
extraction performance of CNN models on boundary areas. The proposed BP loss consists of a
loss network and transfer loss functions. Different from other approaches, we design a simple
but efficient loss network named CycleNet to learn the structural information embeddings, and
the learned structural information is transferred into the building extraction networks with the
proposed transfer loss functions. The proposed BP loss can refine the CNN model to learn both
the semantic information and the structural information simultaneously without other per-pixel
loss functions such as cross-entropy loss. This character can prevent CNN models from the
conflicts of different loss functions and naturally achieve better building extraction performance.

2. We design easy-to-use and efficient learning schedules to train the loss network and apply the BP
loss to refine the building extraction network.

3. We execute verification experiments on the popular WHU aerial dataset [31] and INRIA
dataset [32]. With two representative semantic segmentation models (UNet and PSPNet),
we analyze the mechanisms of how the proposed BP loss teaches the building extraction networks
with the structural information embeddings. On both of these datasets, the experimental
results demonstrate that the proposed BP loss can effectively refine representative CNN model
architectures and apparent performance improvements can be observed on the boundary areas.

This paper is organized as follows. Section 1 introduces the methods for building extraction in the
remote sensing area. Section 2 reviews the concept of perceptual loss and describes the details of the
proposed BP loss and its train and refine schedules. In Section 3, the related verification experiments
and SOTA (state-of-the-art) comparisons are reported and discussed. Finally, we make our conclusion
in Section 4.

2. Proposed Method

2.1. Perceptual Loss

In this section, we simply review the priority of naive perceptual loss and introduce the overview
of the proposed BP loss. In general, the differences between the prediction and its ground truth are
evaluated by the per-pixel loss function in most of the deep learning models. As shown in Equation (1),
cross-entropy (CE) loss is one of the most popular loss functions where y and ŷ indicate the prediction
and the ground truth, respectively.

CE Loss(y, ŷ) = −
n∑

i=1

ŷlog(y) (1)

Apparently, CE loss just consider the similarities of y and ŷ, and not explicitly capture the structural
differences between the prediction and its corresponding ground truth. For example, consider two
highly similar building maps where one has sharp corners and the other map has curved corners;
despite their per-pixel similarity, they would be very different as measured by the difference in
structural information. The basic idea of perceptual loss is that the structural information can be
generated from high-level image feature representations extracted from pretrained CNN models.
As shown in Figure 1a, a perceptual loss for super-resolution involves a feed-forward loss network
pretrained on the image classification task and transfer loss functions to measure the difference in
content between images. Hence, the usage of perceptual loss includes two stages. In the training stage,
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the loss network is trained to learn the structural information, and the learned structural information is
embedded in the task-specific network via the transfer loss functions in the refining stage.
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Figure 1. (a) and (b) are the overviews of the classical perceptual loss for the super-resolution task and
the proposed boundary-aware perceptual (BP) loss for the building extraction task, respectively. In
(a), Xl and Xh are the low-resolution input image and its corresponding high-resolution prediction,
respectively, and X̂h is the ground truth of Xh. ln is the transfer function of the nth layer. In (b), X is the
input remote sensing image, and S and Gmask are the predicted building map and the ground truth of
the building map, respectively. The light blue and violet cubes represent the boundary block and mask
block in CycleNet. l represents the transfer loss functions.

In the perceptual loss, the information learned by the loss network depends on which task it is
trained for. The information learned from the image classification task is beneficial for super-resolution
tasks, but it does not work on building extraction tasks. Rather than information learned from the
image classification task, the structural information learned from the boundary extraction task has
been proven to be effective in improving the accuracy of boundary areas on semantic segmentation [30].
However, the SEMEDA loss proposed in [30] is time-consuming since it has to jointly work with
per-pixel cross-entropy loss to maintain the balance between extracting the structural information
and the semantic information. Additionally, the performance of SEMEDA loss heavily relies on the
hyper-parameter initializations. To overcome the problems above, the structural information and
the semantic information are extracted simultaneously through one loss network in the proposed BP
loss. The loss network is pretrained on a cyclical task: mask→boundary→mask; therefore, the loss
network is named CycleNet. Additionally, a series of transfer loss functions is designed in the BP loss
to measure the imbalance of positive samples in the building mask and boundary mask, the overview
of the proposed BP loss is shown in Figure 1b. The architecture of CycleNet and its training schedules
are described in Section 2.2. The schedules for applying the BP loss for boundary enhancements are
introduced in Section 2.3.
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2.2. CycleNet Architecture

In this section, we describe the architecture of the proposed loss network: CycleNet and the
schedule to train it. For further convenient analysis, we define the necessary symbolic representations
in priority. x is the VHR remote sensing image, which is the input of a building extraction network θ.
The input of CycleNet η is a building probability map SC×H×W

∈ [0, 1] predicted by θ, where C, H, and
W indicate the channel, weight and height of the probability map, respectively. The weights of θ and η
are Wθ and Wη, respectively. Gmask and Gboundary are the building ground truth and its corresponding
boundaries. Figure 2 shows the architecture of CycleNet. As shown in Figure 2, the architecture of
CycleNet is quite simple and is cascaded with two identical blocks: boundary block ∅ and mask block
ϕ. Each block has four 3 × 3 convolutional layers with ReLU activation layers sequentially, and the
channels of the feature maps extracted in every layer are 16, 16, 16, and 1. The outputs of the mask
block and boundary block are supervised with the building map and boundary map individually.
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Figure 2. Overview of the CycleNet architecture. The yellow rectangle represents the ReLU activation
layer. The other three colors of rectangles dedicate 3 different convolutional layers, and the padding
and stride are consistently set to 1. The kernel size of the convolution layer with the color of light blue,
red and green are 1 × 16 × 3 × 3, 16 × 16 × 3 × 3 and 16 × 1 × 3 × 3, respectively. The boundary map is
predicted from a building mask map through a boundary block, while the mask block map recovers
the boundary map back into the building mask map.

Unlike most of the perceptual loss approaches, we design a simple and shadow CNN model as
the loss network to learn the structural information rather than directly applying existing pretrained
backbone networks such as VGG-16 [29]. This is because learning the structural information from
a binary building map is much easier than learning the colorful image. In CycleNet, the structural
information is learned in boundary block by extracting the boundary map from the building map.
However, similar to the CRF-based method [25], embedding only the structural information loses the
semantic information. Thus, we design a symmetric mask block to maintain the semantic information
of the input building map. It should be mentioned that a network with four convolutional layers
cannot properly learn to generate the building map from a boundary map due to the limitation of its
receptive field. Linking the mask block at the tail of the boundary block can ensure that the semantic
information from the input building map is properly retained and transferred. A simple schedule is
proposed to train CycleNet: the ground truth of the building map and its corresponding boundary
map are utilized to jointly supervise the outputs of the last layers of the boundary block and the mask
block, respectively. The loss function here is the classical L1 loss, which is shown in Equation (2):

L1( y, ŷ) =
∣∣∣y− ŷ

∣∣∣ (2)

The definitions of y and ŷ are the same as those in Equation (1). Compared with the widely used
cross-entropy loss, L1 loss is more sensitive to the variation in the local information, which is critical to
learning the structural information. The softmax layer and batch norm layer are not involved in the
CycleNet since these operations would restrict the scale of feature values. For the same reason, the
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ReLU function is chosen as the activation function. The training procedure of the proposed CycleNet
can be simply formed as Equation (3):

Wη = argminWηL1
((

Gboundary, Gmask
)
, (∅4,ϕ4)

)
(3)

Training CycleNet is called the training stage of the proposed BP loss, which is specified in
Algorithm 1.

Algorithm 1 Training the CycleNet

Training Model:
CycleNe η
Input:
Ground Truth Building Mask Gmask
Ground Truth Building Boundary Gboundary
Output:
Parameter of CycleNet Wη

for epoch in Total Epoch:
(∅4,ϕ4 ) = η

(
Gmask, Gboundary

)
Wη = Wη −

∂
∂Wη

(L1
(
∅4, Gboundary

)
L1(ϕ4, Gmask))

End for

2.3. Transfer Loss Functions

In this section, we introduce the schedule of the refining stage by applying the proposed transfer
loss functions to enhance the building extraction performance with the structural information learned
in CycleNet. In this stage, the CycleNet in the proposed BP loss is just a feed-forward network, and
the parameter of CycleNet is fixed. Similar to the refining stage of the classical perceptual loss, the
ground truth Gmask and the predicted building map S from the building extraction network θ are
separately fed into the pretrained CycleNet η. With the input of S (Gmask), the extracted features
from the nth convolutional layer in both the boundary block and mask block are represented by ∅n,
ϕn (∅̂n, ϕ̂n), respectively, and n ∈ [1, 4]. The transfer loss functions are used to minimize the error
between ∅n, ϕn and ∅̂n, ϕ̂n. In most perceptual loss methods, naive per-pixel loss functions such as
cross-entropy loss or L1 are applied as transfer loss functions. However, with naive per-pixel loss,
the unbalance phenomenon of positive pixel samples in the building map and the boundary map
results in the situation that the structural information extracted from the boundary block cannot be
efficiently embedded into the pipeline network, which causes the CycleNet to regress into the mask
block only. Therefore, we design the weighted loss as a transfer loss function to balance the structural
information and semantic information from each block of the proposed CycleNet. Assuming that the
number of positive pixels in a building map and that of its corresponding boundary map are nm and
nb, respectively, the balanced weight ω is nb

nm+nb
, and the transfer loss functions in the BP loss can be

formed as Equations (4)–(7):

Trans f erLoss(s, Gmask) = (1−ω)
∑

L1(∅n, ∅̂n) +ω
∑

L1(ϕn, ϕ̂n) (4)

∅n,ϕn = η(s) (5)

∅̂n, ϕ̂n = η(Gmask) (6)

ω =
nb

nm + nb
(7)
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With the proposed transfer loss functions, the structural information can be easily embedded in
the pipeline network θ without semantic information loss. This procedure can be simply formed as
Equation (8):

Wθ = argminWηBPLoss(θ(x), Gmask) (8)

The schedule of the refining stage is specified as Algorithm 2.

Algorithm 2 Structural Information Embedding

Training Model:
Pipeline Network θ

Input:
VHR Remote Sensing Image x
Ground Truth Building Mask Gmask
Ground Truth Building Boundary Gboundary

Output:
Parameter of Pipeline Network Wθ

for epoch in Total Epoch:
s = θ(x)
Generate the balance weight: ω = nb

nm+nb

Wθ = Wθ −
∂

∂Wθ
Trans f er Loss(s, Gmask)

End for

In summary, the proposed BP loss consists of a loss network CycleNet and transfer loss functions.
CycleNet is trained to learn the structural information in the training stage through Algorithm 1. In the
refining stage, the structural information is embedded into the building extraction network through
Algorithm 2.

3. Experiments and Analysis

In this section, we conduct ablation experiments to demonstrate how the proposed BP loss learns
and embeds the structural information into building extraction networks. Within two representative
building extraction models, we compare the performances of the proposed BP loss with some other
popular loss functions. Additionally, we also evaluate the time cost to demonstrate the efficiency of
BP loss. Finally, we compare the UNet and PSPNet refined with the proposed BP loss with some
recent state-of-the-art (SOTA) building extraction models and report new SOTA results on two popular
building extraction datasets. All experiments are developed on NVIDIA GTX-Titan GPUs with 12
GB memories.

3.1. Study Materials

In this section, we detail the study materials of this paper in priority, which includes datasets,
boundary generated method and evaluation metrics.

3.1.1. Datasets

We conduct our experimental evaluations on two widely used and challenging datasets: the WHU
aerial dataset [31] and the INRIA image labelling dataset [32]. The WHU aerial dataset includes 8,189
RGB tiles sized 512 × 512 from New Zealand, and more than 187,000 buildings are well labelled in
this dataset. This dataset is officially divided into the training set, the validation set, and the testing
set, which consists of 4736 images, 1036 images, and 2416 images, respectively. The spatial resolution
of images in the WHU aerial dataset is 0.3 m (sampled from 0.075 m), and the whole dataset covers
an area of approximately 450 km2. There are over 220,000 buildings extracted from New Zealand
and all building labels in the WHU aerial dataset are generated by both the vector and raster maps
and are artificially aligned. Thus, these high-quality labels are reliable and suitable for evaluating the
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performance of the proposed method. Another applied dataset is the INRIA image labelling dataset.
Like the WHU dataset, the INRIA dataset has the same spatial resolution of 0.3 m. This dataset is
collected from five different cities, including Austin, Chicago, Kitsap County, Vienna, and West Tyrol.
There are 36 ortho-rectified 5000 × 5000 images covering 81 km2 for each region. Additionally, the five
areas cover abundant landscapes ranging from highly dense metropolitan financial districts to alpine
resorts. Following the official suggestions [32], we use 30 images (5th–36th) in every city for training
and the others for testing. Images in the INRIA dataset are seamlessly cropped into 18,000 500 × 500
tiles. The landscapes and building styles of the INRIA dataset are much more complicated than those
of the WHU dataset, and some of the labels are misaligned with the true buildings. The INRIA dataset
is suitable for testing the robustness and generalization of the proposed method. Some samples of
these two datasets are listed in Figure 3.
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Figure 3. Visual close-ups of the WHU aerial dataset and the INRIA dataset. Images of the first (second)
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3.1.2. Boundary Generation

As described above, the boundary maps of buildings are required as extra labels to supervise
CycleNet to learn the structural information in the training stage. The boundary ground truth is
generated through a very simple method from the building ground truth, which is shown below. We
first generate the all-zero Gboundary with the same size as the building mask map Gmask. Then, for every
ith pixel in Gmask, if it does not have the same value as its 2-neighbourhood (Manhattan distance) pixels,
the ith pixel in the boundary map Gi

boundary is assigned to be 1. After every pixel in Gmask is traversed,
the boundary maps Gboundary are generated. The pseudocode is illustrated in Algorithm 3.

Algorithm 3 Boundary Generation

Input:
Ground Truth Building Mask Gmask

Output:
Ground Truth Building Boundary Gboundary

Define Gmask

for G(i, j)
mask in Gmask:

if any G(neighbor(i))
mask , G(i, j)

mask
G(i, j)

boundary = 1

End for

Some generated boundary maps are shown in Figure 4.
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Figure 4. The boundary maps in the second row are generated from the building mask map in the first
row through Algorithm 3.

3.1.3. Evaluation Metrics

Following the official suggestions of the WHU aerial dataset [31] and the INRIA dataset [32], and
with standard practices, overall accuracy, precision, recall, IoU and F1 score are used as the metrics
to evaluate the performance of building extraction. However, for a boundary map, these per-pixel
metrics cannot measure how close the predicted boundary is to its corresponding ground truth. Hence,
we propose the structural accuracy (SA) score to evaluate the structural accuracy of the boundary areas
of the predicted building map. First, we generate a copy of Gboundary and name it Gbonus. The pixel
values on Gbonus are assigned based on how close it is to the boundary pixels in Gboundary. Pixels with 0,
1 and 2 distances are assigned 1, 0.5 and 0.25, respectively. Finally, we can obtain the SA index through
Equation (9):

SA Score =
Pboundary·Gbonus

n
(9)

where Pboundary is the boundary of the predicted building mask map, n is the number of boundary
pixels in Gboundary, and · denotes the dot product. For time efficiency, the bonus map and boundary
map can be generated simultaneously within one traversal on Gmask, and a sample of a bonus map is
shown in Figure 5.
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Figure 5. (a) is a cropped bin from the VHR image, (b) is the building mask map, (c) is the boundary
mask and (d) is the generated bonus map where pixels of red, green, blue and black colors represent
the values of 1, 0.5, 0.25 and 0, respectively.

3.2. Ablation Evaluation

In this section, we illustrate the results of learning the structural information in the training
stage and embedding them into a building extraction network in the refining stage. For convenient
comparison and analysis, we build all ablation experiments on the WHU aerial dataset. The results of
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the ablation experiments are evaluated only on overall accuracy and IoU metrics. Within the ablation
experiments, we not only optimize the architecture of CycleNet to balance the memory/time cost and
the building extraction performance but also test the adaptation of the proposed BP loss with other
performance-enhanced loss functions.

3.2.1. Structural Information Embedding of the Boundary-Aware Perceptual Loss

In this section, we evaluate the architectures of CycleNet both in the training stage and the
refining stage. In the training stage, the structural information (mask→boundary) and the semantic
information (boundary→ mask) embedding are simultaneously learned within the boundary block
(BB) and the mask block (MB) of CycleNet. As shown in Table 1, we train CycleNet with different
activation functions and loss functions for network architecture optimization. For comparison, we also
train and test the BB and MB separately. The learning rate is fixed to 0.001, and the total epoch is 3.

Table 1. The IoU of boundary and mask from the test set of the WHU aerial dataset in the training stage.

Block Boundary IoU (%) Mask IoU (%)

Boundary Block (Sigmoid+BCE) 97.94 —
Boundary Block (Relu+BCE) 99.96 —
Boundary Block (Relu+L1) 99.69 —

Mask Block (Sigmoid+BCE) — 16.46
Mask Block (Relu+BCE) — 12.77
Mask Block (Relu+L1) — 9.83

CycleNet (Sigmoid+BCE) 96.64 98.10
CycleNet (Relu+BCE) 99.83 99.72
CycleNet (Relu+L1) 99.56 99.58

From Table 1, on the one hand, both the boundary block and the CycleNet can properly extract the
boundary map from the mask map because the mask→boundary task can be performed with only local
differential operations such as the Sobel operator [33], which can be easily simulated by CNN models
within a limited number of convolutional layers. On the other hand, the mask block cannot transfer
the boundary map into the mask map due to the limitation of the receptive field. However, CycleNet
performs well on the boundary→mask task because it maintains the semantic information from the
input building map. The CycleNet with sigmoid activation function performs worse on both the
mask→boundary task and the mask→boundary task than that with ReLU activation functions. With
the ReLU function, the CycleNet trained with BCE loss (L1 loss) can achieve perfect IoU scores, which
are 99.83% (99.56%) on the mask→boundary task and 99.72% (99.58%) on the boundary→mask task.
This demonstrates that CycleNet with ReLU activation successfully learns the structural information
embeddings. Regarding the choice of the loss function, BCE loss and L1 loss both work well; therefore,
we evaluate the parameter weight distributions of the CycleNets trained with these 2 loss functions for
further optimization, and the results are illustrated in Figure 6.
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In Figure 6, we can see that the parameter weight distribution of the CycleNet trained with L1
loss is much sparser and tighter than that of BCE loss, which is critical for embedding the structural
information into the building extraction network in the refining stage. With the abovementioned
analysis, the CycleNet architecture with the ReLU activation function and L1 loss both properly learns
the structural information and the semantic information and hence is chosen to build and train the
CycleNet in the training stage.

Next, we conduct a series of ablation experiments on the refining stage to investigate how the
BP loss with different architectures of CycleNet affects the performance improvements of building
extraction networks on boundary areas. We apply the popular UNet [16] with the ResNet [34] backbone
as the pipeline network to perform building extraction. Similar to most of the SOTA methods, we train
the pipeline network following the schedule below: the learning rate is initialized to 0.001, and the
pipeline network is trained for 60 epochs with binary cross-entropy (BCE) loss. For memory efficiency,
we set the input batch size to 4, and the popular poly learning rate schedule, as shown in Equation (10),
is also applied to adjust the learning weight.

lr = lrinit

(
1−

iter
max_iter

)power
(10)

where iter and max_iter represent the current and total epoch, respectively, and power is set to 0.95 in
our experiments. The pipeline network UNet-Res34 reaches 88.94% and 98.71% on IoU and Acc. Then,
we refine the UNet-Res34 with the proposed BP loss of 4 alternative architecture designs of CycleNet.
These CycleNet architectures are represented by the channels of the output in every convolutional
layer of the boundary block (mask block), which are (16, 16, 1), (16, 32, 1), (16, 16, 16, 16, 1) and (16, 32,
16, 1). The naive L1 loss is also directly applied to refine the pipeline network as an extra control group.
The epoch of the refining stage is 30, and the learning rate is set to 0.0001. The other hyperparameters
are set with the same initializations as that of training the pipeline network. The quantity results are
illustrated in Table 2.

Table 2. The intersection over union (IoU) of Res34-UNet with BP loss on the WHU dataset.

Architecture Acc (%) Mask IoU (%) Time (fps)

(16, 16, 1) 98.80(+0.09) 89.77(+0.83) 2.04
(16, 32, 1) 98.81(+0.10) 89.81(+0.87) 1.95

(16, 16, 16, 1) BP 98.85(+0.14) 90.11(+1.17) 1.88
(16, 32, 16, 1) 98.86(+0.15) 90.27(+1.33) 1.71

L1 Loss 98.68(-0.03) 88.57(-0.14) 2.31

Apparently, the BP loss with 4 different CycleNet architectures improves the performance of the
pipeline network both on overall accuracy and IoU scores. The simplest architecture (16, 16, 1) can
significantly improve the IoU by 0.83%. The CycleNet of architecture (16, 32, 1) can obtain an IoU score
of 89.81%. When we deepen these two blocks of CycleNet into 4 layers, the IoU of the (16, 16, 16, 1)
architecture is increased to 90.11%. Moreover, the heavier CycleNet with the architecture of (16, 32,
16, 1) reaches the best performance of 90.27% on the IoU score, which is 1.33% higher than that of
the naive pipeline network. Nevertheless, an inconspicuous IoU decrease in 0.14% is observed from
the UNet refined with L1 loss. Based on the experimental results, the effectiveness of the proposed
BP loss can be verified. The time efficiencies are also shown in Table 2. The refining stage of the
BP loss requires an extra 12–25% training time, which is reasonable and acceptable for performance
improvements. Finally, we select the architecture (16, 16, 16, 1) as the design of the CycleNet for the
trade-off of effectiveness and efficiency. In Figure 7, we draw BP loss-epoch and BCE loss-epoch curves
during refining the pipeline network to address the procedure of how the proposed BP loss embeds
the structural information.
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Figure 7. Diagram of the proposed BP loss and BCE loss during refining the naive UNet-Res34.

The sharp peaks periodically appear in these two curves, which are caused by the numerical
instability at the start of every epoch. It can be seen from Figure 7 that the BP loss gradually decreases
during the refining stage, while the BCE loss dramatically increases during the first several epochs.
After that, the curve of BP loss fluctuates between 0.05 and 0.06, and BCE loss becomes stable near 0.15.
This phenomenon indicates that the structural information embeddings break the balance of semantic
information at the very beginning of the refining stage, and the balance of structural information and
semantic information is reconstructed in a short time.

3.2.2. Adaptation of Boundary-aware Perceptual Loss

In this section, we evaluate the adaptative ability of the proposed BP loss with other SOTA
performance-enhanced loss functions, including Jaccard loss, Dice loss, and trainable SEMEDA
loss [30]. Similar to Section 3.2.1, UNet is selected as the pipeline building extraction network. The
pipeline network is trained with these performance-enhanced loss functions in priority. Then, these
trained pipeline networks are refined with the proposed BP loss for comparisons. The results are
shown in Table 3.

Table 3. IoU on the WHU dataset with UNet-Res34 trained with various loss functions.

UNet-Res34

BCE Loss 3 3 3 3 3

Jaccard Loss 3 3

Dice Loss 3 3

SEMEDA Loss 3 3

Acc (%)
IoU (%)

98.71 98.73 98.74 98.75 98.77
88.94 89.11 89.18 89.29 89.37

UNet-Res34+BP Loss

Acc (%)
IoU (%)

98.85 98.84 98.86 98.81 98.89
90.11 90.07 90.21 89.81 90.40

From Table 3, we can see that training the UNet with additional loss functions such as Jaccard
loss, Dice loss and SEMEDA loss can obtain better performances. Compared with the untrainable
loss functions such as Jaccard loss and Dice loss, the trainable SEMEDA loss effectively improves
the IoU from 88.94% to 89.29%, while the Jaccard loss and the Dice loss only gain 0.17% and 0.24%
IoU improvements, respectively. After the refinement of BP loss, the results of pipeline networks
achieve further performance improvements. The IoU scores of UNet trained with BCE loss+Jaccard
loss and BCE loss+Dice loss reach 90.11% and 90.21%, respectively. Nevertheless, only 0.62% of IoU
improvements are observed from the UNet trained with SEMEDA loss, which is notably lower than the
others. We think this is because the structural information learning with the loss networks of SEMEDA
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loss and BP loss overlaps. The inference time and space costs of the pipeline networks refined with
either SEMEDA loss or the proposed BP loss are unchanged, while there are 15–20% extra time and
memory costs during training and refining the pipeline networks. For comparisons, we visualize some
predicted building probability maps from the pipeline networks before and after the refinement of the
proposed BP loss in Figure 8.
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Figure 8. The images and corresponding masks are listed in the first column. Starting with the second
column, the top parts of the building probability maps are predicted from the pipeline networks trained
with BCE loss, BCE+Jaccard loss, BCE+Dice loss, BCE+SEMEDA loss and with all 4 losses together.
With the same order, the building probability maps predicted from the pipeline networks refined with
BP loss are located on the bottom part.

Apparently, after the refinement of BP loss, the pixel values on the boundary area of buildings are
much higher rather than the predictions from the naive pipeline networks, which means the network
trained with BP loss is more confident for classifying the building boundary areas. Additionally, the
unreliable predictions of the naive pipeline networks, where the activation is near 0.5, are activated
better after the refinement with BP loss rather than that of SEMEDA loss.

3.3. Boundary Analyse

In this section, with the proposed BP loss, we evaluate how the structural information embedding
affects the performance of building extraction on boundary areas with the metrics of accuracy, IoU, and
SA score. The boundary map is generated from the prediction of the UNet pipeline network through
Algorithm 3. The performances of the boundary maps before and after the refinement of the proposed
BP loss are listed in Table 4.

Table 4. Predicted boundary performance on the WHU dataset.

UNet UNet +BP Loss

Acc (%) 98.47 98.62
IoU (%) 53.55 56.84
SA (%) 78.42 79.86
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Due to the phenomenon of uneven positive and negative pixels in the boundary map, the overall
accuracies of the naive UNet and the refined UNet are both higher than 98%. Nonetheless, the boundary
accuracy of the UNet +BP loss is still 0.15% higher than that of the naive UNet. The UNet+BP loss
achieves 56.84% on IoU metrics, which is 3.29% higher than the naive UNet, which demonstrates that
every pixel on the boundary areas achieves ‘absolutely’ more accurately. Additionally, refining the
UNet with the proposed BP loss can increase the SA score by 1.44%, which means that the BP loss
effectively makes the boundaries of predicted buildings much ‘closer’ to the ground truth. We list
examples of the boundaries of the building maps predicted by the naive UNet and the refined UNet in
Figure 9.
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Areas of green, red, blue, and white represent the true-positive, false-positive, false-negative and
true-negative predictions, respectively.

In Figure 9, we can see that after the refinement of the proposed BP loss, the boundary areas of
the predicted building maps become much closer to the ground truth. Moreover, the boundaries of
the predicted buildings become highly structural and regular without apparent semantic information
loss. Additionally, some misclassification boundary areas existing in the predictions of the naive UNet
are rectified through the BP loss refinement. These improvements can prove the effectiveness of the
proposed BP loss.

3.4. SOTA Comparison

In this section, we apply the proposed BP loss on UNet and PSPNet and compare the results with
very recent SOTA models both on the WHU dataset and the INRIA dataset. UNet uses symmetric jump
connections to enhance the local information, while PSPNet applies a group of dilated convolutions to
enrich the receptive fields and gain better semantic information. These two models are representative
and typical in the pixel-wise labelling task; hence, refining with them can prove the reliabilities of
the BP loss on most of the CNN models. The 101-layer ResNet is applied as the backbone of UNet
and PSPNet due to its excellent feature extraction ability. To obtain highly reliable results, we train
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and refine the UNet and PSPNet for 60 epochs. The other experimental details are the same as those
mentioned in Section 3.2.1. The results are listed in Table 5.

Table 5. SOTA comparisons on the WHU dataset.

Method Acc (%) IoU (%) Precision (%) Recall (%) F1(%)

SegNet [19] - 86.58 92.55 93.06 92.80
PSPNet [22] 98.61 88.14 94.42 92.99 93.70
UNet [16] 98.74 89.31 93.85 94.87 94.35

SiU-Net [31] - 88.40 93.80 93.90 -
SRINet [35] - 89.09 95.21 93.28 94.23
DeNet [36] 90.12 95.00 94.60 94.80

PSPNet+BP Loss 98.69 88.78 95.02 93.14 94.07
UNet+BP Loss 98.84 90.78 95.06 94.89 94.97

In Table 5, the performances of the naive PSPNet and the naive UNet are approximately 2%
higher than SegNet on the IoU score, which proves the effectiveness of these two representative
CNN architectures. Some very recent SOTA boundary-aware methods with carefully designed CNN
architectures for building extraction tasks from VHR images, such as SiU-Net, SRINet, and DeNet,
obtain much higher IoU scores, which are 88.40%, 89.04%, and 90.12%, respectively. Refined with the
proposed BP loss, the performance of the naive PSPNet increases and reaches 88.78% on the IoU score.
Moreover, the performance of UNet refined with BP loss increases to 90.78% on the IoU score, which is
0.66% higher than DeNet and achieves a new SOTA result. It is worth mentioning that the precision of
methods applying dilated convolution, such as PSPNet and SRINet (94.42% and 95.31%), are generally
higher than those of methods applying jump connections, such as UNet and SiU-Net (93.85% and
93.80%), while the methods applying jump connection architectures can achieve higher recall scores.
With the proposed BP loss, these two kinds of models can be improved and obtain higher performances
on every metric score. Some randomly selected samples are shown in Figure 10 for visual comparison.
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Figure 10. The building maps from the 2nd–6th columns are produced from the images in the 1st
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UNet refined with BP loss are located in the last 2 columns. * indicates that the model is refined with
the proposed BP loss.
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With the same hyper-parameter initializations, the experimental results on the INRIA dataset are
shown in Table 6.

Table 6. SOTA comparisons on the INRIA dataset.

Methods Austin Chicago Kitsap
Country

Western
Tyrol Vienna Overall

SegNet (Single-Loss) [37] IoU 74.81 52.83 68.06 65.68 72.90 70.14
Acc. 92.52 98.65 97.28 91.36 96.04 95.17

SegNet (Multi-Task Loss) [37] IoU 76.76 67.06 73.30 66.91 76.68 73.00
Acc. 93.21 99.25 97.84 91.71 96.61 95.73

RiFCN [38] IoU 76.84 67.45 63.95 73.19 79.18 74.00
Acc. 96.50 91.76 99.14 97.75 93.95 95.82

UNet [16] IoU 78.51 68.53 66.36 77.48 80.26 75.58
Acc. 97.05 92.69 99.29 98.30 94.56 96.38

PSPNet [22] IoU 75.05 69.93 61.09 73.32 78.06 73.99
Acc. 96.48 93.11 99.11 97.88 93.90 96.10

UNet+BP Loss
IoU 79.59 70.06 68.04 78.97 80.84 76.62
Acc. 97.20 92.90 99.33 98.42 94.76 96.52

PSPNet+BP Loss
IoU 76.80 71.51 62.51 73.90 80.17 75.68
Acc. 96.82 93.58 99.16 98.05 94.65 96.45

Following the official suggestions in [32], we only use overall accuracy and IoU to evaluate the
results over five different areas in the INRIA dataset. From Table 6, we can see that every model does
not perform as well as that on the WHU aerial dataset due to the complexity and difficulty of the INRIA
dataset. Very naive SegNet only achieves 70.81% IoU. There is an approximately 3% IoU improvement
after applying a multi-task loss on SegNet with an extra distance map. Among these methods, the
RiFCN, which applied another RNN to align the feature maps extracted from the FCN model, and
achieves the SOTA result, which is 74.00% on the IoU score. Benefitting from the perfect quality of
the open-source semantic segmentation project on https://github.com/qubvel/segmentation_models.
pytorch, the pipeline networks PSPNet and UNet achieve comparable results of 73.99% and 75.78%
IoU scores, respectively. Refined with the proposed BP loss, the performance of PSPNet increased by
1.69% on the IoU score, while 1.04% of IoU improvements are also observed on UNet. In detail, the
performances of different models fluctuate over the five areas. The IoU scores of models on Austin
and Vienna are distinctively higher than those of the remaining three areas. Some images and the
corresponding building maps extracted with different models are visualized in Figure 11.

In Figure 11, we find that the performance of the models is visually less acceptable than that
of the WHU aerial dataset, especially on unregular building areas or areas where the buildings
are covered by vegetation. Nevertheless, the models refined with the proposed BP loss can gain
significant performance improvements on the boundary areas of both large-scale and small-scale
buildings. For small-scale buildings, most of the drop-like false-positive predictions are removed due
to the embedding of the structural information. For large-scale buildings, the consistency of building
boundaries is tremendously increased after structural information embedding.

https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch
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Figure 11. Results on the different areas of the INRIA dataset. From the 2nd to the 5th, the building
maps are predicted from the naive PSPNet, refined PSPNet, UNet, and refined UNet.

4. Conclusions

In this paper, we proposed an improved boundary-aware perceptual loss to enhance the
performance of building extraction networks on boundary areas. The proposed BP loss involves
a carefully designed loss network named CycleNet aiming at learning the structural information
and a series of transfer loss functions aiming at transferring the learned structural information. The
experimental results on the WHU dataset and the INRIA aerial image labelling dataset demonstrated the
effectiveness, efficiency and robustness of the proposed BP loss. Rather than the networks specifically
designed and optimized for the building extraction task, the proposed BP loss has better adaptivity,
and fewer knowledge and hardware requirements. Nevertheless, the proposed BP loss does not work
as well on uncommon-scale buildings with irregular shapes or areas covered by shadows or vegetation.
For this purpose, embedding the morphology information into a building extraction network will be
the focus of our future work.
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