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Abstract: Scene classification is an important aspect of image/video understanding and segmentation.
However, remote-sensing scene classification is a challenging image recognition task, partly due to
the limited training data, which causes deep-learning Convolutional Neural Networks (CNNs) to
overfit. Another difficulty is that images often have very different scales and orientation (viewing
angle). Yet another is that the resulting networks may be very large, again making them prone to
overfitting and unsuitable for deployment on memory- and energy-limited devices. We propose an
efficient deep-learning approach to tackle these problems. We use transfer learning to compensate for
the lack of data, and data augmentation to tackle varying scale and orientation. To reduce network
size, we use a novel unsupervised learning approach based on k-means clustering, applied to all parts
of the network: most network reduction methods use computationally expensive supervised learning
methods, and apply only to the convolutional or fully connected layers, but not both. In experiments,
we set new standards in classification accuracy on four remote-sensing and two scene-recognition
image datasets.

Keywords: pruning networks; network compression; remote-sensing image classification; transfer
learning; Convolutional Neural Network; pre-trained AlexNet; pre-trained VGG16

1. Introduction

Remote-sensing image classification has gained in popularity as a research area, due to the increase
in availability of satellite imagery and advancements in deep-learning methods for image classification.
A typical image contains objects and natural scenery, and the algorithms must understand which parts
of the image are important and relate to the class, and which parts are unrelated to the class. Scene
classification has been applied to various industrial products such as drones and autonomous robots,
to improve their predictability at understanding scenes.

Much early work concentrated on using hand-crafted methods such as color histograms, texture
features, scale-invariant feature transform (SIFT) or histograms of oriented gradient (HOG). Color
histograms were very simple to implement but, though translation- and rotation-invariant, they were
unable to take advantage of spatial information in an image [1]. For the analysis and classification
of aerial and satellite images, texture features were commonly used, including Gabor features,
co-occurrence matrices and binary patterns [2]. SIFT used the gradient information about important
keypoints to describe regions of the image. There are different types of SIFT (sparse SIFT, PCA-SIFT
and SURF) which are all highly distinctive and are scale-, illumination- and rotation-invariant [3].
HOG calculates the distribution of the intensities and directions of the gradients of regions in the image,
and has had great success at edge detection and identifying shape details in images [4]. Both SIFT and
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HOG use features to represent local regions of an image, and therefore reduce their effectiveness by not
taking important spatial information into account. To improve these methods, creating global feature
representation bag of visual word models were introduced [5]. Advances in these models included
using pooling techniques such as spatial pyramid matching [6].

Several unsupervised approaches have been explored for remote sensing classification problems.
Principal component analysis (PCA) and k-means clustering were successful early methods. More
recently, auto-encoders have been used in the area as an unsupervised model, which involve
reconstructing an image after forcing it through a bottleneck layer. These unsupervised methods
improved on hand-crafted features techniques, but distinct class boundaries were hard to define
because the data was unlabeled. For this reason, supervised learning was more attractive, especially
for convolutional neural networks (CNNs) from the field of deep learning, which have been responsible
for state-of-the-art results in image classification [7,8].

Given the unmatched power of deep learning for image classification, it is natural to investigate
the usefulness of CNNs on remote sensing data problems [9,10]. CNN models such as AlexNet [11]
and VGG16 [12] have demonstrated their ability to extract relevant informative features that are more
discriminative than extracted hand-crafted features. [13,14] used a promising strategy of extracting
the CNN activations of the variously scaled local regions, and pooling them together into a bag of
local features. Their networks were pre-trained on ImageNet, similar to [15], demonstrating how
using a good initialization of parameters can increase network classification accuracy. Other related
works show that by avoiding pooling and instead focusing on multi-scale CNN structures, competitive
results can be achieved [16].

This type of image classification is very challenging for several reasons. First,
although remote-sensing datasets are increasing in size, most are still considered small in deep-learning
terms. This means that we often have insufficient training data to obtain high classification accuracy.
To have a fair comparison between our method and related work in this area, we set up the experiments
in the same manner. This meant that the training dataset had a very limited number of samples, adding
to the problem difficulty. To tackle this problem we use transfer learning, which uses other data to
provide a good initialization point for the network parameters. A second problem is that images
from the same class can have very different scales and/or orientation. To address this issue, we
apply a standard method from deep-learning image recognition: data augmentation. A third problem
is that high-resolution satellite images can contain overlapping classes, which can have an inverse
effect on classification accuracy [17]. Although the method in [17] has had great success, it is very
dependent on how the initial low-level hand-crafted features are extracted, which in turn relies greatly
on domain knowledge. Using CNNs to extract the relevant features eliminates the need for domain
knowledge and hand-crafted features. A fourth problem is that training a CNN on images can lead
to very large networks that are prone to overfitting, and unsuitable for deployment on memory- and
energy-limited devices.

A current trend in deep learning is network size reduction, but this often uses computationally
expensive supervised learning techniques. We propose a novel unsupervised learning approach,
based on k-means clustering, for pruning neural networks of unwanted redundant filters and nodes.
We find optimal clusters within the filters/nodes of each layer, and discard those furthest from the
center along with all their associated parameters. Our new method, which we call PulseNetOne,
combines these techniques with fine-tuning phases to recover from any loss in accuracy. Extensive
experiments with various datasets and neural networks were carried out to illustrate the performance
and robustness of our proposed pruning technique. We compare it with other state-of-the-art
remote-sensing classification algorithms, and experiments show that it significantly outperforms
them in classification accuracy and regularization while generating much less complex networks.

The rest of this paper is organized as follows. Section 2 discusses the related work on various
methods of remote-sensing image classification. The datasets and CNNs used are described in Section 3,
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and we explain our proposed method in Section 4. The results are given in Section 5 as well as their
evaluation and discussions. Finally, Section 6 concludes the paper.

2. Related Work

A well-established method that has been very successful for satellite image recognition is the bag
of visual words (BOVW) approach. This usually involves (i) extracting hand-made features (properties
derived from the information present in the image itself), using algorithms like SIFT and HOG; (ii)
using a clustering algorithm to group the features, thus creating a BOVW with a defined center; and (3)
forming feature representations using histograms, by mapping the learned features onto the nearest
cluster center [18–23]. Both the authors of [24,25] have employed this technique to remote-sensing
classification. To obtain more meaningful features, spatial pyramids and randomized spatial partitions
were used. The authors of [26] used a CNN, originally trained on the ImageNet dataset, with spatial
pyramid pooling, and only fine-tuned the fully connected layers of the network. The spatial pyramid
was inserted between the convolutional and fully connected layers to automatically learn multi-scale
deep features, which are then pooled together into subregions.

To remove the need for domain-knowledge hand-crafted features, unsupervised learning was
used to learn basis functions to encode the features. By constructing the features using the training
images instead of hand-crafted ones, better discriminative features are learned to represent the data.
Some of the more popular unsupervised methods implemented in this research area include k-means,
PCA and auto-encoders [17,27,28].

The authors of [29] claimed that an important part of remote-sensing classification was to
overcome the problems of within-class diversity and between-class similarity, which are both major
challenges. The authors proposed to train a CNN on a new discriminative objective function that
imposes a metric learning regularization term on the features. At each training iteration random image
samples are used to construct similar and dissimilar pairs, and by applying a constraint between the
pairs a hinge loss function is obtained. Unlike our proposed algorithm, which is unsupervised and fast,
their method requires several parameters to be selected, which most likely will vary depending on the
data, and has a complex training procedure that is relatively inefficient. Their results reinforce the idea
that unlike most other approaches that only use the CNN for feature extraction, better performance is
achieved by training all the layers within the network.

The authors of [30] designed a type of dual network in which features were extracted from the
images based on both the objects and the scene of the image, and fused them together, hence the name
FOSNet (fusion of object and scene). The authors trained their network using a novel loss function
(scene coherence loss) based on the unique properties of the scene. The authors of [31] fused both
local and global features by first partitioning the images into dense regions, which were clustered
using k-means. A spatial pyramid matching method was used to connect local features, while the
global features were extracted using multi-scale completed local binary patterns which were applied
to both gray scale and Gabor filter feature maps. A filter collaborative representation classification
approach is used on both sets of features, local and global, and images are classified depending on
the minimal approximation residual after fusion. The authors of [32] also used a spatial pyramid
idea with the AlexNet CNN as its main structure. The authors find that although AlexNet has shown
great success in scene classification and as a feature extractor, because of limited training datasets it is
prone to overfitting. By using a technique of side supervision on the last three convolutional layers,
and spatial pyramid pooling before the first fully connected layer, the authors claim that this unique
AlexNet structure, named AlexNet-SPP-SS, helps to counteract overfitting and improve classification.
Our work also shows how both AlexNet and VGG16 are prone to overfitting due to lack of training
data, but by pruning redundant filters/nodes we add a strong regularization to the networks, which
prevents overfitting and increases model efficiency.

The authors of [33] argue that using a deeper network (GoogLeNet) and extracting features at
three stages helps to improve the robustness of the model, allowing low-, mid- and high-level features
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to contribute more directly to the classification. Instead of the usual additive approach to pooling
features, they show that a product principle works better. Their work includes experiments on Scene15,
MIT67 and SUN397 datasets, which we shall also use, and show achieve better accuracy using smaller
networks and without pooling. We claim that our approach is also more efficient.

The authors of [16] found that scaling scene images induced bias between training and testing
sets, which significantly reduces performance. They proposed scale-specific networks in a multi-scale
architecture. They also introduce a novel approach to combine pre-training on both the ImageNet
and Places datasets, showing that more accurate classification is achieved. The authors mentioned
the idea of redundant features by removing redundancy within the network, making it more efficient
and forcing stronger regularization, thus improving generalization. Our proposed method develops
this idea.

The authors of [34] combined two pre-trained CNNs in a hybrid collaborative representation
method. One side of the hybrid model extracted shared features, while the other extracted class-specific
features. They extended and improved their method by using various kernels: linear, polynomial,
Hellinger and radial basis function. The authors of [35] also used ImageNet networks pre-trained on
VGG16 and Inception-v3 as feature extractors, before introducing a novel 3-layer additional network
called CapsNet. The first layer is a convolutional layer that converts the input image into feature maps.
The next layer consists of 2 reshape functions along with a squash function that transforms it into a
1-D vector before it enters the final layer, which has a node for each class, and is used for classification.
Both these works use pre-trained networks, which our work shows can be significantly reduced in size.

The authors of [36] used VGG16 to extract important features, then used a method based on
feature selection and feature fusion to merge relevant features into a final layer for classification.
Following the work of the authors of [37] on canonical correlation analysis CCA, [36] improved their
work by proposing discriminant correlation analysis, which overcame the limitation of CCA that
ignored the relationship between class structures in the data by maximizes the correlation between
two feature sets while also maximizing the difference between the classes. The authors of [38] adopted
a Semantic Regional Graph model to select discriminant semantic regions in each image. The authors
used a graph convolutional network originally proposed by the authors of [39], pre-trained on the
COCO-Stuff dataset. This type of classification model showed great promise, especially on the difficult
SUN397 data on which it achieved 74% classification accuracy.

The authors of [40] introduced a novel way to tackle limited training data, which causes overfitting
in state-of-the-art CNNs such as AlexNet and VGG16. They used transfer learning, but also applied
traditional augmentation on the original dataset, and collected images from the internet that were
most similar to the desired classes. This greatly increased the number of training examples and helped
to prevent overfitting. The authors showed that increasing the number of samples in the training
data enables state-of-the-art networks to be trained on small datasets, such as scene-recognition data.
Our proposed method can be fine-tuned on the original data alone, with standard augmentation due
to the strong regularization our pruning approach imposes on the networks.

The authors of [41] evaluated three common methods of using CNNs for remote-sensing datasets
with limited data: training a network from scratch, fine-tuning a pre-trained network, and using a
pre-trained network as a feature extractor. The preferred method is training a network from scratch
as it tends to generate better features and allows for better control of the network. However, this
approach is only feasible when adequate training data is available, otherwise either fine-tuning
or feature extraction is more appropriate. The authors found that fine-tuning tends to lead to more
accurate classification, especially when combined using a linear support vector machine as the classifier.
Although our method uses a pre-trained network, we create more informative features by fine-tuning
the full network, while applying our novel pruning approach to create a much smaller and more
efficient network that helps to overcome overfitting.

The authors of [42], on which this work is based, proposed an iterative CNN pruning algorithm
called PulseNet which used an absolute filter/node measurement as the decision metric on which
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filters and nodes to prune. Similar to the authors of [42], PulseNetOne pruned all parts of the network
but, unlike our proposed method, [42] repeatedly pruned all parts reducing the rate of compression
as the network converged to being fully pruned. Also, in this work, we use a more intelligent
decision pruning metric based on k-means. Both methods extract a smaller, more efficient network,
and demonstrate their classification accuracy and computational speed during inference testing.

3. Materials and Methods

3.1. PulseNetOne

Our proposed method PulseNetOne is a CNN pruning approach that takes a pre-trained network,
and fine-tunes it with the dataset under analysis. PulseNet was the name of the original work, where
pruning was performed iteratively, whereas this approach uses a single iteration to prune the network;
hence the name PulseNetOne. When the validation loss has converged on the dataset, PulseNetOne
prunes each layer in the network using a k-means based method. While other works in this area use
the L1-norm or similar metrics to prune parts of the network, we show that by using a more intelligent
way of determining which filters/nodes are redundant, we achieve an extremely efficient CNN that
can be used for real-time inference.

In each convolutional layer, w, x, y, z represents the tunable parameters, where w and x are the
filter’s width and height respectively, y the inward number of filters and z the outward number
of filters. In the fully-connected layer the inward and outward nodes are represented by m and n
respectively. If the layer being pruned is the first convolutional layer then the inward pruning index
list is the list of channels in the image (for an RGB image this would be [0, 1, 2]). For all other layers the
inward pruning index list is the outward pruning index list of the previous layer. The outward pruning
indices are found by running a k-means algorithm with all possible k values between 1 and the number
of filters/nodes in the layer. The sum of squares (the Euclidean distance between a filter/node and
the cluster center) within each cluster is calculated and the algorithm continues to run until it either;
finds the minimum distortion or reaches the maximum number of iteration (300). The distortion is
the Euclidean distance between the a filter/node and the center of the cluster it lays in. The k-means
algorithm, reinitializes 5 times, in an attempt to reduce the possibility of the algorithm only finding a
local minimum. The distortion and its corresponding k value are recorded. Algorithm 1 determines the
optimal number of filters/nodes to retain. It is based on an automated way of finding the elbow-point
on the graph of all possible k values. It finds where an albow point occurs, and then calculates its
strength. After it has looked at all k values, it then returns the optimal k based on the one with the
maximum value. The same process is followed for the fully-connected layers, with the first fully
connected layer’s inward nodes being the last convolutional output filters.

Algorithm 2 loops through the layers of the network, pruning each layer in an unsupervised
manner, to extract a smaller and more efficient network. The relevant filters/nodes extracted by
PulseNetOne are re-used to create a smaller network, and the network is fine-tuned on the dataset
being analysed to restore lost accuracy. We experimented with using the centroid of each cluster as
the filter/node to keep, but failed to regain the accuracy lost in the pruning. Resetting the parameters
associated with the center filter/node (batch-normalization γ and β), along with its bias, to their initial
states did not achieve the desired results. Nor did inserting their values within the filter/node vector
to be calculated using k-means. So instead of using the k-means centroids we use the filter/node that
is closest to each centroid (a fast approximation to the medoid). This allows PulseNetOne to re-use a
filter/node with its biases and other associated parameters, which are already trained on the dataset
being analysed.

3.2. Benchmark Remote-Sensing Image-Scene Datasets

We evaluated our proposed PulseNetOne method on 4 benchmark remote-sensing datasets and 2
scene-recognition datasets (MIT 67 and SUN397), seen in Table 1. These range in difficulty in terms of
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the scale of scene classes, images per class, and diversity within the data. This means that on some
datasets like UC Merced [43] 97%–99% classification accuracy is easily attainable using CNNs and
could be considered the MNIST dataset of remote-sensing research (an early dataset now considered
trivial). Therefore, although we show our proposed method on these datasets, it is mainly to compare
to other work. To demonstrate the potential of PulseNetOne we also use harder benchmark datasets
such Remote-Sensing Image-Scene Classification (RESISC) [44] and SUN397 [45]. The datasets are:

Table 1. Comparison of the six remote sensing datasets used in this work.

Dataset # of Classes Ĩmages per Class Total Images Train/Test Split Image Sizes Year

Scene-15 [24] 15 210-410 4485 100 imgs/rest Multi Scales 2006
MIT-67 [46] 67 101-734 15620 80 imgs/rest Multi Scales 2009
UC Merced [25] 21 100 2100 80%/20% 256× 256 2010
SUN397 [45] 397 100-2361 10000 40 imgs/rest Multi Scales 2010
NWPU-RESISC45 [44] 45 700 31500 20%/80% 256× 256 2016
AID [47] 30 220-420 10000 20%/80% 600× 600 2016

• The Aerial Image Dataset (AID) [47] contains 10,000 images with 30 classes including commercial,
forest and church. The image resolution was 600× 600 pixels but they were resized to 256× 256
to compare with other works. The dataset was split with 50% randomly selected for the training
set and 50% for the test set.

• The MIT 67 dataset [46] has 67 classes representing types of indoor scene. It has 15,620 RGB
images which were resized to 224× 224 following the literature. The dataset was randomly
divided into 80 samples for training and the remainder used for testing. To determine when the
networks have converged, a validation dataset was needed. This was created using the training
data with 60 images kept in the training set and 20 used for a validation set. Because of the large
number of targets and some similar class types, this is one of the more difficult remote sensing
classification tasks.

• The NWPU-RESISC45 dataset [29] consists of 31,500 remote sensing images with 45 categories.
The images are of size 256× 256 and there are 700 per class. As suggested in the literature, 20%
of the samples within each class are used as the training dataset and the remaining 80% as the
test set.

• A small but popular dataset is Scene15 [24], made up of natural and indoor categories with each
class having between 210 and 410 examples. To compare with results in the literature, 100 random
samples from each class are used for training and the rest for testing. The training dataset is split
further into 80 images per class for training and 20 for validation. Although this is the oldest
dataset used in this work, it still is a good test for the robustness of our method, and has a great
deal of related work for comparison.

• The SUN397 dataset [45] is a much larger dataset made up of 108,754 images with 397 classes,
ranging from 100 to 2361 examples per class, and including natural, indoor and fabricated
images. Only 40 samples are used for training of each class, 10 images per class for the validation
set and the rest for the test set. For this work, and as reported by others, this was the most
challenging remote-sensing dataset for two main reasons: the large number of classes and the
small training set.

• The UC Merced Land-Use dataset (UCM) [25] has 2100 scene images taken from above, separated
into 21 classes with 100 examples of 256× 256 pixels in each class. The dataset was constructed
from aerial orthoimagery in various US regions including Dallas, Tampa and Las Vegas,
with categories including runway, golf course and different degrees of residential density.

Due to the limited number of training samples, to compute the final model accuracy the validation
set is merged with the training set to recreate the original training data, and the model is further trained
for a few epochs [33]. The experiments are validated using 5-fold cross validation, randomly selecting
the training and testing data splits at each fold. All images were resized to 256× 256 where necessary.



Remote Sens. 2020, 12, 1092 7 of 23

Algorithm 1 Get optimal k clusters

Let WCSS→ sum of squares within clusters
given input M
for k in 1→ len(M)

randomly choose k vectors V as the initial centers of k clusters C
Repeat

(re)assign each V to C to which it is most similar, based on mean value of V within C
update C means

Until no change
store sum of squares within clusters WCSS

calculate D1 = WCSSi+1 −WCSSi, ∀ i ∈ 1→ len(WCSS)− 1
calculate D2 = D1i+1 − D1i, ∀ i ∈ 1→ len(D1)− 1
calculate σ = D2− D1
if σ > 0

store in cluster index indx
find C = max(indx)
for center in C

find v = vector closest to center
return indices of v

Algorithm 2 PulseNetOne K-means Algorithm

initialize pin = [0,1,2]
given layers L
∀ l ∈ L

if l = convolution layer
given filter F represented by w, x, y, z
subset (w(:), x(:), y(pin)

, z(:))
reshape filter w, x, y, z→ z, w ∗ x ∗ y
pout =Get optimal k clusters (Algorithm 1)
subset (z(pout), w(:) ∗ x(:) ∗ y(:))

if l = fully-connected layer
given node N represented by m, n
subset (m(pin)

, n(:))
reshape node m, n→ n, m
pout =Get optimal k clusters (Algorithm 1)
subset (n(pin)

, m(:))
pin ← pout

3.3. Convolutional Neural Networks

To evaluate the effectiveness of our proposed method, we run experiments using two
state-of-the-art image recognition CNNs (AlexNet and VGG16) in various states, on all six of the image
datasets. The experiments are: train from scratch, apply transfer learning with models trained on
Imagenet, fine-tune pre-trained Imagenet models, and finally prune the fine-tuned models, which are
then further fine-tuned to regain accuracy.

For transfer learning with models on Imagenet, the fully connected layers are removed and new
ones added. The convolutional layers are frozen and only the fully connected layers are trained using
the Adam optimizer with learning rate 10 × 10−5. The fine-tuned pre-trained Imagenet models are the
same as the transferred versions, except that all layers of the network are fine-tuned on the desired
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dataset. Finally, the pruned model is extracted from the fine-tuned model. Our proposed PulseNetOne
method removes redundant filters/nodes from the fine-tuned model, leaving a pruned model.

The first network used was the AlexNet network, proposed by the authors of [11], which was
a CNN based on the LeNet network of 1998. It was deeper and wider than LeNet, consisting of 5
convolutional layers followed by 2 dense fully connected layers. They were one of the first to take
advantage of graphics processing units (GPUs): in fact their network was trained using two GPUs in
parallel. The AlexNet version used in this work linked the separate pairs of convolutional blocks into
one larger block. As well as establishing CNNs in the area of image recognition, [11] introduced ReLU
activation function to CNNs, and dropout as a method for avoiding overfitting. In this work we take
advantage of both.

The other network used was the VGG16 network, introduced by the authors of [12], which
had 16 layers ranging in number of filters from 64 to 512, with 2 fully connected dense layers of
4096 nodes. Unlike AlexNet they used 3× 3 filters in all convolutional layers, with 5 layers of 2× 2
maxpooling. Their main contribution was to demonstrate the importance of network depth for
classification performance. One downside to this improvement was that it was more expensive than
previous networks such as AlexNet, in terms of both memory and speed.

3.4. Experimental Design

The proposed method was implemented in Python using the TensorFlow deep-learning
framework. The training and pruning phases were performed on a RTX2080 Ti NVIDIA graphics
processing unit (GPU), while the inference stage was evaluated on both a RTX2080 GPU and an INTEL
I7-8700K CPU with 32GB RAM.

The six remote-sensing datasets had variously sized images which, for comparison with related
work, were resized to 256× 256 pixels. We used standard data augmentation including random
horizontal flipping, random adjustment of brightness and random increase/decrease of the image
contrast. We also performed random cropping of the training dataset down to 224× 224, and the test
dataset was centrally cropped to 224× 224. All images were then standardized by per-color mean and
their standard deviation. The optimizer used for training the network was Stochastic gradient descent
(SGD), in conjunction with a stepwise decay learning rate schedule. The initial learning rate for both
training and fine-tuning was 0.1, reduced by a factor of 10 when no decrease in loss on the validation
set is detected for 20 epochs. The minimum learning rate used was 0.0001, and once there has been
no improvement in the loss at that rate for 20 epochs the network is considered to have converged.
A training mini-batch of 32 was used, while during the inference stage single test samples were used
as the inputs to replicate a real-world scenario.

4. Results

PulseNetOne was applied to the AID dataset and its performance compared with other
state-of-the-art results. Table 2 shows that training the networks on the target dataset from scratch
yielded poor results: 61.24% and 56.67% on AlexNet and VGG16 respectively. The accuracy of both
networks improved greatly when using transfer learning and fine-tuning the transferred model. For
transfer learning the weights and parameters of networks trained on ImageNet, on both AlexNet
and VGG16, were re-initialized and used as a starting point for the weights of our networks. The
fully-connected layers of the pre-trained networks were removed and replaced by fully-connected
layers of the same size initialized using a He normal weight distribution, with the number of final layer
outputs being the number of classes in the dataset.

PulseNetOne takes the fine-tuned network and, as described in Section 3.1, prunes the original
network to a much smaller version, which not only reduces the storage size and number of floating
point operations per second (FLOPs), but also improves classification accuracy. The accuracy of
AlexNet improves by nearly 5.5% and VGG16 by 3.5%. The confusion matrices of both networks
(available on request) show that very few errors were made, and as they were quite randomly
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distributed they might simply be a poor representation of the class within wrongly-classified images.
The precision, recall and F1 scores of both networks are in their descriptions for further comparison.

Figure 1 shows the number of filters pruned in each layer of the networks. As expected, the layers
pruned most are the fully-connected layers, as it is well documented that these are over-parameterized.
It is interesting to see that the first and last few convolutional layers are pruned more than the
intermediate layers. A reason for this is that the first few layers are edge detectors and filters based on
colour and shapes which can contain a lot of duplicate or similar filters, while the last convolutional
layers are more class-related and, because the networks were pre-trained on the 1000-class ImageNet
dataset, these layers contained many redundant filters.

Figure 1. Comparison of layers between original and pruned version of both AlexNet and VGG16 on
the AID dataset.

Table 2. Overall accuracies and standard deviations (%) of different types of CNNs methods along
with PulseNetOne on the AID dataset. The entries in bold show the method with the best classification
for the network, while the percentage of the original network is highlighted in red.

Method Network Structure # Parameters # FLOPs Accuracy

AlexNet
Scratch 96− 256− 384− 384− 256− 4096− 4096 58404254 (100%) 116789320 (100%) 61.24 ± 1.53
Transferred - - - 91.17 ± 0.10
Fine tuned - - - 93.51 ± 0.12
PulseNetOne 36− 66− 135− 180− 79− 317− 409 1544061 (2.64%) 3085626 (2.64%) 98.91 ± 0.07

VGG16

Scratch
64− 64− 128− 128− 256− 256− 256− 512
−512− 512− 512− 512− 512− 4096− 4096 134383454 (100%) 268742032 (100%) 56.67 ± 0.31

Transferred - - - 93.64 ± 0.26
Fine tuned - - - 96.11 ± 0.19

PulseNetOne
23− 28− 60− 59− 90− 95− 103− 228
−267− 243− 203− 174− 230− 354− 570 6942627 (5.17%) 13879756 (5.16%) 99.77 ± 0.06

The barcharts in Figure 2 clearly show that, although in most cases the theoretical improvements
are not reached (except for the GPU timings for both networks, and the GPU energy for AlexNet), the
results come close in most cases. Comparing our work with state-of-the-art results in Table 3, it can be
seen that our approach using VGG16 achieves the best classification accuracy with 99.77%, and our
AlexNet version ranks in second place with 98.91%, which outperforms both Discriminative CNNs
VGG16 [29] and GCFs+LOFs [48] by nearly 3%.

Next the dataset MIT67 is analysed, on which (similarly to the AID dataset) CNNs achieve poor
classification accuracy when trained from scratch: 32.31% accuracy on AlexNet and 26.57% on VGG16.
The explanation is believed to be the lack of training samples: a deep learning network has millions
of parameters to tune and is therefore quite data-hungry. Table 4 shows that simply transferring
learning was not as effective as on the previous dataset, reaching a maximum accuracy of nearly
70%, but after fine-tuning on the targeted dataset, it reached a more reasonable 92.74%. PulseNetOne
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reduces AlexNet down to 2.28% and VGG16 down to 8.26% of their original sizes, and improves their
performances to 95.83% and 96.68% respectively.

Table 3. A comparison between state-of-the-art and PulseNetOne results on the AID data set.
The entries in bold show the method with the best classification for the network.

Method Year Accuracy

CaffeNet [47] 2017 89.53
VGG-VD-16 [47] 2017 89.64
Fusion by addition [36] 2017 91.87
Discrimative CNNs AlexNet [29] 2018 94.47
Two-Stream Fusion [49] 2018 94.58
VGG16-CapsNet [35] 2019 94.74
Discrimative CNNs GoogLeNet [29] 2018 96.22
Inception-v3-CapsNet [35] 2019 96.32
GCFs+LOFs [48] 2018 96.85
Discrimative CNNs VGG16 [29] 2018 96.89
AlexNet-PulseNetOne 2020 98.91
VGG16-PulseNetOne 2020 99.77

Figure 2. Barcharts for AlexNet and VGG16, illustrating the difference between the theoretical, CPU
and GPU efficiency with respect to their computational speed and energy consumed on the AID dataset.

Table 4. Overall accuracies and standard deviations (%) of different CNNs methods along with
PulseNetOne on the MIT67 dataset. The entries in bold show the method with the best classification
for the network, while the percentage of the original network is highlighted in red.

Method Network Structure # Parameters # FLOPs Accuracy

AlexNet
scratch 96− 256− 384− 384− 256− 4096− 4096 58555843 (100%) 117092424 (100%) 32.31 ± 2.36
Transferred - - - 63.45 ± 0.61
Fine-tuned - - - 91.84 ± 1.28
PulseNetOne 35− 118− 132− 133− 67− 317− 204 1338355 (2.29%) 2674572 (2.28%) 95.83 ± 0.11

VGG16

scratch
64− 64− 128− 128− 256− 256− 256− 512−

512− 512− 512− 512− 512− 4096− 4096 134535043 (100%) 269045136 (100%) 26.57 ± 1.38
Transferred - - - 69.92 ± 2.08
Fine-tuned - - - 92.74 ± 1.31

PulseNetOne
28− 15− 32− 36− 104− 100− 91− 143−

154− 163− 173− 144− 220− 826− 752 11111636 (8.26%) 22217192 (8.26%) 96.68 ± 0.62

The confusion matrices for both networks (available on request) show that most mistakes were
made when distinguishing between the bathroom and bedroom, and the grocery store and toy store
classes. The precision, recall and F1 scores of both networks are in their descriptions for further
transparency, and can be seen to be between 95.89% and 96.92%. Details of how PulseNetOne pruned
the layers of the networks are shown in Figure 3, and agree with the analysis of the AID dataset.
However, the VGG16 network retained more nodes in the fully-connected layers, which could be
caused by the MIT67 dataset having more than twice the number of target classes.
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Table 5 compares PulseNetOne to the related work in this area, and it can be seen that both
networks pruned by PulseNetOne outperform the state-of-the-art by over 6%. FOSNet CCG [30] and
SOSF+CFA+GAF [50] were the current best published results on the MIT67 dataset, achieving 90.37%
and 89.51% respectively, but were significantly beaten by PulseNetOne. Figure 4 shows that AlexNet
almost achieved its theoretical performance on all experiments except for CPU inference timing, while
the pruned network was approximately 3× faster than the original network. VGG16 results were more
mixed, with the CPU timing beating the theoretical result, but the CPU energy usage being quite high,
though still slightly less than the original network structure.

Figure 3. Comparison of layers between original and pruned version of both AlexNet and VGG16 on
the MIT67 dataset.

Figure 4. Barcharts for AlexNet and VGG16, illustrating the difference between the theoretical, CPU and
GPU efficiency with respect to their computational speed and energy consumed on the MIT67 dataset.

The NWPU-RESISC45 dataset accuracy was only able to score 27.11% on AlexNet and 17.87% on
VGG16 when trained from scratch. Table 6 shows that transfer learning boosted their performances up
to approximately 79% accuracy, while fine-tuning increased both to approximately 84%. PulseNetOne
was able to increase their classification accuracy by over 10%, with AlexNet scoring 94.65% and VGG16
94.86%. This was the result of network pruning reducing overfitting: AlexNet was reduced by 67×
and VGG16 by 33×.

The confusion matrices for both networks (available on request) show that both networks found
it hard to distinguish between the freeway and railway, medium and dense residential, and meadow
and forest classes. Other publications have commented on these classes being difficult to separate
also. Again, the precision, recall and F1 scores of both networks are given in their descriptions, and
can be seen to be between 94.65% and 94.89%. The way in which PulseNetOne pruned the layers of
the networks, shown in Figure 5, is more similar to that of the AID dataset than the MIT67 dataset,
possibly because of its 45 classes.

Figure 6 shows that once again AlexNet achieved close to its theoretical performance on all
experiments except for the CPU inference timing. The VGG16 results were not quite as impressive,
with the GPU timing beating the theoretical result, while the CPU energy usage was close to that of the
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original network. It can be seen from Figure 6 that in the other experiments the pruned network is
much more efficient than the original.

Table 5. A comparison between state-of-the-art and PulseNetOne results on the MIT67 data set.
The entries in bold show the method with the best classification for the network.

Method Year Accuracy

Otc and HOG [51] 2014 47.33
AlexNet fine-tuned on Imagenet [52] 2014 56.79
AlexNet fine-tuned on Place205 [52] 2014 68.24
Hybrid-CNN [52] 2014 70.80
GoogLeNet fine-tuned on Imagenet [53] 2014 72.31
DSFL CNN [14] 2017 76.23
GoogLeNet fine-tuned on Place205 [53] 2014 77.54
DSP [54] 2014 78.28
InterActive [55] 2016 78.65
G-MS2F (ADD) [33] 2017 79.18
G-MS2F (Prod) [33] 2017 79.63
SDO [29] 2018 86.76
MP [56] 2017 86.90
Sparse Representation [57] 2017 87.22
MFAFVNet+Places [58] 2017 87.97
SRG [38] 2019 88.13
SOSF+CFA+GAF [50] 2018 89.51
FOSNet CCM-CCG [30] 2019 90.30
FOSNet CCG [30] 2019 90.37
AlexNet-PulseNetOne 2020 95.83
VGG16-PulseNetOne 2020 96.68

Table 6. Overall accuracies and standard deviations (%) of different CNNs methods along with
PulseNetOne on the NWPU-RESISC45 dataset. The entries in bold show the method with the best
classification for the network, while the percentage of the original network is highlighted in red.

Method Network Structure # Parameters # FLOPs Accuracy

AlexNet
scratch 96− 256− 384− 384− 256− 4096− 4096 58465709 (100%) 116912200 (100%) 27.11 ± 2.63
Transferred - - - 79.86 ± 0.18
Fine-tuned - - - 83.29 ± 0.25
PulseNetOne 30− 76− 115− 62− 58− 257− 231 850336 (1.45%) 1698932 (1.45%) 94.65 ± 0.95

VGG16

scratch
64− 64− 128− 128− 256− 256− 256− 512−

512− 512− 512− 512− 512− 4096− 4096 134444909 (100%) 268864912 (100%) 17.87 ± 3.47
Transferred - - - 78.85 ± 0.16
Fine-tuned - - - 84.36 ± 0.22

PulseNetOne
21− 20− 53− 45− 88− 109− 74− 230−
165− 194− 200− 199− 137− 300− 268 4074009 (3.03%) 8143738 (3.03%) 94.86 ± 1.03

PulseNetOne again beats the current state-of-the-art on the NWPU-RESISC45 dataset, as seen
in Table 7, by just over 2%. Inception-v3-CapsNet [35] and Triple networks [59] achieve 92.60% and
92.33% respectively, which is quite close to our results, but it should be noted that PulseNetOne creates
an extremely efficient version of the networks, while both the related works approaches use complex
networks that increase computational expense.

The accuracy achieved on Scene15 dataset, when trained from scratch, was quite reasonable when
compared to the previous datasets, with AlexNet scoring 77.91% and VGG16 scoring 79.69%. Transfer
learning increased classification accuracy by 10–12%, while fine-tuning further increased it by 2–4%
as seen in Table 8. PulseNetOne was able to increase the classification accuracy of AlexNet to 97.96%
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and VGG16 to 97.48%. AlexNet was reduced to 1.3% and VGG16 to 3.04% of their original sizes. The
confusion matrices of both networks (available on request) show no particular pattern in their errors,
with both networks making random misclassifications. The precision, recall and F1 scores of both
networks are given in their descriptions, and can be seen to be between 97.46% and 98%.

Figure 5. Comparison of layers between original and pruned version of both AlexNet and VGG16 on
the NWPU-RESISC45 dataset.

Figure 6. Barcharts for AlexNet and VGG16, illustrating the difference between the theoretical,
CPU and GPU efficiency with respect to their computational speed and energy consumed on the
NWPU-RESISC45 dataset.

Table 7. A comparison between state-of-the-art and PulseNetOne results on the NWPU-RESISC45
dataset. The entries in bold show the method with the best classification for the network.

Method Year Accuracy

Two-Stream Fusion [49] 2018 83.16
Fine-tuned CNNs AlexNet [44] 2017 85.16
Fine-tuned CNNs GoogLeNet [44] 2017 86.02
Discrimative CNNs AlexNet [29] 2018 87.24
VGG16-CapsNet [35] 2019 89.18
Fine-tuned CNNs VGG16 [44] 2017 90.36
Discrimative CNNs GoogLeNet [29] 2018 90.49
Discrimative CNNs VGG16 [29] 2018 91.89
Triple networks [59] 2017 92.33
Inception-v3-CapsNet [35] 2019 92.60
AlexNet-PulseNetOne 2020 94.65
VGG16-PulseNetOne 2020 94.86

The layers of both networks, as shown in Figure 7, are pruned in the same pattern as with the
other datasets, fully-connected layers being heavily pruned, along with the beginning and ending of
the convolutional layers, while the intermediate convolutional layers are less pruned.

Figure 8 shows that on AlexNet the pruned network performs better on the GPU, but for
real-world situations where a CPU would be more commonly used for analysis, the pruned network
easily outperforms the original structure in all cases. On VGG16 the CPU energy usage are
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unimpressive, but are almost twice as energy efficient as the original network. Following the same
analysis as for the previous datasets, we compare PulseNetOne to the current state-of-the-art on
the Scene15 dataset, shown in Table 9. The Dual CNN [16] was state-of-the-art since 2016, with
a classification accuracy of 95.18%, the next in line being G-MS2F [33] with 92.90%. PulseNetOne
achieves almost a 3% greater accuracy, with AlexNet beating VGG16 on this dataset with 97.97%.
Again, PulseNetOne’s closest competition uses 2 deep learning CNNs which is much less efficient.

Table 8. Overall accuracies and standard deviations (%) of different CNNs methods along with the
proposed PulseNetOne on the Scene15 dataset. The entries in bold show the method with the best
classification for the network, while the percentage of the original network is highlighted in red.

Method Network Structure # Parameters # FLOPs Accuracy

AlexNet
scratch 96− 256− 384− 384− 256− 4096− 4096 58342799 (100%) 116666440 (100%) 77.91 ± 0.85
Transferred - - - 87.52 ± 0.38
Fine-tuned - - - 91.68 ± 0.72
PulseNetOne 36− 90− 168− 53− 32− 301− 274 759853 (1.30%) 1517776 (1.30%) 97.96 ± 0.62

VGG16

scratch
64− 64− 128− 128− 256− 256− 256− 512−

512− 512− 512− 512− 512− 4096− 4096 134321999 (100%) 268619152 (100%) 79.69 ± 1.27
Transferred - - - 89.75 ± 1.01
Fine-tuned - - - 92.84 ± 0.48

PulseNetOne
10− 22− 36− 36− 65− 68− 76− 109−
168− 198− 167− 167− 169− 305− 257 4079549 (3.04%) 8155378 (3.04%) 97.48 ± 0.81

Figure 7. Comparison of layers between original and pruned version of both AlexNet and VGG16 on
the Scene15 dataset.

Figure 8. Barcharts for AlexNet and VGG16, illustrating the difference between the theoretical, CPU and
GPU efficiency with respect to their computational speed and energy consumed on the Scene15 dataset.

The SUN397 dataset was the most difficult dataset to train from scratch, possible because of its
large number of classes and its limited amount of training data: AlexNet reached 21.24% and VGG16
15.41% accuracy. Transfer learning with the ImageNet dataset helped increased AlexNet’s accuracy to
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42.91% and VGG16 to 41.51%. Fine-tuning all the layers for either network had less effect than with
the other datasets, only improving AlexNet to 49.89% and VGG16 to 50.29%. However, PulseNetOne
was able to pass 80% classification accuracy on both networks, as seen in Table 10: AlexNet reached
82.11% accuracy and VGG16 84.32%.

Table 9. A comparison between state-of-the-art and PulseNetOne results on the SCENE15 data set.
The entries in bold show the method with the best classification for the network.

Method Year Accuracy (%)

AlexNet fine-tuned on Imagenet [52] 2014 84.23
Otc and HOG [51] 2014 84.37
LGF [31] 2016 85.80
GoogLeNet fine-tuned on Imagenet [53] 2014 91.12
AlexNet fine-tuned on Place205 [52] 2014 90.19
Hybrid-CNN [52] 2014 91.59
DSP [54] 2014 92.16
GoogLeNet fine-tuned on Place205 [53] 2014 92.16
G-MS2F (ADD) [33] 2017 92.70
DSFL CNN [14] 2017 92.81
G-MS2F (Prod) [33] 2017 92.90
Dual CNN [16] 2016 95.18
VGG16-PulseNetOne 2020 97.48
AlexNet-PulseNetOne 2020 97.96

Table 10. Overall accuracies and standard deviations (%) of different CNNs methods along with
PulseNetOne on the SUN397 dataset. The entries in bold show the method with the best classification
for the network, while the percentage of the original network is highlighted in red.

Method Network Structure # Parameters # FLOPs Accuracy

AlexNet
scratch 96− 256− 384− 384− 256− 4096− 4096 59907853 (100%) 119795784 (100%) 21.24 ± 1.98
Transferred - - - 42.91 ± 1.71
Fine-tuned - - - 49.89 ± 1.18
PulseNetOne 35− 103− 176− 160− 41− 242− 264 1105768 (1.85%) 2208708 (1.84%) 82.11 ± 2.48

VGG16

scratch
64− 64− 128− 128− 256− 256− 256− 512−

512− 512− 512− 512− 512− 4096− 4096 135887053 (100%) 271748496 (100%) 15.41 ± 1.75
Transferred - - - 41.51 ± 3.84
Fine-tuned - - - 50.29 ± 2.89

PulseNetOne
16− 27− 35− 38− 68− 69− 72− 118−

160− 164− 161− 10− 48− 236− 208 1562544 (1.15%) 3121450 (1.15%) 84.32 ± 2.94

Confusion matrices for both networks (available on request) showed no real surprises in either of
them, similar classes being mis-classified. The PulseNetOne-pruned AlexNet model had a precision
score of 85.60%, recall score 82.45% and F1-score 83.24%, and the VGG166 version had precision score
86.80%, recall score 84.29% and a F1-score 84.93%. The layers of both networks, as seen in Figure 9,
are similar to previous results, but show that AlexNet’s last convolution layer was heavily pruned:
slightly surprising given the dataset’s large number (397) of classes. A possible explanation is that the
classes in the ImageNet dataset, on which the model was initially trained, were quite different to the
classes on the target dataset SUN397. The PulseNetOne-pruned VGG16 also had a convolutional layer
that was heavily pruned (the 12th layer or second-to-last layer), which reaffirms our hypothesis.

Figure 10 shows that the PulseNetOne version of both networks use considerably less energy
and are in all cases noticeably faster at inference time. Table 11 shows previous state-of-the-art results,
and our method advances the best by approximately 5%. SOSF+CFA+GAF [50] achieves the closest to
our results, but whereas we use an input image of size 256× 256, their method uses an input size of



Remote Sens. 2020, 12, 1092 16 of 23

608× 608 which is signifcant larger and therefore more computationally expensive. FOSNet [30] is
once again close to the state-of-the-art, with 77.28%.

The final dataset is UC Merced, which (as mentioned earlier) is relatively easy to classify accurately.
VGG16 and AlexNet achieve 75.01% and 83.25% respectively, while transfer learning applied only
to the new fully-connected layers resulted in accuracies of approximately 95%. Further fine-tuning
increased the accuracies of both networks to just over 98%, and the current state-of-the-art uses
fine-tuning with a Support Vector Machine as the classifier. PulseNetOne added 1.5% accuracy to both
networks, and though this is small it makes our proposed method state-of-the-art. Table 12 shows that
VGG16 achieved classification accuracy 99.69%, and AlexNet 99.82%. We attribute this improvement
to the high degree of pruning reducing overfitting: the AlexNet parameters and FLOPS were reduced
by 30×, and those of VGG16 by 71.5×.

Figure 9. Comparison of layers between original and pruned version of both AlexNet and VGG16 on
the SUN397 dataset.

Figure 10. Barcharts for AlexNet and VGG16, illustrating the difference between the theoretical,
CPU and GPU efficiency with respect to their computational speed and energy consumed on the
SUN397 dataset.

The confusion matrices of both networks (available on request) show that between both networks
there was only 3 misclassifications. The precision, recall and F1 scores of both networks are in their
descriptions, and can be seen to be 99.36–99.70%. As expected, the GPU performance was close to
theoretical, while CPU times were significantly better on the pruned networks compared to the original
networks, as shown in Table 12.

Figure 11 shows that the second-last layer in VGG16 is again the most pruned, as in the SUN397
dataset, with the other layers being pruned in the same pattern as the other datasets. Figure 12 shows
that the GPU was more energy efficient and also had a faster inference time, but the PulseNetOne
versions of the networks were both faster and consumed less energy on the CPU than the original
networks. PulseNetOne slightly outperforms the current state-of-the-art on the UC Merced dataset
by almost 0.5%, as shown in Table 13. Inception v3 CapsNet [35] had, once again, one of the best
accuracies with 99.05%, narrowly beaten by Fine-tuned GoogLeNet with SVM [41] with 99.47% which,
though quite close to our results, comes at the cost of more complex and expensive networks.



Remote Sens. 2020, 12, 1092 17 of 23

Table 14 shows inference time and energy consumed per image on both a CPU and GPU processor,
along with the storage size of the original and pruned networks. To ensure that the work was
applicationally related, we used a test batch of just one image, which is more applicable to real-world
testing. Looking at the results on the AID dataset, the storage sizes of both networks are greatly
reduced by PulseNetOne, and on a CPU inference is approximately 3× faster, and approximately 10×
faster on a GPU. The energy saving for the networks ranges from 1.5× to 13× fewer milli-Joules. Next
the results for the MIT67 dataset, where the storage size of AlexNet was reduced in size by nearly 44×
while VGG16 was reduced by 12×. The energy saved on the CPU and GPU was 11× and 5.5–11×
respectively, while the speed-up in inference time on AlexNet was 3–10× and on VGG16 3–7×.

Table 11. A comparison between state-of-the-art and PulseNetOne results on the SUN397 dataset.
The entries in bold show the method with the best classification for the network.

Method Year Accuracy

AlexNet fine-tuned on Imagenet [52] 2014 42.61
Otc and HOG [51] 2014 49.60
Hybrid-CNN [52] 2014 53.86
AlexNet fine-tuned on Place205 [52] 2014 54.32
GoogLeNet fine-tuned on Imagenet [53] 2014 55.78
DSP [54] 2014 59.78
GoogLeNet fine-tuned on Place205 [53] 2014 61.51
InterActive [55] 2016 62.97
G-MS2F (ADD) [33] 2017 63.84
G-MS2F (Prod) [33] 2017 64.06
Sparse Representation [57] 2017 71.08
MFAFVNet+Places [58] 2017 72.01
MP [56] 2017 72.60
SDO [29] 2018 73.41
Adi-Red [60] 2018 73.59
SRG [38] 2019 74.06
FOSNet CCG [30] 2019 76.62
FOSNet CCM-CCG [30] 2019 77.28
SOSF+CFA+GAF [50] 2018 78.93
AlexNet-PulseNetOne 2020 82.11
VGG16-PulseNetOne 2020 84.32

Table 12. Overall accuracies and standard deviations (%) of different CNNs methods along with
PulseNetOne on the UC Merced dataset. The entries in bold show the method with the best classification
for the network, while the percentage of the original network retained is highlighted in red.

Method Network Structure # Parameters # FLOPs Accuracy

AlexNet
scratch 96− 256− 384− 384− 256− 4096− 4096 58367381 (100%) 116715592 (100%) 83.25 ± 0.26
Transferred - - - 94.42 ± 0.18
Fine-tuned - - - 98.19 ± 0.24
PulseNetOne 39− 59− 132− 141− 106− 340− 549 1940812 (3.33%) 3878858 (3.32%) 99.82 ± 0.11

VGG16

scratch
64− 64− 128− 128− 256− 256− 256− 512−

512− 512− 512− 512− 512− 4096− 4096 134346581 (100%) 268668304 (100%) 75.01 ± 0.32
Transferred - - - 95.24 ± 0.10
Fine-tuned - - - 98.14 ± 0.10

PulseNetOne
10− 20− 31− 29− 70− 79− 83− 185−

160− 165− 172− 13− 55− 272− 288 1886045 (1.40%) 3768800 (1.40%) 99.69 ± 0.13

The results for the NWPU-RESISC45 dataset show the storage sizes of AlexNet and VGG16 were
reduced by 44× and 33× respectively, as shown in Table 14. The speed-up in inference time on both
networks were between 3× and 10× on the CPU and GPU, respectively. We see from the results on
the SCENE15 dataset that the storage sizes of AlexNet and VGG16 were reduced by 77× and 33×
respectively, as seen in Table 14. The improvement of the inference timing on both neworks were
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3× and 12× for the CPU and GPU, respectively. Table 14 also shows that the CPU energy saving is
between 2× and 4×, and between 14.5× and 16× for the GPU.

Figure 11. Comparison of layers between original and pruned version of both AlexNet and VGG16 on
the UC Merced dataset.

Figure 12. Barcharts for AlexNet and VGG16, illustrating the difference between the theoretical, CPU and
GPU efficiency with respect to their computational speed and energy consumed on the UC Merced dataset.

Table 13. A comparison between state-of-the-art and PulseNetOne results on the UCM dataset.
The entries in bold show the method with the best classification for the network.

Method Year Accuracy

TF-CNN [61] 2016 89.90
Multiview deep learning [62] 2015 93.48
GBRCN [9] 2015 94.53
CNN with OverFeat [63] 2015 95.48
LGF [31] 2016 95.48
Pre-trained AlexNet SPP [32] 2017 95.95
Pre-trained AlexNet SPP-SS [32] 2017 96.67
Discrimative CNNs AlexNet [29] 2018 96.67
Discrimative CNNs GoogLeNet [29] 2018 97.07
Fusion by addition [36] 2017 97.42
Pre-trained AlexNet 1st-FC [64] 2015 98.49
VGG16-CapsNet [35] 2019 98.81
Discrimative CNNs VGG16 [29] 2018 98.93
GCFs+LOFs [48] 2018 99.00
Inception-v3-CapsNet [35] 2019 99.05
Fine-tuned GoogLeNet with SVM [41] 2017 99.47
VGG16-PulseNetOne 2020 99.69
AlexNet-PulseNetOne 2020 99.82

Next looking at the SUN397 dataset, we see that the storage sizes of AlexNet and VGG16 were
reduced 54× and 87× respectively, as shown in Table 14. The improvement in inference timing on
both networks were 3.5× and 10× for the CPU and GPU, respectively. As shown in Table 14 the CPU
energy saving is 2–3× while the GPU’s energy saving is 13.5–17×. Finally on the UCM dataset, it can
be seen that the storage sizes of AlexNet and VGG16 were reduced from 222.654 MB to 7.404 MB and
512.492 MB to 7.195 MB, respectively. The speed-up in inference time on both networks were 3.5× and
12× on the CPU and GPU, respectively.
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Table 14. Computational results for datasets AID, MIT67, NWPU-RESISC45, Scene15, SUN397 and UC Merced using AlexNet and VGG16. It shows the storage
space each network requires, the inference speed per image and the energy consumed per image of both the original and pruned networks using a batch size of a
single image.

Original PulseNetOne

Dataset CNN Processor Storage (MB) Energy per image (mJ) Time per image (ms) Storage (MB) Energy (mJ) Time per image (ms)

AID AlexNet CPU 222.795 1.47 46.16 5.89 0.51 15.89
- - GPU - 2.68 43.46 - 0.19 4.44
- VGG16 CPU 512.632 6.59 362.77 26.484 4.89 165.82
- - GPU - 5.88 81.26 - 0.88 10.30
MIT67 AlexNet CPU 223.373 1.67 46.07 5.105 0.16 17.11
- - GPU - 2.42 42.79 - 0.14 4.10
- VGG16 CPU 513.21 5.85 364.15 42.388 4.70 109.19
- - GPU - 5.83 81.51 - 1.02 12.28
NWPU-RESISC45 AlexNet CPU 223.029 1.69 45.78 5.105 0.35 13.24
- - GPU - 2.48 42.37 - 0.15 4.07
- VGG16 CPU 512.867 5.05 362.75 15.541 5.02 127.78
- - GPU - 5.34 81.49 - 0.55 8.71
Scene15 AlexNet CPU 222.56 1.66 45.79 2.899 0.45 14.76
- - GPU - 2.24 42.24 - 0.14 3.65
- VGG16 CPU 512.398 6.54 362.50 15.562 3.84 101.28
- - GPU - 6.05 81.19 - 0.42 7.98
SUN397 AlexNet CPU 228.53 1.75 46.02 4.218 0.57 16.21
- - GPU - 2.42 43.10 - 0.18 4.52
- VGG16 CPU 518.368 6.54 363.69 5.961 3.59 96.20
- - GPU - 5.66 81.81 - 0.33 7.41
UC Merced AlexNet CPU 222.654 1.70 45.92 7.404 0.60 15.62
- - GPU - 2.55 42.03 - 0.21 4.57
- VGG16 CPU 512.492 5.79 362.45 7.195 3.06 92.31
- - GPU - 5.95 80.41 - 0.38 6.65
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5. Discussion

PulseNetOne removes redundant filters in the convolutional layers (which helps to greatly
improve inference timings) and nodes in the fully connected layers (which helps to reduce storage
cost). In this sense it can be considered a two-pronged attack on the network architecture, resulting
in smaller and more efficient networks with better generalization largely caused (we believe) by a
reduction in overfitting. This helps the pruned networks to achieve state-of-the-art results in all the
tested remote-sensing benchmark datasets, at a fraction of the computational expense.

All the remote-sensing benchmark datasets used in this research were pruned in a similar fashion:
the first and last few convolutional layers contain most redundant filters which are pruned, while the
center layers seem to carry more important details for the classification of the datasets (see Figures 1, 3,
5, 7, 9 and 11). In all the datasets the fully connected layers were pruned significantly, confirming a
theory in the literature that these layers are over-parameterized (hence some of the newer networks do
not include them). We believe that although they are over-parameterized, they can still add value if
intelligently pruned.

The experiments had a faster inference time and consumed less energy, due to this, on the GPU
compared to the CPU. However, in a real-world environment, it is unlikely that inference would be
run on a GPU, rather on a CPU. Therefore, looking at the CPU experiments of both the original and
PulseNetOne networks, it can be clearly seen that the pruned networks are significantly more efficient
in all manners: storage, speed and energy.

Finally, from Tables 3, 5, 7, 9, 11 and 13 it can be seen that PulseNetOne obtains new state-of-the-art
classification accuracy on all the remote-sensing benchmark datasets. Our proposed method
consistently outperforms current approaches by between 2% and 4% in most cases.

6. Conclusions

CNNs are state-of-the-art models for image classification, and although much success has been
achieved using them in the remote sensing research area, our proposed method shows that the models
being used as feature extractors, or as components of other techniques, are highly over-parameterized.
We show that by pruning redundant filters and nodes, not only do we achieve better classification
accuracy due to a strong regularization on the model, we also create a much more efficient network.
PulseNetOne compresses AlexNet and VGG16 on average down to approximately 2% and 4%
respectively of their original sizes. Its robustness is demonstrated using six remote- sensing benchmark
datasets, on which it greatly compresses the CNNs and achieves state-of-the-art classification accuracy.
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