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Abstract: Compared to multi-spectral imagery, hyperspectral imagery has very high spectral
resolution with abundant spectral information. In underwater target detection, hyperspectral
technology can be advantageous in the sense of a poor underwater imaging environment, complex
background, or protective mechanism of aquatic organisms. Due to high data redundancy, slow
imaging speed, and long processing of hyperspectral imagery, a direct use of hyperspectral images in
detecting targets cannot meet the needs of rapid detection of underwater targets. To resolve this issue,
a fast, hyperspectral underwater target detection approach using band selection (BS) is proposed. It
first develops a constrained-target optimal index factor (OIF) band selection (CTOIFBS) to select a
band subset with spectral wavelengths specifically responding to the targets of interest. Then, an
underwater spectral imaging system integrated with the best-selected band subset is constructed
for underwater target image acquisition. Finally, a constrained energy minimization (CEM) target
detection algorithm is used to detect the desired underwater targets. Experimental results demonstrate
that the band subset selected by CTOIFBS is more effective in detecting underwater targets compared
to the other three existing BS methods, uniform band selection (UBS), minimum variance band priority
(MinV-BP), and minimum variance band priority with OIF (MinV-BP-OIF). In addition, the results
also show that the acquisition and detection speed of the designed underwater spectral acquisition
system using CTOIFBS can be significantly improved over the original underwater hyperspectral
image system without BS.

Keywords: constrained-target optimal index factor band selection (CTOIFBS); hyperspectral image;
underwater spectral imaging system; underwater hyperspectral target detection; band selection (BS);
constrained energy minimization (CEM)

1. Introduction

Underwater target detection using the images acquired by traditional red-green-blue (RGB)
cameras has become more and more mature where traditional image processing methods [1,2] and
target detection algorithms based on deep learning, such as Faster Region-based Convolutional Neural
Networks (Faster R-CNN) [3] and You Only Look Once (YOLO) [4], have been widely applied to
underwater target detection. In an ideal underwater imaging environment, the detection speed and
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accuracy of various algorithms can reach a high level of performance. However, the traditional
RGB image detection technology suffers from a series of problems. When the underwater imaging
environment is poor and marine animals have their protective color mechanism, it is difficult to detect
and identify targets of interest effectively from the complex background [5,6].

Hyperspectral imaging technology can provide a higher spectral resolution than RGB images, and
its band coverage can range from ultraviolet, visible, near-infrared to mid-infrared bands and provides
wealthy spectral information. Hyperspectral data is generally acquired by hundreds of contiguous
narrow spectral bands, which can resolve the problems encountered in traditional RGB image detection
technology and also make it have a good ability to identify targets and distinguishing similar targets.
Classical hyperspectral target detection algorithms include an anomaly detector developed by Reed and
Xiaoli, called the RXD algorithm [7], kernel RXD (KRXD) algorithm [8], orthogonal subspace projection
(OSP) algorithm [9], and constrained energy minimization (CEM) algorithm [10]. Among them, CEM
is a subpixel target detection algorithm that has been shown to be an effective and promising technique
when only the target spectrum of interest is known and the background spectrum is unknown. So, it is
quite suitable for target detection in a complicated underwater background and environment with
insufficient prior knowledge.

At the present time, only a few studies on hyperspectral underwater target detection are available
in the literature and most of them mainly focused on three aspects. First, in order to ensure that
the hyperspectral imager can accurately extract key information in the complex marine environment
when collecting underwater images, the designed key technologies are different. Second, since a
hyperspectral image has a large number of spectral bands with very high spectral resolution, it has
good target recognition ability. However, this is also traded for a slow imaging speed, enormous data
volume, long transmission cycle, and slow calculation speed, all of which cannot be suitable for the
remote operated vehicle (ROV) platform and real-time underwater target detection [11,12]. Third,
hyperspectral underwater target detection technology tends to have strategic significance in both
military and economic aspects. So, the degree of technological openness is extremely limited.

Because of the low imaging speed and long processing time of underwater hyperspectral
images, the current research on underwater spectral imaging and detection is mainly focused
on the detection of underwater pipelines, the distribution and species detection of underwater
plants and microorganisms, etc. [13–17], but the capability of real-time detection is low. Some
researchers have complied a spectral library for recognition and detection of different underwater
targets. Kuniaki Uto et al. [18] classified the objects of interest by measuring their average spectral
curves of cauliflower and sand to calculate their resultant correlation coefficient. Tegdan [19] et al. used
a spectral library of some known objects of interest to achieve automatic recognition of other objects.
An underwater hyperspectral imaging (UHI) system, jointly developed by Norwegian company
Ecotone and Norwegian Underwater application robotics, is an optimized underwater hyperspectral
imaging system, which can be used for underwater hyperspectral remote sensing. This system is
capable of collecting information in the full color spectrum (370–800 nm).

In this paper, sea cucumbers are selected as our primary underwater targets due to its economic
value on gross domestic product (GDP) growth in Dalian, China. Marine aquaculture is one of Dalian’s
pillar industries with an annual output value of more than 3.5 billion US dollars. Sea cucumbers are the
major seafood products to account for the most revenue. At present, the main methods for fishing sea
cucumbers, abalone, and other sea treasures rely on diver operation and submarine trawl operation.
However, such diver operation is inefficient, and the deep-sea environment is extremely harmful to the
health of divers. On the other hand, the submarine trawl operation generally causes severe damage to
the underwater ecological environment. Therefore, autonomous fishing of seafood using underwater
robots has become the most effective solution, and the rapid detection of underwater objects is a key
issue that needs to be solved urgently.

Comparing to other targets, sea cucumber detection has more difficulty and greater challenges
because sea cucumbers have a strong protective color mechanism. It is difficult to observe using
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color and texture characteristics when ordinary RGB cameras are used for underwater observation.
However, the sea cucumber exhibits relatively obvious reflectance characteristics in some special bands,
which is the exact reason why we use hyperspectral technology to solve this problem.

The methods described above can effectively apply hyperspectral imaging technology to
underwater biological classification and detection but cannot achieve real-time detection of underwater
targets [20]. For the target to be detected, if its sensitive bands can be selected for detection in advance,
the image processing speed can be increased to satisfy the real-time requirements. Gleason [21]
found that the bands of 546, 568, and 589 nm could more easily separate corals and algae from
other background objects. So, a multi-spectral camera could be constructed by six bands for fast
acquisition of images for target detection. Experiments show that compared to the traditional RGB
cameras, the six-band multi-spectral cameras had better performance in detecting submarine corals.
However, the selected bands used for coral detection in the experiments were obtained as a by-product
of other experiments, which are not applicable to other underwater targets and are not universal.
Therefore, a reliable BS method needs to be designed so that it can select representative band subsets
for different targets.

The researchers put forward some effective methods for BS. For example, information divergence
(ID) selects bands according to the difference between the probability distributions of a measured band
and its corresponding Gaussian probability distribution. The maximum-variance principal component
analysis (MVPCA) developed in [22] first performed PCA transformation on the original data and then
constructed the loading factor matrix from the obtained eigenvectors and eigenvalues. The priority
of a band was determined by the variance of its corresponding loading factor. However, the bands
selected according to such band prioritization methods were usually highly correlated. By factoring
band correlation into consideration, the optimal index factor (OIF) [23] method was developed to find
the largest OIF index. Yang et al. [24] proposed a BS method based on linear prediction, which used
linear prediction as a similarity measure to find the next least similar band by sequential forward
selection. All of the described methods select band subsets in accordance with the characteristics of the
data itself and are not designed to select an optimal band subset for a specific target.

For target detection, Yuan et al. [25] proposed a multigraph determinantal point process (MDPP)
model to effectively search for discriminative band sets. Wang [26] proposed the multi-band selection
(MBS) method, which did not require prioritizing the bands but relied on a specific application to select
desired bands. Based on the concept of CEM, Geng [27] proposed a sparse constrained band selection
(SCBS), which is convenient for solving the global optimal solution and avoids the complicated subset
search process. Wang et al. [28] proposed a new multi-target detection BS method, MinV-BP, which
minimized the variance generated by the target of interest to measure the priority of the band.

This paper proposes a real-time detection method for hyperspectral underwater targets based
on BS. First of all, in order to solve the problems suffering from a large amount of redundant data
and slow acquisition and processing speed of hyperspectral image data, a BS method is designed
in combination with MinV-BP [28] and OIF [23] to select an optimal band subset with strong ability
in characterizing specific targets, called constrained-target OIF band selection (CTOIFBS). Then, an
underwater multi-spectral sensor composed of the selected bands is particularly designed to collect
images to overcome the difficulty of long transmission time of the complete hyperspectral image.
Finally, CEM is used to detect underwater targets. The proposed CTOIFBS not only can extract a set
of bands more suitable for specific targets to improve detection performance but can also meet the
real-time requirements of underwater image acquisition.

2. Materials and Methods

2.1. MinV-BP

The idea of the Minimum Variance Band Prioritization (MinV-BP) is based on CEM, which was
derived from the linearly constrained minimum variance beamformer in the field of digital signal
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processing. It detects signals in a specific direction and minimizes signal interference in other directions,
thereby achieving target detectability from the image and suppressing the background [10].

Suppose {r1, r2, . . . , rN} is a hyperspectral image with N pixels. N is the total number of pixels in
the image. Each pixel, ri = (ri1, ri2, . . . , riL)

T, is an L-dimensional column vector, where L is the number
of bands. Define d as the target spectral signal to be detected, which is known prior information.
The purpose of CEM is to design a linear FIR filter w = [w1, w2, . . . , wL]

T so that its output energy is
minimized under the constraint term (1):

dTw =
∑L

l=1
dlwl = 1 (1)

where w = [w1, w2, . . . , wL]
T is an L-dimensional column vector formed by the filter coefficient.

Suppose the output of the FIR filter corresponding to the input pixel ri is yi defined in Equation (2):

yi =
∑L

i=1
wlril = wTri = ri

Tw (2)

Then, for all input {r1, r2, . . . , rN}, the average energy of the filter output is:

E =
1
N

N∑
i=1

y2
i =

1
N
(rT

i w)
T

rT
i w =

1
N

N∑
i=1

wTrir
T
i w = wT

 1
N

N∑
i=1

rir
T
i

w = wTRw (3)

where R =
(

1
N

)∑N
i=1 rirT

i represents the sample autocorrelation matrix of the L× L dimension. CEM
can be expressed as the following linear constrained optimization problem:

min
w
{E} = min

w
{wTRw} s.t.dTw = 1 (4)

By using the Lagrange multiplier method, the optimal solution and CEM error of Equation (4) are
obtained as follows:

wCEM =
R−1d

dTR−1d
(5)

and:
min

w
wR−1w =

(
wCEM

)T
R−1wCEM =

(
dTR−1d

)−1
(6)

The CEM filter is obtained from Equation (5):

δCEM(r) = (wCEM)Tr =
(

R−1d

dTR−1d

)T

r =
dTR−1r

dTR−1d
(7)

The CEM operator is applied to every pixel in the image to minimize the output energy caused
by other unknown signals so that the target d of interest can be detected to achieve the purpose
of detection.

According to the CEM algorithm, single band minimum variance band prioritization (MinV-BP)
can further use the variance generated by the target of interest to measure the priority of the band
to obtain the band with the best characterization ability for the specific target. Suppose {bl}

L
l=1 is the

band set of hyperspectral image, where bl is a column vector, bl = (bl1, bl2, · · · , blN)
T, representing the

image of the l-th band. {bli}
N
i=1 is the set of all N pixels on the l-th band image bl. According to the

CEM error derived from Equation (6), MinV-BP is defined as:

V(bl) =
(
dT

bl
R−1

bl
dbl

)−1
(8)

Using Equation (8), MinV-BP can obtain the band priority sequence for the target of interest.
Where, the smaller the variance, the higher the priority. The larger the variance, the lower the priority.
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In short, the advantage of MinV-BP is that it can give higher priority to the band with strong target
characterization ability through the minimum variance criterion. However, when MinV-BP prioritizes
the bands, it only considers the ability of the bands to represent the target vector but does not consider
the strong correlation and redundancy between the bands. As a result, the bands with high priority
in the resulting sequence are largely adjacent bands with a strong correlation. Therefore, how to
de-correlate the priority bands and obtain a band set with weak correlation and stronger discrimination
ability is a subsequent problem to be solved.

2.2. OIF

Chavez et al. [23] proposed the optimum index factor (OIF) defined as:

OIF =
L∑

i=1

Si/
L∑

i=1

L∑
j=i+1

∣∣∣Ri j
∣∣∣ (9)

to evaluate the amount of information in a dataset where Si and Ri j represent the standard deviation
of the l-th band and the correlation coefficient between band i and j, respectively, and L is the total
number of bands. The standard deviation is used to represent the amount of image information. Based
on the ratio of the amount of information in the band set to the correlation coefficient between the
bands defined by:

Ri j =
S2

i j

Si × S j
(10)

A band subset with a large amount of information and a small correlation can be selected as a
band subset. In Equation (10), Si j represents the covariance of bands i and j, and:

S2
i j = Cov(i, j) =

1
n

n∑
w=1

(xiw − xi)(y jw − y j) (11)

where xi represents the spectral grayscale value for the i-th band; xiw represents the gray value of the
w-th pixel in the i-th band; yi represents the spectral grayscale value for the j-th band; y jw represents
the gray value of the w-th pixel in the j-th band; N represents the number of pixels in a single band and
n is the n-th pixel in the band, 1 ≤ n ≤ N.

In other words, for a hyperspectral image containing L bands, the standard deviation of the
single-band image and the correlation coefficient matrix of each band are calculated first, and then the
OIF index corresponding to all possible band subsets are calculated subsequently, and the optimal
band subset is finally selected according to the index value.

2.3. Constrained-Target OIF Band Selection

Hyperspectral data generally have very high band correlation and data redundancy. In order to
mitigate this problem, a BS method with target constraints, called constrained-target optimum index
factor BS (CTOIFBS), is developed in this paper. It first prioritizes all bands by MinV-BP to obtain a
band priority sequence. The smaller the variance, the higher the priority of the band, and the stronger
the ability of the band to represent the target. It is then followed by estimating virtual dimensionality
(VD) [10,29–31] to determine the required number of bands, nBS, where VD is defined as the number of
spectrally distinct signal sources present in the data that can effectively characterize the hyperspectral
data from a perspective view of target detection and classification. In this case, the first n bands with
higher priorities in the sequence are clustered into nBS clusters by a K-means method to remove the
band correlation. As a result, the band correlation in the same cluster will be high, while the band
correlation between different clusters will be low. Finally, a band is selected from each cluster to form a
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band subset. The OIF value of the band subset is then calculated. The band subset with the largest OIF
value is selected as the best band subset. The CTOIFBS process is as follows.

Algorithm CTOIFBS

Input: Hyperspectral image data Ω

Output: The optimal band set Ω∗nBS

1. According to (8), all bands bl in Ω are ranked to obtain the priority sequence of bands,

bl1 � bl2 � · · · � blL , where bl j � blk ⇔ V(bl j

)
< V(blk ), the notation “�” is used to indicate “superior to”.

2. The required number of bands nBS is determined by VD.

3. The first n bands of priority sequence obtained in step 1 were divided into nBS bands set Ωk by K-means,

where Ωk= {b
k
1, bk

2, . . . , bk
nk

}
, 1 ≤ k ≤ nBS, nk denotes the number of bands included in ΩnBS , n =

∑nBS
i=1 nk.

4. Combining the bands in Ωk, Ω∗ = {Ω1 × · · · ×ΩK}, where “×” stands for cartesian product. Ω∗ contains
M band sets, M = n1 × n2 × · · ·nK. Then calculate the OIF value of each band set in Ω∗.

5. The maximum OIF value is selected as the optimal band set Ω∗nBS
.

A flowchart implementing CTOIFBS is shown in Figure 1.
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Figure 1. A flowchart of implementing CTOIFBS (constrained-target optimal index factor
band selection).

Using the MinV-BP criterion, a band priority sequence for the target of interest can be obtained,
and then bands with strong characterization of the target can be selected from all the band sequence.
However, there is still a problem, which is high inter-band correlation in this band sequence. OIF
takes two factors into account: variance and correlation coefficient. Theoretically, the optimal band
subset with large information amount and small inter-band correlation can be obtained by optimizing
the priority sequence of the band using OIF. However, it has been found in experiments that the
use of OIF alone to process band priority sequences was not effective since a band subset with high
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correlation will still be selected. This is because OIF strives to make the standard deviation of the
selected bands as large as possible, while the correlation coefficient between the bands is as small as
possible. Unfortunately, it is difficult to achieve the best of both measures [15]. Therefore, instead of
selecting the first n bands of the priority sequence directly by the OIF index as a band subset, CTOIFBS
is developed to use clusters to perform band de-correlation prior to using OIF. That is, the selected
candidate bands are divided into several subsets to further reduce the band correlation and band
redundancy. The advantages of such cluster-based band de-correlation have two advantages. One
is the pre-grouping process, which reduces the total number of band subset to be compared so that
computational complexity can be greatly reduced. The other is clustering by a K-means method in
advance to effectively remove band redundancy so as to improve subsequent detection performance.

2.4. Underwater Spectral Imaging System

Using an underwater spectrum camera composed of a best-selected band subset to collect the
target image can greatly reduce data redundancy and solve the problem of long transmission time of a
complete hyperspectral image. However, due to the complicated underwater imaging environment
on the one hand and the difficulty in finding the proper loader or vehicle on the other hand, the
development of underwater spectral imaging technology is still far from that of atmospheric spectral
imaging. Therefore, how to design a suitable underwater spectral imaging (USI) system is the very key
to success in realizing the rapid detection of hyperspectral underwater targets.

The core of the spectral imaging system is the optical splitting system. The spectroscopic techniques
currently being used are based on dispersion, filtering, and interferometry, and commonly used optical
splitting components include gratings, prisms, and various filters. This paper develops a filter wheel
spectral camera to collect spectral images. There are several reasons. First of all, it has a wheel with
multiple single band-pass filters to collect spectral information of different bands, which is suitable for
the case of fewer bands needed. Second, a narrow band filter has a high transmittance, so it is suitable
for the special light conditions under water. Third, it adapts to different filter combinations that can be
changed according to different objects. Fourth, this type of camera is much cheaper than the commonly
used liquid crystal tunable filter (LCTF) spectral camera.

Therefore, this paper builds an underwater spectral imaging system based on a filter wheel spectral
camera, as shown in Figure 2. Its main components include a FLIR Blackfly S USB3 CCD camera
and its corresponding lens, electric filter wheel, and single band-pass filters with the wavelengths
between 400 and 830 nm at intervals of 10 nm. These filters have a bandwidth of 14nm and a cut-off

depth of OD3 and a single chip microcomputer for controlling the camera and filter wheel. All the
above parts are packed in a watertight enclosure. This system uses electric filter wheels to collect
single-band images in different bands and synthesize the target’s spectral image. It is also possible to
obtain spectral images of different band subsets by replacing the filter combinations on the filter wheel.
It is important to note that the spectral filter wheel designed is not limited to the USI system and can
be applicable to various beam splitters, such as LCTF, acousto-optic tunable filter (AOTF), or spectral
filter array (SFA) according to their application scenarios and costs.
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3. Results and Discussion

The experiments conducted in this section are divided into three parts. The first part is to
validate the performance of the CTOIFBS on a real hyperspectral image, i.e., hyperspectral digital
imagery collection experiment (HYDICE) data. A second part is to apply CTOIFBS to real underwater
hyperspectral data and to use the calibrated image to select a band subset to validate the CTOIFBS
used for the test image. A third part is to design an underwater spectral imaging system to be
used to collect the band images of underwater targets according to bands selected by CTOIFBS for
detection to verify the feasibility of the USI system for rapid detection of underwater targets and the
superiority of CTOIFBS to other BS methods. To further justify the three BS methods, UBS, MinV-BP,
and MinV-BP-OIF along with full bands are compared in the experiments where MinV-BP-OIF uses
OIF to directly select the optimal band subset for the first n bands selected by MinV-BP. The main
difference between CTOIFBS and MinV-BP-OIF is that prior to calculating the OIF value, CTOIFBS uses
the K-means method to divide the first n bands selected by MinV-BP into nBS spectral low-relevance
clusters. Then, CTOIFBS combines each band from various clusters to form a band subset and then
selects a band subset with the largest OIF value as the desired band subset. Comparing to MinV-BP-OIF,
the correlation among the bands selected by CTOIFBS is lower than MinV-BP-OIF. In addition, the
required number of bands for HYDICE and real underwater hyperspectral data of sea cucumbers were
determined by virtual dimensionality (VD) [10,29], which are six and five, respectively. Finally, visual
inspection and quantitative analysis are also used to analyze and compare the performance of various
BS methods.

Specifically, a 3D receiver operating characteristic (ROC) analysis-based quantitative analysis
developed in [32,33] was conducted by calculating the area under the curve (AUC) for the 2D ROC
curves of (PD, PF), (PD, τ), and (PF, τ) widely used in target detection where PD and PF represent the
detection probability and the false alarm probability defined in [34], respectively, which were produced
by using a different τ range from 0 to 1 to binarize the normalized detection result. The AUC values of
(PD, PF), (PD, τ), and (PF, τ) were used to measure the overall detection performance, target detection
capability, and background suppression ability of a detector, respectively. It should be noted that the
higher the AUC values of (PD, PF) and (PD, τ) are, the better the detection performance of the detector is.
Conversely, the smaller the AUC value of (PF, τ), the better the suppression ability of the background.

3.1. Real HYDICE Image

This real HYDICE scene has been widely used in target detection. It has a spatial resolution of
1.56 m and contains 169 spectral bands with a size of 64 × 64. There are 15 panels divided into five
types of targets, p1, p2, p3, p4, and p5, which are distributed on each row with three different sizes,
3 × 3 m, 2 × 2 m, and 1 × 1 m, respectively shown in Figure 3a. Figure 3b shows their precise spatial
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locations with the pixels in yellow (Y pixels), indicating panel pixels mixed with the BKG. In addition,
there are a total of 19 panel pixels highlighted by red, which are the target pixels to focus on.
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Figure 3. (a) Hyperspectral digital imagery collection experiment (HYDICE) scene. (b) Ground truth
map of the 15 panels.

Table 1 shows the band subsets selected by four BS methods along with full bands for target
p1, p2, p3, p4, and p5 in the HYDICE image. Unlike UBS, which is independent of targets, when the
desired targets are different, the bands selected by three BS methods for target detection, MinV-BP,
MinV-BP-OIF, and CTOIFBS, are also different. Figure 4 shows the detection results of each target
under different sets of bands using CEM. From the intuitive detection results, it can be seen that the
detection results are best when using the full bands with the background well suppressed. When using
the set of bands selected by MinV-BP and UBS to detect targets, undesired targets respond strongly
and are clearly detected. Moreover, the detection results of UBS showed that the band selected by UBS
had a weak suppression ability on the background. Finally, compared with the MinV-BP-OIF and
CTOIFBS methods, it can be obtained that CTOIFBS has a better ability to detect targets and has a good
background suppression effect.

Table 1. Optimal band subsets selected by four BS (band selection) methods along with full bands.

Target Method Band Set

Full bands 1:1:169

UBS 1 29 57 86 114 142

p1

MinV-BP 169 122 123 168 167 166
MinV-BP-OIF 133 134 98 99 135 100

CTOIFBS 122 169 131 98 162 149

p2

MinV-BP 122 169 123 132 133 131
MinV-BP-OIF 136 98 137 138 99 100

CTOIFBS 159 100 137 128 122 98

p3

MinV-BP 122 123 132 133 124 131
MinV-BP-OIF 52 53 51 54 99 100

CTOIFBS 124 98 128 53 101 169

p4

MinV-BP 123 122 124 125 127 128
MinV-BP-OIF 99 100 101 102 103 104

CTOIFBS 99 103 124 137 127 122

p5

MinV-BP 122 123 124 125 126 168
MinV-BP-OIF 127 134 135 98 138 145

CTOIFBS 167 159 98 157 128 163

UBS: uniform band selection; MinV-BP: minimum variance band priority; MinV-BP-OIF: minimum variance band
priority with OIF; CTOIFBS: constrained-target optimal index factor (OIF) band selection.
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Figure 4. CEM (constrained energy minimization) detection map results using different band subsets
selected by four BS (band selection) methods along with full bands: (a) Full bands; (b) MinV-BP:
minimum variance band priority; (c) MinV-BP-OIF: minimum variance band priority with OIF;
(d) CTOIFBS: constrained-target optimal index factor (OIF) band selection; (e) UBS: uniform
band selection.

In addition to analyzing the performance of various BS methods by visual inspection, the
experiment also performed quantitative analysis. Table 2 tabulates the AUC values of the five BS
methods where the best and worst results are highlighted by red and green, respectively. The higher the
AUC value, the better the detection, that is, the better the selected band subset to represent the target.
As expected, the results using full bands were the best. However, among all the four BS methods,
CTOIFBS generally outperformed the other three BS methods in terms of (PD, PF). In order to further
demonstrate the effectiveness of CTOIFBS, Table 3 ranks the AUC value of (PD, PF) of various methods.
The last row of Table 3 ranks the total target detection capability by the BS methods. The smaller the
value, the better detection capability of the selected band subset. Among them, the value of full bands
is five, ranking first, and the detection capability is the best. CTOIFBS scores 13, which is only worse
than full bands. Although CTOIFBS is slightly inferior to using the full bands in detection performance,
its transmission time and processing time are much lower than using the full bands due to the reduced
data dimensionality. In addition, CTOIFBS performed better than MinV-BP, MinV-BP-OIF, and UBS
assuming that the same number of selected bands was used.
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Table 2. AUC (area under the curve) values of detection results for target p1, p2, p3, p4, and p5 using
four BS (band selection) methods along with full bands: (a) AUC values of detection results for target
p1; (b) AUC values of detection results for target p2; (c) AUC values of detection results for target p3;
(d) The AUC values of detection results for target p4; (e) AUC values of detection results for target p5.

(a)

Method (PD, PF) (PD, τ) (PF, τ)

Full bands 0.9993 0.6017 0.0328
MinV-BP 0.8179 0.7017 0.3120

MinV-BP-OIF 0.9794 0.5817 0.1603
CTOIFBS 0.9274 0.6583 0.2418

UBS 0.9784 0.5550 0.2170

(b)

Method (PD, PF) (PD, τ) (PF, τ)

Full bands 0.9998 0.8375 0.1012
MinV-BP 0.9847 0.4975 0.2378

MinV-BP-OIF 0.9943 0.5875 0.2534
CTOIFBS 0.9978 0.8200 0.2266

UBS 0.9837 0.3725 0.1160

(c)

Method (PD, PF) (PD, τ) (PF, τ)

Full bands 0.9997 0.7425 0.0519
MinV-BP 0.9914 0.4850 0.2113

MinV-BP-OIF 0.9937 0.7650 0.3161
CTOIFBS 0.9968 0.5775 0.2989

UBS 0.9895 0.6775 0.2412

(d)

Method (PD, PF) (PD, τ) (PF, τ)

Full bands 0.9998 0.7750 0.0546
MinV-BP 0.9953 0.5700 0.1868

MinV-BP-OIF 0.9944 0.8150 0.3585
CTOIFBS 0.9985 0.7775 0.1918

UBS 0.9954 0.5925 0.1007

(e)

Method (PD, PF) (PD, τ) (PF, τ)

Full bands 0.9998 0.7000 0.0495
MinV-BP 0.9960 0.6175 0.1574

MinV-BP-OIF 0.9952 0.7500 0.2148
CTOIFBS 0.9935 0.5625 0.2187

UBS 0.9954 0.7000 0.0988

MinV-BP: minimum variance band priority; MinV-BP-OIF: minimum variance band priority with OIF; CTOIFBS:
constrained-target optimal index factor (OIF) band selection; UBS: uniform band selection.

Table 3. Order of the AUC (area under the curve) values of (PD, PF) of four BS (band selection) methods
along with full bands.

Full Bands MinV-BP MinV-BP-OIF CTOIFBS UBS

p1 1 5 2 4 3
p2 1 4 3 2 5
p3 1 4 3 2 5
p4 1 4 5 2 3
p5 1 2 4 5 3

SUM 5 19 17 13 19

MinV-BP: minimum variance band priority; MinV-BP-OIF: minimum variance band priority with OIF; CTOIFBS:
constrained-target optimal index factor (OIF) band selection; UBS: uniform band selection.
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3.2. Underwater Hyperspectral Image

In this section, real hyperspectral data were collected and conducted for sea cucumber detection
to validate the performance of CTOIFBS. To demonstrate the effectiveness of CTOIFBS, several
state-of-the-art BS methods, full bands, UBS, MinV-BP, and MinV-BP-OIF are compared by experiments
where the required number of bands is five determined by VD. Finally, detection results and quantitative
analysis were used to analyze and compare the performance of various BS methods. Specifically,
quantitative analysis was conducted by the area under the curve (AUC) widely used in target detection.

The data used in our experiments were underwater sea cucumber images collected by a
hyperspectral imager, covering 256 bands with a spectral range of 0.4 to 1.05 nm. Due to the
fast attenuation of infrared bands in underwater, the sensor could not collect enough information from
infrared bands. So, part of the infrared bands (171–256) were removed, and only 1–170 bands were
analyzed for experiments with a spectral coverage of 0.4~0.825 nm. Shown in Figure 5a,b are the RGB
images of the calibrated data and their corresponding mask image, respectively.
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Figure 5. Sea cucumber data for experiments: (a) RGB image of calibrated data; (b) ground truth map
of calibrated data; (c) RGB image of validated data; (d) ground truth map of validated data.

We have plotted the spectra for five types of ground features, including the sea cucumber, sand,
pebble, clam, and scallop from calibrated data, as shown in Figure 5a, where the sea cucumber was
selected as the target of interest and the other four features as the background. The obtained spectra
were used to mark the spectral bands location (points) selected by the four BS methods in Table 4,
which is shown in Figure 6 using red vertical dashed lines for visual inspection and comparison among
correlation of the selected band sets.

Table 4. Band subsets selected by four BS (band selection) methods along with full bands.

Method Band Set

Full bands 1:1:170
MinV-BP 170 168 43 46 36

MinV-BP-OIF 170 168 169 167 29
CIOIFBS 34 43 29 58 170

UBS 1 35 69 103 137

MinV-BP: minimum variance band priority; MinV-BP-OIF: minimum variance band priority with OIF; CTOIFBS:
constrained-target optimal index factor (OIF) band selection; UBS: uniform band selection.
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Figure 6. Bands selected by four BS (band selection) methods: (a) MinV-BP: minimum variance band
priority; (b) MinV-BP-OIF: minimum variance band priority with OIF; (c) CTOIFBS: constrained-target
optimal index factor (OIF) band selection; (d) UBS: uniform band selection.

On the one hand, comparing to MinV-BP and MinV-BP-OIF, CTOIFBS took the correlation among
bands into consideration. As a result, the bands selected by CTOIFBS were more dispersed and
contained more spectral information. On the other hand, although the distribution of band selected
by UBS was more dispersed than the other three methods, the detection results were not satisfactory.
This is because UBS did not consider the special relationship between the target and its selected bands.
Consequently, it was unable to select bands pertaining to target information compared to the band set
selected by CTOIFBS, which can effectively avoid high correlation between bands and can be further
used to characterize targets of interest.

Table 5 shows the correlation coefficient among bands in each band subset selected by a different
BS method where the greater the value between two bands in a band subset, the higher the correlation
between these two bands. So, a better band subset should have less correlation among its bands.
Furthermore, Table 6 shows the mean correlation coefficients among bands selected by different
BS methods.
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Table 5. Correlation coefficient matrices of the band subset selected by four BS (band selection) methods:
(a) correlation coefficient matrix of the band subset selected by MinV-BP; (b) correlation coefficient
matrix of the band subset selected by MinV-BP-OIF; (c) correlation coefficient matrix of the band subset
selected by CTOIFBS; (d) correlation coefficient matrix of the band subset selected by UBS.

(a)

Band no. 170 168 43 46 36

170 1
168 0.9913 1
43 0.8840 0.8887 1
46 0.8958 0.9018 0.9928 1
36 0.8420 0.8440 0.9809 0.9651 1

(b)

Band no. 170 168 169 167 29

170 1
168 0.9913 1
169 0.9918 0.9923 1
167 0.9904 0.9928 0.9919 1
29 0.8016 0.8023 0.8021 0.8024 1

(c)

Band no. 34 43 29 58 170

34 1
43 0.9711 1
29 0.9920 0.9518 1
58 0.8261 0.9237 0.7890 1

170 0.8269 0.8840 0.8016 0.8958 1

(d)

Band no. 1 35 69 103 137

1 1
35 0.9212 1
69 0.5197 0.7005 1

103 0.4206 0.6024 0.9694 1
137 0.6408 0.7946 0.9405 0.9227 1

Table 6. Mean correlation coefficients of four BS (band selection) methods.

Method MinV-BP MinV-BP-OIF CTOIFBS UBS

Mean correlation coefficient 0.9186 0.9158 0.8862 0.7432

MinV-BP: minimum variance band priority; MinV-BP-OIF: minimum variance band priority with OIF; CTOIFBS:
constrained-target optimal index factor (OIF) band selection; UBS: uniform band selection.

From Table 6, it can be seen that compared to the other two target-constrained BS methods, the
mean correlation coefficient among the bands selected by CTOIFBS is the smallest, which validates
the advantage of CTOIFBS in reducing correlation between bands during the BS. It is worth noting
that although the mean correlation coefficient among the bands selected by UBS is the smallest, its
detection results were poor due to its inability to select effective bands to characterize the target.

According to the band subsets selected by different BS methods in Table 4, their corresponding
band images of the calibrated data shown in Figure 5a were synthesized. CEM was then used to detect
sea cucumbers, and the detection results of using full bands and band subsets selected by four BS
methods were shown in Figure 7. The brighter a pixel in the image is, the higher the probability that
the pixel is considered to be more likely a target by the detector. It is also observed that the target pixels
detected with a band set selected by UBS were not obvious and have been buried in the background.
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Furthermore, the AUC values calculated in Table 7 were also used to quantitatively analyze the effect
of different BS methods on detection performance where the best and worst results are highlighted
by red and green, respectively. Comparing to the AUC values of (PD, PF), the full band was the best
followed by CTOIFBS, MinV-BP-OIF, and MinV-BP, and finally, UBS.Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 21 
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Figure 7. Detection results of the calibrated data of the RGB image and ground truth map shown in
Figure 5a,b by full bands and four BS methods: (a) Full bands; (b) MinV-BP: minimum variance band
priority; (c) MinV-BP-OIF: minimum variance band priority with OIF; (d) CTOIFBS: constrained-target
optimal index factor (OIF) band selection; (e) UBS: uniform band selection.

Table 7. AUC (area under the curve) values of five BS (band selection) methods.

Method (PD, PF) (PD, τ) (PF, τ)

Full bands 0.9022 0.5783 0.4917
MinV-BP 0.7315 0.3511 0.2998

MinV-BP-OIF 0.7577 0.3666 0.3145
CTOIFBS 0.7961 0.3522 0.3176

UBS 0.6148 0.4717 0.4601

MinV-BP: minimum variance band priority; MinV-BP-OIF: minimum variance band priority with OIF; CTOIFBS:
constrained-target optimal index factor (OIF) band selection; UBS: uniform band selection.

In order to further validate the effectiveness of CTOIFBS in detecting underwater targets, an
additional experimental image was also selected for testing the performance of various BS methods.
Figure 8 shows the detection results of sea cucumbers on the test image using a set of bands selected in
Table 4. Table 8 tabulates their AUC values where the best and worst results are highlighted by red
and green, respectively. According to the AUC values of (PD, PF) in Table 8, the detection result of
CTOIFBS was higher than that of other BS methods, MinV-BP, MinV-BP-OIF, and UBS using the same
number of bands. As expected, the CTOIFBS result was only worse than that of using full bands. This
proves that it is feasible to use the band subset selected by CTOIFBS for underwater target detection.
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Figure 8. Detection results of the validated data of the RGB image and ground truth map shown in
Figure 5c,d by full bands and four BS methods: (a) Full bands; (b) MinV-BP: minimum variance band
priority; (c) MinV-BP-OIF: minimum variance band priority with OIF; (d) CTOIFBS: constrained-target
optimal index factor (OIF) band selection; (e) UBS: uniform band selection.
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Table 8. AUC (area under the curve) values of four BS (band selection) methods along with full bands.

Method (PD, PF) (PD, τ) (PF, τ)

Full bands 0.9396 0.5494 0.4036
MinV-BP 0.8482 0.5566 0.4542

MinV-BP-OIF 0.8442 0.6199 0.5181
CTOIFBS 0.9318 0.5349 0.4357

UBS 0.7460 0.3099 0.2914

MinV-BP: minimum variance band priority; MinV-BP-OIF: minimum variance band priority with OIF; CTOIFBS:
constrained-target optimal index factor (OIF) band selection; UBS: uniform band selection.

The above real image sea cucumber image experiments also proved that it was feasible to use
the band subset selected by CTOIFBS for underwater target detection. Although the detection result
of CTOIFBS is slightly worse than that of using full bands, the acquisition and transmission speeds
are considerably faster than using full bands because a smaller number of bands were used, and the
smaller amount of image data is being processed. Table 9 shows the detection speeds of using full
bands and CTOIFBS under the same experimental environment.

Table 9. Comparison of the average speed of two methods for detecting a single image.

Method Detection Speed (ms)

Full bands 494
CTOIFBS 98

CTOIFBS: constrained-target optimal index factor (OIF) band selection.

From Table 9, the process of using full bands consumed a great deal of time, which was reflected
in imaging, transmission, and processing. Under the effect of water flow, target movement, and other
factors, a USI system needs to detect the target quickly. Obviously, a USI system using full bands cannot
meet the requirement for rapid detection of an underwater target. In addition, studies have found
that using full bands may incur an issue of the Hughes phenomenon [35], that is, high dimensionality
may decrease the detection accuracy. Furthermore, the experiments further demonstrated that the
detection results of CTOIFBS could be very close to that obtained using the full bands. With all things
considered above, a USI system with full bands is not suitable for underwater rapid target detection.

3.3. Underwater Spectral Imaging System

In order to verify that the collected target spectral data by the constructed underwater spectral
imaging (USI) system can accurately detect underwater targets, two experiments were set up in this
section. The first experiment was conducted by comparing the hyperspectral data using the selected
band subset to the multi-spectral data collected by the USI system using the same band subset under
similar scenes to prove that the multi-spectral data collected by the USI system has consistent feature
expression capability with the hyperspectral images. A second experiment was also conducted under
the same scenes to compare the detection performance of data collected by the USI system using
different BS methods to verify the detection capability of CTOIFBS.

3.3.1. First Experiment: Compatibility of USI to HSI

In order to show that the multi-spectral data collected by the USI system have the same feature
expression ability as the hyperspectral images, the experiment collected the hyperspectral data and
the filter bands corresponding to the band subset selected by CTOIFBS in similar scenes. Because the
bands selected by CTOIFBS are 470, 480, 500, 540, and 830 nm, the band images corresponding to the
hyperspectral data were extracted to form a band subset for subsequent target detection. Figure 9
shows the images collected by two methods and their corresponding detection results of sea cucumbers
in similar scenes.
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Figure 9. Images collected by two methods and corresponding detection map results in similar scenes.
HSI-01 (a), HSI-02 (c) are hyperspectral images, USI-01 (b), USI-02 (d) are images collected by the USI
system; (e), (f), (g), (h) are the detection results corresponding to (a), (b), (c), (d).

According to the detection results, both methods are capable of detecting sea cucumbers. From
the performance of suppressing non-target pixels, although the image extracted from the HSI data can
suppress the main background, which is sand, it has a high response to interference targets, such as
stones and clams. By contrast, the data collected by the USI system can suppress non-target pixels
more effectively. From the AUC values of (PD, PF) in Table 10, the AUC value detected using the data
collected by the USI system is higher than that using HSI data, indicating that its ability to detect
targets is higher. Of course, due to the difference in the performance of the sensors used by the two
methods, this experiment may not have sufficient evidence to conclude that the detection results based
on the data collected by the USI system must be better than the data using the corresponding band
of HSI. Nevertheless, it can prove that the data collected using the USI system has the same feature
expression ability as the hyperspectral images and can be used for underwater spectral data collection
and target detection.

Table 10. AUC (area under the curve) values for CEM (constrained energy minimization) detection
map results using four images shown in Figure 9.

Data (PD, PF) (PD, τ) (PF, τ)

HSI-01 0.7391 0.1459 0.0831
USI-01 0.8673 0.0901 0.0318
HSI-02 0.8451 0.2173 0.0940
USI-02 0.9274 0.1329 0.0432

3.3.2. Second Experiment: USI System using CTOIFBS

This section uses the data collected by the USI system to compare the performance of the CTOIFBS
with four BS methods. MinV-BP, MinV-BP-OIF, and UBS with their corresponding band subsets
tabulated in Table 11. Then, the single-band images are collected by the USI system, as shown in
Figure 10. Finally, the collected single-band images are integrated into multi-spectral image cubes for
target detection. It should be noted that the single band image-constructed multi-spectral image data
has indeed a spectral resolution of approximate 10 nm, and thus, the filters actually used are rounded
to 10nm.
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Table 11. Band subsets selected by four BS (band selection) methods.

Methods Selected Bands (nm)

MinV-BP 825.6 820.4 506.0 513.5 489.1
MinV-BP-OIF 825.6 820.4 823.0 817.8 472.1

CTOIFBS 484.2 506.0 472.1 542.9 825.6
UBS 400.0 486.7 570.0 654.6 740.7

MinV-BP: minimum variance band priority; MinV-BP-OIF: minimum variance band priority with OIF; CTOIFBS:
constrained-target optimal index factor (OIF) band selection; UBS: uniform band selection.
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CEM was used to detect the sea cucumbers in the composite image of each band subset.
The detection results corresponding to each method are shown in Figure 11.
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Figure 11. Detection map results using four BS (band selection) methods: (a) original image; (b) MinV-BP:
minimum variance band priority; (c) MinV-BP-OIF: minimum variance band priority with OIF; (d)
CTOIFBS: constrained-target optimal index factor (OIF) band selection; (e) UBS: uniform band selection.
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The detection results shown in Figure 11 illustrated that when the set of bands selected by CTOIFBS
was used to detect sea cucumbers, non-target pixels could be removed more effectively compared to
other BS methods. On the contrary, MinV-BP and MinV-BP-OIF had poor ability in distinguishing
the targets from the background, and the response to non-target pixels was also high when the target
was detected. Table 12 shows the AUC values of the detection, and we also highlight the best and
worst results by red and green. According to the AUC values of (PD, PF) in Table 12, UBS has the worst
performance on all four test images. This shows that BS methods based on a constrained-target are
more conducive to target detection. Furthermore, except for image USI-06, the AUC value of CTOIFBS
is the highest. This proves that compared to other BS methods based on a constrained-target, MinV-BP,
and MinV-BP-OIF, CTOIFBS has a better ability to characterize targets.

Table 12. AUC (area under the curve) values of detection using four BS (band selection) methods.

Data Method USI-03 USI-04 USI-05 USI-06

(PD, PF)

MinV-BP 0.6343 0.6008 0.5335 0.7845
MinV-BP-OIF 0.7061 0.7007 0.6414 0.8394

CTOIFBS 0.8603 0.8500 0.7727 0.7859
UBS 0.5997 0.5236 0.5915 0.5460

(PD, τ)

MinV-BP 0.8644 0.9074 0.8831 0.8657
MinV-BP -OIF 0.8660 0.8316 0.9042 0.8893

CTOIFBS 0.9123 0.9024 0.9177 0.9225
UBS 0.9134 0.9611 0.9634 0.9609

(PF, τ)

MinV-BP 0.8349 0.8868 0.8715 0.7950
MinV-BP -OIF 0.8262 0.7641 0.8707 0.8189

CTOIFBS 0.9367 0.9614 0.9579 0.9606
UBS 0.9244 0.9573 0.9528 0.9532

MinV-BP: minimum variance band priority; MinV-BP-OIF: minimum variance band priority with OIF; CTOIFBS:
constrained-target optimal index factor (OIF) band selection; UBS: uniform band selection.

4. Conclusions

Hyperspectral imaging technology has advantages of high spectral resolution and abundant
spectral information. Its applications to underwater object detection can help overcome the problems
of a poor underwater imaging environment and complex background. The fast processing of detecting
underwater hyperspectral targets can be achieved by CTOIFBS, while retaining crucial spectral
information. In the meantime, CTOIFBS also overcomes the imaging and processing speed problems.
Experiments show that the detection performance of the band subset selected by CTOIFBS is better
than that by using other BS methods.
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