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Abstract: The contribution of biodiversity to the global economy, human survival, and welfare has
been increasing significantly, but the anthropogenic pressure as a threat to the pristine habitat has
followed. This study aims to identify habitat suitability, analyze the change in habitat quality from
1988 to 2018, and to investigate the correlation between impact factors and habitat quality. The InVEST
habitat quality model was used to analyze the spatiotemporal change in habitat quality in individual
land-use types in the Winike watershed. Remote sensing data were used to analyze the land use/land
cover changes. Nine threat sources, their maximum distance of impact, mode of decay, and sensitivity
to threats were also estimated for each land-use cover type. The analysis illustrates that habitat
degradation in the watershed was continuously increasing over the last three decades (1988 to 2018).
Each threat impact factor and habitat sensitivity have increased for the last 30 years. The most
contributing factor of habitat degradation was the 25.41% agricultural expansion in 2018. Population
density, land-use intensity, elevation, and slope were significantly correlated with the distribution of
habitat quality. Habitat quality degradation in the watershed during the past three decades suggested
that the conservation strategies applied in the watershed ecosystem were not effective. Therefore,
this study helps decision makers, particularly regarding the lack of data on biodiversity. It further
looks into the conflict between economic development and conservation of biodiversity.
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1. Introduction

The contribution of biodiversity to the global economy, human survival, and welfare has increased
recently [1,2]. Biodiversity includes the diversity of animals, plants, and microorganisms at the genetic,
species, and ecosystem levels providing regulating, supporting, and cultural ecosystem services [3,4].
However, the decline in biodiversity is higher than in the past and is expected to rise in the future [5,6]
due to the growing anthropogenic pressure on natural habitats [1,7–9]. This pressure affects land-use
dynamics [10]. It is a significant risk factor for habitat quality [11,12], specifically through the expansion
of agriculture, which triggers fragmentation of land [13] by aggravating the destruction of natural
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habitat and hampering habitat patches connectivity [14]. One of the possibilities that are available for
practice is the use of so-called decision support systems (DSSs), which can help users manage land for
environmental protection [15,16].

Open-access remote sensing data processing tools offer opportunities for resolving some of
the limitations and drawback of environmental modeling [17]. For example, various large satellite
sensors datasets are available to evaluate vital natural systems, environmental scenarios, and extremes
affecting the land surface in a continuous spatial and temporal mode [18]. These analyses capture
the environmental process that describes the species and biodiversity distribution associated with
land use/land cover (LULC) [19], forest cover [20], vegetation structure and productivity [21,22],
precipitation [23], and temperature [24]. Remote sensing data associated with continuous time-series
data resolves the problem of data sparsity concerning spatial and temporal resolution and improves
the transferability of model projections [17].

One of the most essential impact factors affecting the habitat quality is the land-use change [25].
It modifies the composition and structure of habitats and ultimately influences the circulation of
material and flow of energy between habitat patches [26,27]. According to Dai et al. [1], the disturbance
of habitat quality due to LULC changes led to a decrease in landscape connectivity and increased
fragmentation of land. As a result, understanding how LULC changes affect habitat quality is important
for biodiversity and the management of land for decision makers [28]. Thus, the biodiversity research
and conservation policy tackling the conflict between human activities and biodiversity protection [29]
are required urgently at the global, national, regional, and local scale for decision making [30].

Biodiversity provides direct supporting ecosystem services (food, energy, medicine, and industrial
raw materials) and indirect supporting ecosystem services (regulating climate and hydrologic balance,
maintaining the stability of natural ecosystems and natural gene banks, processing waste, and
preserving cultural values) [31]. Research reports indicate that habitat quality can reflect the status
of biodiversity to some extent [32]. Habitat quality is the capability of an ecosystem to provide all
necessary goods and services in a sufficient amount for all of its living environment [33]. It is also an
inherently abstract concept which tries to summarize the ‘goodness’ of an ecosystem in terms of its
deviation from an ideal reference state [34]. It represents the overall ecological quality based on the
spatial distance between habitat and threats caused by human activities, which can be weighed to take
account of their impact [7,35]. Some researchers also define habitat quality, as a proxy of biodiversity,
the capacity of the ecosystem to offer suitable conditions for the survival, reproduction, and population
persistence [36]. According to Zhu et al. [37], habitat quality is defined as the status of habitat within
the non-built-up part of a pixel.

In developing countries such as Ethiopia, where poverty is a widespread and severe problem,
it is understandable that to alleviate poverty, protection of the natural environment is the primary
concern. This is achieved in Ethiopia by maintaining the sustainability of natural dry Afromontane
forests of southwest Ethiopia, which contributes to alleviating the poverty [38]. Forest conservation
helps alleviate poverty in Mexico [39,40] and forest ecosystem resources significantly contribute to
alleviating household poverty in Kenya [41].

Economic development, however, competes with biodiversity and pristine habitat [42] because of
the lack of a comprehensive biodiversity data, which contributes to the sustainability of the environment,
and the absence of data at the national, regional, and local scale. To solve this challenge, spatial
models from different disciplines have been developed recently [29]. Some of these models are the
IDRISI software [43] for biological diversity evaluation, Marxan [44], Zonation [45], C-Plan [46], and
ConsNet [47] for systematic conservation planning. The major drawback of these models is that they
require biodiversity data and information about the number of species in the environment [7].

The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model of habitat quality [32]
assesses biodiversity status in a landscape and generates habitat quality maps using data on LULC
changes and biodiversity threats combined with expert knowledge to get consistent indicators of the
response of biodiversity to the threats [7]. This approach provides information about a watershed,
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for example, which can be important for the planning of conservation and forecasting fluctuations over
time. The InVEST model of habitat quality provides easy access to data, significant analytical capabilities
with fewer parameters, simple operation, and data processing [48]. It can replace sophisticated methods
such as species surveys and it does not need species distribution data, which has been proven to be
helpful for the management of the environment and land-use planning [49]. Habitat quality determined
with the InVEST model has been successfully employed for the maintenance of biodiversity based
on the relative reach and degradation of different habitat types [32]. For example, Polasky et al. [48]
quantified ecosystem services and biodiversity changes in Minnesota, USA; Gong et al. [29] assessed
the plant biodiversity change on a mountain of the Bailongjiang watershed in Gansu Province; Liang
and Liu [50] investigated the biodiversity change caused by LULC changes in Zhangye, China.

Southwest Ethiopia belongs to the Eastern Afromontane biodiversity hotspot known for 75%
endemism of vascular plant species [51,52]. It is one of the most species-rich ecosystems that significantly
contribute to the economic development of Ethiopia and is recognized globally as priority areas for
the conservation of biodiversity [53]. However, supporting ecosystem services have been diminished
because of deforestation, immigration, population growth, expansion of invasive species, expansion of
agriculture, cultural transformation, and the lack of land ownership [54,55]. These threats result in the
degradation of the habitat and biodiversity [56] in the investigated watershed. Therefore, the objective
of this study is to (1) map and identify habitat suitability and analyze the change in habitat quality
from 1988 to 2018 and (2) investigate the correlation between impact factors and habitat quality in
the watershed.

2. Materials and Methods

2.1. Study Area

The study area is located in Southern Nations, Nationalities, and Peoples’ Region (SNNPR),
183 km southwest of Addis Ababa along the main Addis Ababa—Jimma road at 7◦50′0′′–8◦10′0′′ North
and 37◦40′0′′–38◦10′0′′ East and altitudes ranging from 900 to 3612 m above the sea level (Figure 1).

Analysis of 30-year data from the National Meteorology Agency (NMA) (1988–2018) for five
weather stations (Agena, Emdiber, Enemore, Gumer, and Merab Azernet) shows that the average
annual rainfall varies from 856 to 1600 mm and the mean yearly temperature is 19.1 ◦C with the
maximum and minimum values of 22.5 and 6.7 ◦C, respectively. The area has a bimodal rainfall
distribution, which results in two growing seasons, namely the spring, which ranges from March
to April and summer from June to September (Figure 2). These ranges of agro-ecology facilitate a
diversity of plants, wild animals, and birds in the area. The lower part of the watershed is where
most Acacia (Acacia polyacantha) can be found [57], whereas the upper part of the watershed features
Eucalyptus plantations [58].
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The area has diverse topographic features, including flat land, hills, plains, gorges, and steep slopes.
Several permanent rivers and a temporal stream flowing into the Omo-Gibe River. The southern part
of the watershed (Enemor and Ener woredas, a third-level administrative division of Ethiopia) hosts
the Gibe Sheleko National Park, which is an important area for the conservation of biodiversity [53].

The area has transport infrastructure such as paved roads and gravel (unpaved) roads of 130 and
386 km, respectively, which connect rural areas and the district’s city. The dry-weather and all-weather
road networks are 144 and 386 km, respectively. The total road length is 530 km, and the road density
per 100 km2 is 194 km.

The investigated watershed is one of the densely populated areas in Ethiopia. Based on an
Ethiopian Central Statistical Agency (CSA) [59] report, the watershed has an average population
density of 283 people/km2. Only 9.36% of them are urban inhabitants. The primary occupation in
the area is subsistence farming. As a result of the high population density and traditional farming
practices, the area suffers from extensive soil erosion and reduced crop yields. This environmental
degradation contributes to food insecurity and habitat degradation [60].

2.2. Methods

2.2.1. The InVEST Habitat Quality Model

An open-source Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model of
habitat quality version 3.6.0 (https://www.naturalcapitalproject.org/invest/) has been developed recently
at Stanford University by Sharp et al. [32] to map and assess the habitat quality for individual LULC
types [32,61]. The InVEST habitat quality model is a novel tool used for assessing habitat quality under
anthropogenic threats [37].

The key rationale for using this model include: (1) The model is relatively less data intensive
and more flexible than other models; (2) it can easily be adapted to a specific context and readily
available data either globally or locally [14]; and (3) the model shows the hydrological and ecological
connectivity developed by Vigiak et al. [62]. Moreover, the unique characteristic of the InVEST habitat
quality model is to analyze the spatial habitat quality trends and connectivity for each land-use type
and quantify the sensitivity to threats.

For modeling the habitat quality, different geospatial data parameters were prepared using ArcGIS
10.4 (Table 1). Based on Sharp et al. [32] supported by other research such as Mashizi and Escobedo [6]
and Sallustio et al. [63], used data on LULC, the relative weight of each threat (Wr), the habitat
sensitivity of each threat (Sjr), the distance between habitats and sources of threats (Max. D), and
habitat existence (presence/absence, Hj) to model habitat quality. These parameters were determined
using expert knowledge supported by a field survey [7].

Six woredas/districts and twelve villages/kebeles were selected for sampling using systematic
random sampling (Table 1) based on Tashakkori and Teddlie [64]. To this end, intensive key informant
interviews (KII) were undertaken in 12 villages in the districts with 72 experts (12 experts from
each district, who had a good ecological understanding of the watershed) from the Guraghe zone,
the environmental protection and natural resource office. The survey was designed according to the
method used by Diehl et al. [65] to better understand opinions regarding the importance of specific
threats. The respondents were asked to identify the habitat existence/types, as well as the major threats
found in the area: Water abstraction, sedimentation, population growth, pollution, invasive species, etc.
The maximum distance of the threat affects the habitat quality and distance decay (the threat affects the
habitat quickly or slowly) also responded by 72 experts. Next, opinions regarding the major threats’
impact on specific land-use types (forest, woodland, grazing land, shrubland, and cultivated land)
were explored using the analytical hierarchy process (APH) model. The APH model was widely used
to assign a weight to each threat by examining each threat’s potential impact on the habitat using a
pairwise comparison matrix, with 1 to 5 preference scale [66,67] with the following Likert scale values:
5 (very high), 4 (poses a high threat), 3 (poses a medium threat), 2 (poses a low threat), 1 (poses no

https://www.naturalcapitalproject.org/invest/
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threat), and 0 (do not know). A matrix was built for each village by using expert-based judgment,
containing threats that were used for the pairwise comparisons. Each element’s weight provided by an
expert in the matrix was divided by its column total to generate a normalized pairwise matrix. Finally,
the weighted matrix (averaging across the rows of the matrix) was generated using the eigen vector
(priority vector), which shows each factor’s impact on the habitat [68]. This is vital to assess pairs
of threats as alternatives and compare each other in terms of their importance. The corresponding
consistency ratio (CR) to verify the acceptable accuracy of pairwise comparisons in a judgment matrix
is less than 10% [66]. Finally, the average threat weight/sensitivity values for the 12 villages were used
for each land-use type.

Table 1. Data input for the habitat quality model.

Input Data Description

Land use/land cover

A standard GIS raster dataset, with a numeric LULC code for each cell.
The LULC raster should include the area of interest, as well as a buffer of the
width of the greatest maximum threat distance. The raster should not contain
any other data. The LULC codes must match the codes for the sensitivity of

land cover types to each threat.

Threat data

A CSV table of all threats needed to be considered in the model. The table
contains information on each threat’s relative importance or weight and its

impact across space. Each row is a degradation source. Each column contains
a different attribute of each degradation source, and must be named as

THREAT, MAX-DIST, WEIGHT, and DECAY (Table S5).

Threat raster

GIS raster files with the distribution and intensity of each individual threat
showing each of them affecting the habitat were prepared. However, the

techniques applied for each threat raster varied according to the data types
(threat raster data for soil erosion are different from pollution threat raster).
Therefore, nine threat raster datasets were prepared (soil erosion, pollution,
road (paved and unpaved), water abstraction, invasive species, agricultural
expansion, urbanization, and population pressure). The threat maps should
cover the area of interest and buffer of the width of the greatest maximum

threat distance. Otherwise, locations near the edge of the area of interest may
have inflated habitat quality scores.

Each cell in the raster contains a value that indicates the density or presence of
a threat within it. All threats should be measured in the same scale and units.

Habitat types and sensitivity
of each habitat to threats

A CSV table of LULC types contains information whether or not a habitat was
identified (absence/presence of habitat) and their specific sensitivity to each
threat (Table 6). Sensitivity values range from 0 to 1, where 0 represents no

sensitivity to a threat and 1 represents the greatest sensitivity [48]. Sensitivity
scores are determined from expert knowledge using the APH method.

Half saturation constant (k)

The scaling parameter (or constant) of 0.5 was the default for the InVEST
model. The InVEST model uses a half-saturation curve to convert habitat

degradation scores to habitat quality scores [36]. It is determined as an
inverse relationship between the degradation score and its habitat quality

score. It helps with the visual representation of heterogeneity in quality across
the landscape.

Focus group discussion (FGD) were also conducted for triangulation of the data and two clusters
of FGD in each district/village were undertaken based on previous studies by Aneseyee et al. [56].
The participants of the FGD, with range of 7 to 10 in one cluster (Table 2) were elder, youth, and female
representative, local administrator, and indigenous ecological knowledge person. Open and close
ended structured questionnaires were prepared based on Arabatzis et al. [69] to obtain data of habitat
types, types of threats for the habitat, distance between threats, and the habitat and sensitivity of the
impact to the habitat (see Questionnaire S6 in Supplementary Materials). The fundamental points
captured by KII with the experts and FGD include threats types in their surrounding habitat, causes
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for degradation of the habitat, estimating the maximum distance between the threats and habitat, the
spreading rate of the threat (distance decay measurement), sensitivity measurement (which threat has
more impact on the habitat), overall status of the habitat quality in their districts, and the types of
measures used so far to control the threat for the ecosystem in the study area. Finally, the KII and the
interviewees’ responses were collected and organized according to the InVEST habitat quality model
requirement with respect to each LULC.

Table 2. The numbers and types of participants for habitat threats data collection.

Data Sampling Districts/Woredas Sampling Village Names KII FGDa

Ezha
Ambeli 6 2 (9)

Shebraden 6 2 (8)

Gumer
Derbo 5 2 (10)
Jembor 7 2 (7)

Cheha
Dakune 6 2 (8)

Wrebeche 6 2 (9)

Enemore
Gonchebet 6 2 (10)
Achewede 6 2 (8)

Merb azernet
Kumishe 7 2 (9)

Bakenawet 5 2 (10)

Geta
Abeke 6 2 (10)
Yafter 6 2 (8)

Total 72 12 (116)
a In the focus group discussion (FGD), two indicates the number of cluster/group/discussions and numbers in the
bracket indicate the number of participants in one cluster or group discussion.

The model also assumes that the more sensitive a habitat type is to a threat (higher Sjr), the more
degraded it becomes. In general, the impact of a threat on a habitat decreases as the distance from the
degradation source increases and vice versa. Habitats closer to threats have suffered a higher impact,
while threats far away from the habitat have a lower impact. Once the maximum effect distance of
the threats and the threat impact (disturbance intensity) are determined by consultation, the spatial
distribution of threats was determined using interpolation, Euclidian distance, and buffer in ArcGIS
for the InVEST habitat quality model.

2.2.2. Data Preparation and Input for the InVEST Model

Cloud-free Landsat satellite images (Table 3), with path = 169, row = 54, for the dry seasons
(January to February) for 1988 (Landsat 5), 1998 (Landsat 5), 2008 (Landsat 7), and 2018 (Landsat 8) were
obtained from the United States Geological Survey (USGS) data portal (https://earthexplorer.usgs.gov).
The spectral band spatial resolution used in this analysis was 30 m, and all the images of the investigated
area were cloud free (0%). The images were already terrain-corrected and projected to the Universal
Transverse Mercator (UTM) of WGS84 zone 37 N. The images were radiometrically calibrated to the
reflectance value, and the Quick Atmospheric Correction algorithm was applied in the ENVI v5.2
software. The supervised image classification method was employed using the Mahalanobis distance
classification. The reference data collected using GPS [70] were first converted into a vector file, then
into a region of interest (ROI) in the ENVI software. Using the ROI, the spectral signature of each
LULC type has been extracted.

Due to the failure of the scan line corrector (SLC) encountered in 2003, the images acquired by the
sensor had a data gap (striping) for 2008. Hence, we applied image gap-filling using a ‘gap-filling’ tool
in ENVI v5.2 using two images, the acquisition dates of which were only two weeks apart.

https://earthexplorer.usgs.gov
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Table 3. Description of remote sensing Landsat images used in producing land use/land cover (LULC).
thematic maps.

Image Types Sensors Spectral Bands Used Pixel Resolution
(Reflective Bands)

DATE of
Acquisition

Landsat 5 Thematic Mapper (TM) Band 1–7 and 7 30 03 Dec 1988 and
15 Dec 1998

Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) Band 1–7 and 7 30 01 Jan 2008 and

16 Dec 2008

Landsat 8 Operational Land
Imager (OLI) Band 2–7 30 4 Jan 2018

A confusion matrix (error matrix) was used to measure the reliability of the LULC classification
and validation [71]. The matrix compared the ground true data obtained from reference sites with
the classified image results for the sample areas. Thus, the error matrix yielded the overall accuracy,
producer and user accuracies, and kappa statistic [72].

Nine anthropogenic threats were identified in the watershed by following the approach of Terrado
et al. [7] and Wu et al. [73]. They were agricultural expansion, invasive species, pollution, soil
erosion, urbanization, population growth, water abstraction, and paved and unpaved roads (Table 4).
The watershed is one of the most densely populated areas of the country with a maximum estimated
population density of 293 people per km2 [74]. What is more, the density follows an increasing
trend (Table 5). High population pressure has resulted in an increasing degradation of the natural
environment, which disturbs the habitat quality [75]. The population in the Gumer district of the
watershed is higher and denser than in the five woredas (districts: Cheha, Ezha, Geta, Merab Azernet,
Enemor) (Table 5), which results in more significant habitat degradation. Moreover, the district cities
affect biodiversity more than rural areas by generating waste.

Table 4. Threat types, their weight, decay, and maximum impact distance in the Winike watershed.

M_ Distance (km) Weight Threat Decay

1 0.16 Soil erosion (so) exponential
30 0.11 Water abstraction (wa) linear
2 0.40 Population (pop) exponential
7 0.31 Urbanization (ur) exponential

1.5 0.24 Paved road (pr) linear
0.5 0.23 Unpaved road (unpr) linear
1 0.59 Agriculture (agr) linear

20 0.25 Pollution (pol) exponential
1 0.10 Invasive species (Is) linear

Table 5. Population density per square kilometer (km2) in the watershed.

Districts 1988 1998 2008 2018 2018–1988 1 1988–2018 (%)

Ezha 255.76 269 289 296 40.2 16.4
Gumer 270 331 348 353 83.0 20.0

Geta 255.24 277 281 290 34.8 16.3
Cheha 217.44 231 243 255 37.6 14.0

Enemor Ener 266.06 276 287 298 31.9 16.7
Merab Azernet 248.37 282 291 296 47.6 16.5

Average 252.1 277.7 289.8 298.0 45.9 16.7
1 Population density per square kilometer.
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The population data provided by the CSA [59] and the 1987 forecast for other years were used
with Equation (1) based on Haque et al. [76]:

Nt = P*e(r*t) (1)

where Nt is the forecast population size in a year; P is the population size; e is the natural logarithm to
the base e (2.71828); r is the rate of increase (natural increase divided by 100); t is the period involved.

Urbanization increased by 444.73% from 891.23 ha in 1988 to 3963.6 ha in 2018 (Figure 3).
Urbanization includes dense settlements, commercial areas, multiple governmental and private
institutions, schools, religious institutions, health centers, educational institutions, and other social
service areas. Hence, these institutions could generate high waste that is considered a threat to
biodiversity and have irreversible environmental effects that affect the quality of the surrounding
habitat. However, distance to urbanized areas was considered an important determinant factor for
habitat quality rating. Accordingly, the experts recognized that urbanization has a maximum impact of
7 km and it has less impact on the habitat quality at a large distance than at a proximate distance.
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(C) 2008—2744.28 ha, and (D) 2018—3963.60 ha.

According to a Guraghe municipal annual report on waste (m3/month) for Ezha (1624 m3), Cheha
(1682 m3), Gumer (1598 m3), Merab Azernet (1534 m3), Gunchre (1512 m3), and Geta (1489 m3), waste
generation affects habitat quality up to 20 km causing serious pollution of water bodies, soil, dumping
of nonbiodegradable plastic to pristine environment and unpleasant odor. The solid waste is also
promoting wildlife and human disease transmission by creating a favorable condition for reproduction
of harmful insects and reptiles, bacteria and virus, which might be damaging the grazing land and the
vegetation. Dumped solid waste also causes car accidents on the road, illegal open dumps often block
the drains and sewers. Strong wind and storms are spreading dust and filth from the open dumps of
solid waste to adjacent areas.



Remote Sens. 2020, 12, 1103 10 of 29

Agricultural expansion (Figure 4) is also a threat to biodiversity due to the destruction of the
habitat. Vegetation clearing is also likely, hindering the regulating capacity of the land, which results
in hampered biodiversity and affects habitat occurrence up to 1 km.
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The InVEST sediment delivery model was used to simulate the potential soil erosion in the
watershed based on the RUSLE equation of Wischmeier and Smith [77], using six factors (Equation (2)):

RUSLEi = (R ∗K ∗ LS ∗C ∗ P)i (2)

where RUSLEi is the mean annual soil loss (t/ha/year), R is the rainfall erosivity (MJ Mm/ha/year), K is
the soil erodibility (MJ mm/t/ha), LS is the topographic factor (dimensionless) (length and gradient),
which was generated from DEM, C is cover (dimensionless) simulated by means of normalized
difference vegetation index (NDVI), and P is management (dimensionless).

The erosivity factor was calculated using Equation (3), as provided in Hurni [78] and derived
from spatial regression analysis for Ethiopian conditions, based on the available mean annual rainfall
(P) for thirty-year data of daily and monthly rainfall from meteorological stations in the watershed
(Emdiber, Gubre, Gunchre, Agena, and Gumer). Inverse distance weighted interpolation (IDW) was
used to create the spatial raster map. The interpolated R factor was used as input for the InVEST model
for the year 1988, 1998, 2008, and 2018:

R = −8.12 + 0.562P (3)

where R is the erosivity factor and P is the mean annual rainfall in mm/year.
Based on the Food and Agriculture Organization (FAO) (1984), a soil map of Ethiopia (1:2,000,000),

was generated and the shapefile of the legacy soil map was obtained from the FAO and complemented
by the Omo-Gibe River Basin master plan soil database, made available by the Ethiopia Water, Irrigation
and Electricity Ministry (MOWIE). Five soil types were identified in the study area; Chromic Luvisols,
Pellic Vertisols, Eutric Nitosols, Leptosols, and Orthic Acrisols. In each soil type, plot soil samples
were taken to determine the K-factor using Equations (4) and (5), based on the four soil characteristics
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that determine erodibility (sand, clay, silt, and soil organic matter content). The organic matter and soil
texture were analyzed at Wolkite soil laboratory by taking 20 soil samples, considering each LULC,
from the five soil types (total of 100 samples) of the watershed.

Soil Erodibility (K) =
2.1M1.14(10−4(12−OM))

7.59
(4)

where K is soil erodibility, OM is soil organic content (%), and

M = ((%silt + %sand) × 100−%clay) (5)

The corresponding average C-value was determined for each LULC class for the years (1988, 1998,
2008, and 2018) based on NDVI value using Equations (5) and (6), following Durigon et al. [79]:

C =
(−NDVI + 1)

2
(6)

NDVI =
(NIR−RED)

(RED + NIR)
(7)

where NIR is the surface spectral reflectance in the near-infrared band and RED is surface spectral
reflectance in the red band.

The NDVI was computed by processing Landsat images for 1988, 1998, 2008, and 2018 in the ENVI
v5.2 software and ArcGIS spatial analysis was used to extract NDVI for each LULC in the reference
years. A higher NDVI value indicates higher vegetation cover and vice versa. Moreover, NDVI is
determined by a combination of bands based on Landsat images but the formula for using bands over
a period of time varies. The 2018 NDVI formula is different from the rest of the years. LANDSAT 5–7
used NDVI = (B4 − B3)/(B3 + B4) for 1988, 1998, and 2008. For 2018, NDVI = (B5 − B4)/(B5 + B4),
was used by Landsat 8. Landsat 5 is used for 1988 and 1998, Landsat 7 is used for 2008, and Landsat 8
is used for 2018.

Management practices (P) were determined based on field observation in the upper, middle, and
lower watershed, depending on the different conservation practices, and the value of the P-factor
ranges from 0 to 1, as suggested by Ganasri and Ramesh [80]. For agricultural lands, the p-value
was assigned based on slope classification, using a reclass tool in the ArcGIS software. The mean
annual soil loss in the watershed increased from 6.03 t/ha/year in 1988 to 17.91 t/ha/year in 2018
(Figure 5). Soil erosion results in decline in soil fertility in upstream parts of the land affecting farmland
at a maximum distance of 2 km. The erosion-based constraint significantly affects the downstream
ecosystem degradation such as sedimentation of reservoirs created with dams, the burial of fertile
agricultural fields with boulders and stone, etc.

The threat data on invasive species, pollution, water abstract, and road system were not found for
1988, 1998, and 2008. Therefore, the same data were used for 1988, 1998, 2008, and 2018. The spatial
distribution threats effect of invasive species and pollution were mapped using IDW interpolation
techniques of the ArcGIS whereas road was spatially mapped using buffer and water abstraction
delineated using Euclidean distance.

Invasive species are considered a threat to biodiversity, as well due to the possibility of a quick
invasion on productive land and their allelopathic effect on the surrounding biodiversity. The authors
investigated the density of invasive species by systematic field sampling and count on 20 by 20-m
patches on 60 plots. The invasive species were identified by a botanist and using a field manual.
They were Senna didemobotrya (50 stems/ha), Parthenium hysterophorus L. (100 stems/ha), Argemone
ochroleuca (70 stems/ha), Calitropis procera (80 stems/ha), and Nicotiana glauca (wild tobacco) (48 stems/ha).
They were more prevalent on the roadside and near urbanized areas (Figure 6E).



Remote Sens. 2020, 12, 1103 12 of 29

Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 29 

 

 

Figure 5. Spatial distribution of soil erosion in 1988, 1998, 2008, and 2018. 

The threat data on invasive species, pollution, water abstract, and road system were not found 
for 1988, 1998, and 2008. Therefore, the same data were used for 1988, 1998, 2008, and 2018. The spatial 
distribution threats effect of invasive species and pollution were mapped using IDW interpolation 
techniques of the ArcGIS whereas road was spatially mapped using buffer and water abstraction 
delineated using Euclidean distance. 

Invasive species are considered a threat to biodiversity, as well due to the possibility of a quick 
invasion on productive land and their allelopathic effect on the surrounding biodiversity. The 
authors investigated the density of invasive species by systematic field sampling and count on 20 by 
20-m patches on 60 plots. The invasive species were identified by a botanist and using a field manual. 
They were Senna didemobotrya (50 stems/ha), Parthenium hysterophorus L. (100 stems/ha), Argemone 
ochroleuca (70 stems/ha), Calitropis procera (80 stems/ha), and Nicotiana glauca (wild tobacco) (48 
stems/ha). They were more prevalent on the roadside and near urbanized areas (Figure 6E).  

There are three private water abstraction facilities producing drinking water in the watershed, 
Aden, Fiker, and Waw. They were established after 2012. The amount of water abstracted per year in 
Aden, Fiker, and Waw was 100, 67, 50 million m3, respectively. This water abstraction affects the 
ecosystem of the watershed by reducing available water. It further has a significant impact on the 
downstream Omo-Gibe dams. Therefore, the greater the distance from the water production 
industry, the greater the persistence of biodiversity in the area and the lesser the sensitivity to the 
threat. 

Figure 5. Spatial distribution of soil erosion in 1988, 1998, 2008, and 2018.
Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 29 

 

 

Figure 6. Spatial distribution maps of (A) the paved road system, (B) the unpaved road system, (C) 
water abstraction, (D) pollution, and (E) invasive species. 

The primary road system has high traffic density (Figure 6A). It becomes a threat to biodiversity 
because of exhaust gas pollution, soil pollution, noise pollution, and the danger to animals that cross 
the street. The secondary road system (Figure 6B) also influences the habitat quality by providing 
transport opportunities for people and animals even though its impact is lower than that of the 
primary road system. The road system also fosters the timber and nontimber forest product 
harvesting, which leads to deforestation and disturbance of the habitat quality. Therefore, a primary 
road is considered a threat to the maximum distance of 1.5 km and a secondary road is assumed to 
be a threat at a distance up to 0.5 km. The absence of any roads prevents degradation of biodiversity. 

The relative habitat suitability score (intensity of the threat) can be assigned to each LULC type, 
ranging from 0 to 1, where 1 indicates the highest habitat suitability and 0 indicates the lowest 
suitability [36,48]. Threats and sensitivity scores were determined based on literature data and expert 
knowledge (Table 6). 

Table 6. Land use/cover types and their sensitivity to the threats. 

No LULC Habitat so1 wa2 pop3 ur4 pr5 unpr6 agr7 pol8 Is9 
1 Bare land 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 

2 
Built-up 

land 0.00 0.30 0.00 0.60 0.30 0.10 0.00 0.40 0.60 0.20 

3 Shrubland 1.00 0.00 0.10 0.40 0.20 0.20 0.30 0.70 0.20 0.00 

4 Cultivated 
land 

0.35 0.70 0.10 0.60 0.40 0.50 0.30 0.80 0.50  0.21 

5 Forest 
land 1.00 0.10 0.10 0.50 0.60 0.50 0.40 0.80 0.20  0.12 

6 
Grazing 

land 0.50 0.10 0.10 0.40 0.20 0.20 0.40 0.80 0.20  0.14 

7 Water 
bodies 

1.00 0.00 0.40 0.30 0.40 0.20 0.20 0.60 0.20  0.21 

8 Woodland 1.00 0.10 0.10 0.40 0.40 0.20 0.20 0.60 0.10  0.11 

Figure 6. Spatial distribution maps of (A) the paved road system, (B) the unpaved road system,
(C) water abstraction, (D) pollution, and (E) invasive species.

There are three private water abstraction facilities producing drinking water in the watershed,
Aden, Fiker, and Waw. They were established after 2012. The amount of water abstracted per year
in Aden, Fiker, and Waw was 100, 67, 50 million m3, respectively. This water abstraction affects the
ecosystem of the watershed by reducing available water. It further has a significant impact on the
downstream Omo-Gibe dams. Therefore, the greater the distance from the water production industry,
the greater the persistence of biodiversity in the area and the lesser the sensitivity to the threat.

The primary road system has high traffic density (Figure 6A). It becomes a threat to biodiversity
because of exhaust gas pollution, soil pollution, noise pollution, and the danger to animals that cross
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the street. The secondary road system (Figure 6B) also influences the habitat quality by providing
transport opportunities for people and animals even though its impact is lower than that of the primary
road system. The road system also fosters the timber and nontimber forest product harvesting, which
leads to deforestation and disturbance of the habitat quality. Therefore, a primary road is considered a
threat to the maximum distance of 1.5 km and a secondary road is assumed to be a threat at a distance
up to 0.5 km. The absence of any roads prevents degradation of biodiversity.

The relative habitat suitability score (intensity of the threat) can be assigned to each LULC type,
ranging from 0 to 1, where 1 indicates the highest habitat suitability and 0 indicates the lowest
suitability [36,48]. Threats and sensitivity scores were determined based on literature data and expert
knowledge (Table 6).

Table 6. Land use/cover types and their sensitivity to the threats.

No LULC Habitat so1 wa2 pop3 ur4 pr5 unpr6 agr7 pol8 Is9

1 Bare land 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 Built-up land 0.00 0.30 0.00 0.60 0.30 0.10 0.00 0.40 0.60 0.20
3 Shrubland 1.00 0.00 0.10 0.40 0.20 0.20 0.30 0.70 0.20 0.00
4 Cultivated land 0.35 0.70 0.10 0.60 0.40 0.50 0.30 0.80 0.50 0.21
5 Forest land 1.00 0.10 0.10 0.50 0.60 0.50 0.40 0.80 0.20 0.12
6 Grazing land 0.50 0.10 0.10 0.40 0.20 0.20 0.40 0.80 0.20 0.14
7 Water bodies 1.00 0.00 0.40 0.30 0.40 0.20 0.20 0.60 0.20 0.21
8 Woodland 1.00 0.10 0.10 0.40 0.40 0.20 0.20 0.60 0.10 0.11
1 Soil erosion (so); 2 water abstraction (wa); 3 population (pop); 4 urbanization (ur); 5 paved road (pr); 6 unpaved
road (unp); 7 agriculture (agr); 8 pollution (pol); 9 invasive species (Is).

The InVEST model is used as a half-saturation curve to show the relationship between habitat
degradation scores and habitat quality scores [81]. Threat decay in space is described as either a linear
(Equation (8)) or exponential (Equation (9)) distance-decay function. The InVEST model determines
the impact of threat r that originates in grid cell y, ry, on habitat in grid cell x as irxy in Equation (8):

if linear, irxy = 1− (
dxy

dr max
) (8)

if exponential, irxy = exp(−
( 2.99

dr max

)
dxy) (9)

where dxy is the linear distance between grid cells x and y and dr max is the maximum effective distance
of threat r’s reach in space.

The total threat level in grid cell x with LULC or habitat type j is determined with Equation (10):

Dxj =
R∑

r=1

Yr∑
y=1

 wr∑R
r=1 Wr

ryirxyβxSJr (10)

where r is the LULC threat, with r = 1, 2, . . . n; R is the index of all the modeled degradation sources;
y is the index of all grid cells on r’s raster map; Yr indicates the set of grid cells on r’s raster map; wr

are the weight parameters; βx is the accessibility factor.
The quality of habitat (Qxj) in parcel x or LULC j is calculated with Equation (11):

Qxj = H j

1−

 Dz
xj

Dz
xj + kz


 (11)

where Hj is each LULC assigned a habitat score from 0 to 1 (1 = highest habitat suitability, 0 = no
habitat), z = 2.5 and k are scaling parameters (or constants). The k constant is 0.5.
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The LULC area for 1988, 1998, 2008, and 2018 has been drafted (Table 7). The land has been
classified into eight classes with a numeric LULC code for each class: Bare land (1), built-up land
(2), shrubland (3), cultivated land (4), forests (5), grazing land (6), water bodies (7), and woodland
(8). The LULC raster encompasses the area of interest and a buffer the width of which is the greatest
maximum threat distance.

Table 7. Population density per square kilometer (km2) in the watershed.

Bare Land Built-Up
Land Shrubland Cultivated

Land
Forest
Land

Grazing
Land

Water
Bodies Woodland

0.06 0.94 0.13 0.55 0.11 0.24 0.12 0.14

2.2.3. Correlation Analysis of Habitat Quality and Impact Factors

The analysis of correlation demonstrates that the investigated factors had an impact on habitat
quality. It employed the impact factors of anthropogenic origin (LULC intensity and population
density) and those related to physical geography (elevation, slope, and NDVI). The correlation was
examined for 150 sub-watersheds, delineated based on the altitude and drainage density, using
ArcSWAT. The habitat quality and relevant impact factors were explored using spatial analysis in
ArcGIS 10.4.

The LULC intensity reflects the extent of disturbance caused by anthropogenic activity in a
sub-watershed. According to Hu et al. [82], human activities that disturb land use/land cover have
different levels of intensity, as shown in Table 7.

The NDVI average data for January for the reference’s year (1988, 1998, 2008, and 2018) were used
from the USGS because it reflected the distribution of natural vegetation in the dry season. A higher
value of the NDVI indicates that the area has a good vegetative cover, while a lower value indicates
nonvegetation, and thus a nonhabitat. The NDVI values were high for forests (0.31), woodland
(0.29), grazing land (0.11), and shrubland (0.13) and low for cultivated land (−0.01), built-up land
(−0.27), and bare land (−0.38). Slope and elevation data were taken from a digital elevation model
(DEM) with resolution of 30 m and version 3 downloaded from the ASTER GLOBAL DEM site
(https://earthexplorer.usgs.gov).

2.2.4. Statistical Analyses

Pearson correlation analysis was performed using the R 3.2 software at a significance level
of p < 0.01. It is expressed by the coefficient r between −1 and +1, and it measures the linear
relationship between two variables (dependent and independent one) with the R script cor (). If the
r value approaches negative 1, the habitat quality and the independent variable increases inversely
proportionally (habitat quality increases whereas the factor decreases). With r approaching positive 1,
the habitat quality increases as the factor increases. Multiple collinearities between the variables can be
checked using the R software with a package of variance inflation factor (VIF) function. It provides
an index that measures how much the variance of an estimated regression coefficient is increased
because of collinearity. This shows which factor is a more influential driver of the habitat quality
degradation. For VIF > 10 there are multiple collinearities between the variables but its impact on the
habitat quality is insignificant. If it is less than 10 or approaching zero, the factor impact on the habitat
quality is significant.

Box-Cox transformation is defined a measure of the normality of the resulting transformation data.
The Box-Cox normality plot is a plot of the correlation coefficients for various values of the λ parameter.
The value of λ corresponding to the maximum correlation on the plot is then the optimal choice for λ.
Box-Cox transformation is defined as T(Y) = (Yγ − 1)/γ, where Y is the response variable and γ is
the transformation parameter. ArcGIS 10.4 was also used to analyze spatial and temporal changes in
habitat quality by subtracting first-year values from last-year values.

https://earthexplorer.usgs.gov
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3. Results

3.1. Land Use/Cover Changes Associated with the Threats

The land-use pattern in the Winike watershed has changed dramatically in the past 30 years.
The vegetation cover declined significantly by 177.43%, while agricultural land and built-up land
expanded significantly from 1988 to 2018 by 133.01% and 444.73%, respectively (Table 8). The increase
in cultivated land resulted in the threat of soil erosion and the decline of vegetation cover. As a result of
the declining forest, shrub, and grazing land areas, the forest land, shrubland, and grazing land habitat
types also decreased. Moreover, increasing urbanization resulted in increasing pollution accumulation,
which affected habitat quality significantly.

Table 8. The land use/cover changes per hectare in the last 30 years.

LULC 1988 1998 2008 2018 Change (ha) Change (%)

Bare land 1517.49 1612.26 1804.59 2506.68 989.19 165.19
Urbanization 891.23 1427.22 2744.28 3963.6 3377.43 444.73

Shrubland 3245.22 2324.61 1816.02 2030.04 −1215.18 −62.55
Cultivated land 44,954.5 51,892.2 57,442.5 59,792.9 14,838.4 133.01

Forests 7353.72 5209.74 4466.79 4738.86 −2614.86 −64.44
Grazing land 32876.3 30243 23267.3 16728.3 −16148 −50.88
Water bodies 252.18 254.34 280.98 242.01 −10.17 −95.97

Woodland 18,397 16,219.2 17,360.1 19,180.1 783.1 104.26

The matrix of LULC from 1988 to 2018 showed that cultivated land remained unchanged in 29.13%
of sub-watersheds, grew in 13.59% and declined in 22.09% in the last 30 years. The grazing land was
lost in 14.79% of sub-watersheds, increased in 14.59%, and persisted in 3.66%. Forests persisted in
2.12% of sub-watersheds, grew in 1.56%, and declined in 3.4% (Figure 7). The woodland also declined
in 0.70% of sub-watersheds, increased in 0.72%, and persisted in 9.24%.
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The overall accuracy for the land use classification was 85.23% in 1988 and 95.30% in 2018.
The kappa coefficient ranged from 0.88 in 1988 to 0.93 in 2018, showing a high level of agreement
between the classified image and the referenced data. The error matrix showing the producer and user
accuracies of the 1988 Landsat classified image for the land-use types was lower compared to the 2018
Landsat classified image due to the image quality difference (Table 9).

Table 9. Confusion matrix for classified images.

LULC Class
1988 1998 2008 2018

Producer User Producer User Producer User Producer User

Bare land 83.56 93.23 86.34 92.03 87.01 94.20 97.23 99.95
Built-up 84.67 89.12 91.17 90.34 91.90 92.12 94.90 98.45

Shrub land 93.34 90.68 93.98 91.11 94.21 92.13 99.92 93.98
Cultivated land 85.45 84.26 86.21 85.90 87.65 89.86 99.92 92.12

Forest land 89.4 86.9 90.46 87.91 81.23 87.98 97.98 100
Grazing land 91.23 90.67 92.34 91.87 93.63 94.53 99.97 96.45
Water body 87.23 87.91 88.20 88.71 89.27 89.91 100 99.87
Woodland 86.76 94.34 87.87 93.89 88.70 95.78 92.12 99.89

Overall accuracy 85.23 88.45 92.21 95.30

Kappa Coefficient 0.88 0.89 0.92 0.93

3.2. The Threat Sources and Their Contribution to Habitat Degradation

Agricultural expansion, population, pollution, urbanization, primary and secondary road systems,
water abstraction, and invasive species were the most significant sources of the threat of habitat
degradation (Figure 8). The worst among these was agricultural expansion. Its threat proportion
increased from 3.75% in 1988 to 25.41% in 2018. The habitat degradation threat from population
pressure increased from 2.22% in 1988 to 17.3% in 2018. However, water abstraction and invasive
species contributed little to the degradation of habitat quality (<5%) compared to the remaining threat
types. Nevertheless, each threat factor’s impact and sensitivity to threats have increased over the last
30 years (1988 to 2018).
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3.3. Changes in Habitat Quality in the Watershed

The habitat quality has declined in the watershed over the past 30 years, with an average score
of 0.41 in 1988, 0.35 in 1998, 0.30 in 2008, and 0.23 in 2018. The red color in Figure 9 indicates the
degradation of habitat in the respective years. The phenomenon dominates in the eastern part of the
watershed. This is due to the increasing impact of threat factors of anthropogenic origin. The green
color shows high habitat quality found in the central and downstream parts of the watershed. The red
color increased while the green color declined from 1988 to 2018, which indicates that the quality of
habitat has degraded.
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The biodiversity high suitability area was 33.12 thousand ha (30.34% of the watershed) in 1988.
It declined to 16.19 thousand ha (14.83%) in 2018. The area of medium suitability for habitats decreased
by 23.85%, while low habitat quality area significantly increased from 26.83% in 1988 to 66.19% in 2018
(Table 10). This shows that the pristine habitat area has decreased due to the increase in threat factors
affecting the ecosystem of the watershed.

Table 10. Trends of habitat suitability status.

Suitability Status
1988 1998 2008 2018

Area (ha) % Area (ha) % Area (ha) % Area (ha) %

Low 29,295.60 26.83 41,489.40 38.00 56,774.90 52.00 72,263.20 66.19
Medium 46,764.80 42.83 39,305.70 36.00 30,571.10 28.00 20,728.30 18.99

High 33,122.10 30.34 27,387.50 25.08 21,836.50 20.00 16,191.00 14.83

Moreover, the rate of change in habitat quality and degradation was more severe recently, from
2008 to 2018, as compared to the periods from 1998 to 2008 and from 1988 to 1998. This indicates that
the social, economic, and natural causes of habitat degradation have increased recently.

A significant change in the spatial distribution and variability of habitat quality in each LULC
type of the Winike watershed together with habitat quality analysis of the land-use pattern shows a
decreasing trend (Figure 10), i.e., habitat quality in cultivated land, forests, woodland, grazing land,
shrubland, and water bodies followed by a negative trend. The lowest habitat quality (0) or nonhabitat
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was observed for bare land and built-up land, while the highest habitat quality (1) was mainly found in
forests, grazing land, and shrubland. However, the conversion of habitat types into nonhabitat types
from 1988 to 2018 was 39.21% of the Winike watershed.Remote Sens. 2020, 12, x FOR PEER REVIEW 19 of 29 
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The average habitat quality of forests and shrubland were 0.777 and 0.507, respectively (Table 11),
which was more than the other LULC types. Low habitat quality in bare land, built-up land, cultivated
land, and water bodies indicates low habitat/biodiversity suitability. The Gibe Sheleko National Park
in the downstream (western) part of the watershed contributed to high biodiversity due to a suitable
habitat. The habitat suitability in the upstream (eastern) part of the watershed is lower due to high
habitat vulnerability to anthropogenic activities such as continued crop cultivation, dense population
and urbanization, expansion of invasive species, the substitution of indigenous trees by eucalyptus
plantations, and deforestation. Therefore, the eastern part of the watershed has a higher habitat quality
than its western part.

Table 11. Habitat quality trend in each LULC.

LULC 1988 1998 2008 2018 Mean HQ

Bare land 0.000 0.000 0.000 0.000 0.000
Built-up land 0.000 0.000 0.000 0.000 0.000

Shrubland 0.795 0.562 0.377 0.295 0.507
Cultivated land 0.113 0.092 0.003 0.004 0.053

Forests 0.997 0.811 0.702 0.599 0.777
Grazing land 0.697 0.467 0.301 0.199 0.416
Water bodies 0.499 0.296 0.100 0.090 0.246

Woodland 0.648 0.529 0.485 0.203 0.401
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3.4. The Impact Factors for Spatial Patterns of Habitat Quality

The factors, such as anthropogenic activities and physio-geographical factors (Table 12), have
influenced the spatial patterns of habitat quality in the watershed and each impact factors frequency
distribution were given in Figure 11.

Table 12. Descriptive statistics of the impact factors.

Descriptive
Statistics HQ Slope NDVI Altitude Population Land-Use

Intensity

Min 0.08 10.23 0.19 895 0 0.12
Max 0.75 89.9 0.4 3662 307 0.95

Median 0.3 41.23 0.23 2464 286 0.42
Sd 0.15 2.46 0.02 431.86 42.38 0.17

Mean 0.32 38.34 0.23 2409 276.6 0.407
Range 0.67 79.99 0.11 1667 115 0.83

Normality test (P) 0.00 0.00 0.00 0.00 0.00 0.00
95% CI Mean 0.29 to 0.34 52.65 to 58.77 0.23 to 0.24 2339.74 to 2479.10 275.33 to 284.61 0.38 to 0.44
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The statistical analysis (Figure 12) indicated that elevation was significantly correlated with the
distribution of habitat quality (r = −0.43, p < 0.01) in the Winike watershed over the 30 years (Table 13).
Due to the high elevation and gentle slopes, the eastern part of the watershed offered favorable
conditions for the expansion of intensive agriculture and continuous annual cereal crop cultivation,
which led to a high impact and fragmentation of the habitat quality. However, due to the low elevation
and undulating topography, habitat suitability was high in the western part of the watershed where
Gibe Sheleko National Park is situated. This area contributes to biodiversity conservation by creating a
favorable habitat. Therefore, this shows that the habitat quality is high in the downstream (western)
part of the watershed, and low upstream.
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Table 13. The correlation of impact factors and habitat quality.

Correlation Coefficient (r)
Impact Factors

Population Density Elevation NDVI Intensity of Land Slope

2018 −0.1c
−0.43b −0.14c

−0.26b −0.17c

2008 −0.09c
−0.43b −0.13c

−0.25b −0.17c

1998 −0.04a
−0.43b −0.11c

−0.20c
−0.17c

1988 −0.01a
−0.43b −0.01a

−0.01a
−0.17c

a Correlation nonsignificant. b Correlation is significant at p < 0.01. c Correlation is significant at p < 0.05.

The NDVI was significantly correlated with habitat quality of the reference years (r2018 = −0.14,
r2008 = 0.13, r1998 = 0.11, p < 0.01) but nonsignificant (r1988 = 0.01) for the year of 1988 (Table 13).
This indicates that the watershed had high habitat quality and vegetation cover to foster biodiversity
in 1988, but they declined in time.

The correlation between habitat quality and population density was significant for the year 2018
and 2008 (r = −0.1 and r = −0.09, respectively) but nonsignificant for the two previous reference years
(1998 and 1988) (r = −0.04 and r = −0.01, respectively). This shows that anthropogenic activities had a
significant effect on the fragmentation of habitat quality and biodiversity. Moreover, habitat quality
in and around urban areas was lower due to the high population density and intensive economic
activity. This leads to the disturbance of the habitat through such factors as pollution, deforestation, or
expansion of agriculture.

The correlation between the intensity of land use and habitat quality was significant for the
three reference years (1998, 2008, and 2018) but nonsignificant for 1988 (Table 13). It was because the
exploitation of land resources, which affected habitat quality, was greater more recently than previously.

The collinearity analysis show that, higher values of VIF indicate it is difficult or even impossible
to assess accurately the impact contribution to the habitat quality. Therefore, the impact of factors
such as population, NDVI, and intensity of land use on the habitat quality increased over a period of
time as shown in Table 14, whereas slope and altitude effect exhibited a constant impact throughout
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the period. The VIF of population in 1988 and 2018 was 0.89 and 0.12, respectively. This indicates
that the contribution of population pressure for the degradation of habitat quality is higher in 2018 as
compared to 1988.

Table 14. Multicollinearity of impact factor variance inflation factor (VIF).

Impact Factor VIF1988 VIF1998 VIF2008 VIF2018

Population 0.89 0.75 0.23 0.12
Slope 0.32 0.32 0.32 0.32

Altitude 0.10 0.10 0.10 0.10
Intensity of land use 0.54 0.43 0.38 0.32

NDVI 0.67 0.52 0.45 0.34

The Box-Cox normality plot (Figure 13) of the habitat quality shows that the maximum value of
the coefficient is 0.2 at λ = −0.2. The data of the Box-Cox transformation with λ = −0.2 shows a data
set for which the normality assumption is reasonable.
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4. Discussion

The results of this study indicate that the land-use pattern in the Winike watershed has changed
rapidly and dramatically during the past 30 years. This was mainly due to the Agricultural Development
Lead Industrialization (ADLI) policy of Ethiopia. The policy promoted intensive farming practices and
cropland expansion through the extension of credit, improved seeds, and chemical fertilizers. The aid
encouraged farmers to implement intensive agricultural practices, which contributed to the clearing
of indigenous vegetation and the habitat quality. This, in turn, contributed to the degradation of the
natural forest and pristine environment in search of land [83] and has been reported to happen in many
tropical regions [84].

The central and western parts of the Winike watershed have better habitat quality than the eastern
part, which promoted biodiversity and environmental regulation in the watershed. However, the
booming population, agricultural expansion, and urbanization posed threats to habitat quality [49],
and led to a decline of habitat quality in the watershed. The sources of the threats are more severe in
the eastern part of the watershed than in its western part. For example, Gumer, Merab Azernet, and
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Geta are administrative areas in the eastern part of the watershed with a high population per km2

compared to Enemore, Cheha, and Ezha (western part). Due to population pressure, such threats to
habitat quality as soil erosion, urbanization, pollution, or agricultural expansion increased.

The agricultural expansion could decrease biodiversity in the watershed due to the continuous
farming of cereal crops, particularly in the eastern part (Gumer, Merab Azernet, and Geta districts).
However, the western and central parts (Enemore, Cheha, and Ezha district areas) of the watershed
employ different agroforestry practices and have more varied vegetation cover. As a result, the habitat
quality is low in the eastern part of the watershed compared to its western part. Sun et al. [85] confirmed
that intensive local agricultural activity directly impacts habitat quality and biodiversity.

The existence of protected areas in the watershed contributed significantly to alleviating habitat
quality in the area [86]. The Gibe Sheleko National Park was established in 2003 to conserve the
biodiversity in the upper Omo-Gibe Basin. Some parts of the park stretch out into the Winike
watershed. Therefore, the western part of Winike watershed is covered by the park and benefits from
its contribution to the regulation and conservation of habitat quality.

The InVEST habitat model can be used to estimate and juxtapose the relative impact of threats to
identify threats that are more damaging to the biodiversity in a specific landscape of the investigated
watershed. For example, agricultural land-use types could be sensitive to threats generated by soil
erosion but less sensitive to threats generated by paved road systems. This means that the impact of
soil erosion on cultivated land is higher compared to paved road systems. Forest land-use type is
more sensitive to the threat of agricultural expansion than other threats such as soil erosion or invasive
species. The study assessed habitat quality threats and habitat sensitivity to threats in the field based on
the InVEST habitat quality model according to guidelines developed by Sharp et al. [32,36]. Thus, the
habitat quality threats identification and sensitivity analysis for the Winike watershed were consistent
with the study by Baral et al. [87].

Among the types of threats to habitat quality, the expansion of agricultural land significantly
contributed to the degradation of habitat quality (1988 = 3.75%, 1998 = 6.45%, 2008 = 17.23%,
2018 = 25.41%). This is consistent with studies by Dai et al. [1] and Petit et al. [88] who demonstrated
that agricultural expansion is the cause of clearing of large areas of indigenous vegetation, which
results in fragmentation and loss of habitat and biodiversity [89].

Road systems can be considered a threat as they can facilitate anthropogenic disturbance, logging,
and overexploitation by improving access to markets [90]. More than 95% of Amazonian deforestation
occurs within 50 km of a road. Keeping roads out of natural habitats is the most effective approach
to environmental protection there [91]. The investigated watershed has patches of natural forests
such as Kotergedera, Genemar, Yoteyet, Zaram, Ambeli, and Kubena, but they are degrading due to
accessibility of infrastructure development such as roads.

The changes in the Boye wetland of Jimma, Ethiopia reduced the avifauna population and species
composition [92]. This statement is consistent with the findings of this study, which indicates that
biodiversity differs according to changes in ecological characteristics and that different species exhibit
varying responses to changes in habitat. Thus, the alteration in the ecosystem in the form of LULC
changes has harmed its biodiversity.

4.1. Limitations of Uncertainty and Future Recommended Works

The practical application of the InVEST habitat quality model remains limited, although it is
an important tool for landscape managers to conserve biodiversity [32]. In the investigated site,
we have noticed that there are no long-term quantitative data about habitat quality and its threat
factors. Therefore, the quadrant species collection is an important indicator for the validation of the
model results. Note the lack of research on InVEST habitat quality modeling associated with the LULC
change in the Omo-Gibe Basin, Ethiopia, and east Africa.

The soil, climate, hydropower generation, edge effect, and vegetation difference of the habitat had
a little impact recognized by the InVEST habitat quality model [93]. Furthermore, this type of habitat
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quality research generally depends on InVEST model dataset parameters and experts’ knowledge or
opinion [7,87], since the InVEST habitat quality model requires threat’s maximum effective distance
and weights of each ecological threat factor. As a result, the InVEST habitat quality model might be
severely affected by the expert’s judgment, which is one of the limitations and potential for future
improvement of the model.

The limited availability of geospatial information with time-series data might result in some
faultiness and uncertainty of habitat quality assessment and mapping. For example, the same spatial
threat data for road, pollution, invasive species, and water abstraction were used for the reference
years (1988, 1998, 2008, and 2018). Hence, this aspect needs to be taken care of to improve research
finding in the future.

One of the limitations of the InVEST habitat quality model is poor information about species
distribution in the landscape [48]. Consequently, this finding provides little further information about
the biotic environment (such as animal, plant, and insect biodiversity, etc.). Despite this, the present
study had explicitly provided the status and change of biodiversity (habitat quality) by amalgamation
of GIS and ecological data. Therefore, in order to conduct convincing habitat quality modeling and
mapping using the InVEST model, it is not enough to use earth observation such as satellite tracking
and remote sensing, but other model simulations and quadrant measurements of species have to
be employed in future research [94–98]. For example, the FRAGSTATS 4.2 model can analyze such
landscape habitat quality parameters as patch density, splitting index, Shannon’s diversity index,
Shannon’s evenness index, and the largest patch index [1]. If this model is applied in the study of the
watershed, the uncertainty of the InVEST habitat quality model can be shown.

4.2. Implications of Habitat Quality Modeling

Modeling habitat quality helps prioritize the landscape for the conservation of biodiversity [29].
This research is undertaken for the Omo-Gibe Basin in Ethiopia and the research on the biodiversity of
the area is limited. Conducting this research is important as it can encourage more research projects
because it shows the ecological risk caused mostly by anthropogenic factors as a side effect of the effort
to save time, energy, funds, and manpower.

The Omo-Gibe Basin of Ethiopia is endowed with a high-water resource potential; as a result,
the government of Ethiopia has been encouraging the construction of more than three dams, which
contribute significantly to the Ethiopia’s green economy. However, the area suffers from potential threats
of climate change, population pressure, pollution, deforestation, sedimentation, high surface runoff, and
disturbance of stream flow regimes [99]. In order to address these challenges, habitat quality modeling
can provide useful information for decision makers since it provides site-specific information on the
biodiversity status to implement holistic approaches by stakeholders for conservation and sustainable
development in the study area. This information gives insight into where the biodiversity is more
degraded, the cause of the degradation (threat), and the sensitivity of the habitat to biodiversity threats.
Generally, the research findings are important for showing the need for ecological restoration associated
with the LULC change [100] and the profound impact of anthropogenic threats (sedimentation,
pollution, roads, etc.) on the existing habitats (biodiversity). This research also helps with land-use
planning to implement short- and long-term development projects in order to insure the sustainability
of the ecosystem, particularly the dams. Hence, this research is important to realize multiple win-win
solutions of the economic, social, and ecological protection and for the sustainable development in the
study watershed.

5. Conclusions

The results show that there has been a significant LULC change in the study area over the past
three decades (1988 to 2018). In this period, the LULC change has been growing, declining the habitat
quality in the Winike watershed. Notably, the vegetation cover has decreased rapidly and agricultural
activity has increased. This could be due to increasing anthropogenic disturbance, which results from
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the snowballing food and resource consumption, promoting damage to the natural environment, and
disturbance of the habitat.

The findings indicated that habitat quality degradation was mainly caused by agricultural
expansion, population pressure, urbanization, accessibility to road systems, soil erosion, water
abstraction, and pollution. The habitat quality in the Winike watershed was distributed mainly
downstream (western part) and in the central part of the watershed. To improve the habitat quality in
the watershed, it is suggested that land management strategies should be realized according to the
severity and extent of habitat quality degradation. This requires urgent biodiversity conservation and
control actions in this location.
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