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Abstract: Taking advantage of both the polar orbit active remote sensing data (from the Cloud-Aerosol
Lidar with Orthogonal Polarization—CALIOP) and vertical information and the geostationary
passive remote sensing measurements (from the Spinning Enhanced Visible and Infrared Imager)
with large coverage, a methodology is developed for retrieving the volcanic ash cloud top height
(VTH) from combined CALIOP and Spinning Enhanced Visible and Infrared Imager (SEVIRI) data.
This methodology is a deep-learning-based algorithm through hybrid use of Stacked Denoising
AutoEncoder (SDA), the Genetic Algorithm (GA), and the Least Squares Support Vector Regression
(LSSVR). A series of eruptions over Iceland’s Eyjafjallajökull volcano from April to May 2010 and the
Puyehue-Cordón Caulle volcanic complex eruptions in Chilean Andes in June 2011 were selected
as typical cases for independent validation of the VTH retrievals under various meteorological
backgrounds. It is demonstrated that using the hybrid deep learning algorithm, the nonlinear
relationship between satellite-based infrared (IR) radiance measurements and the VTH can be well
established. The hybrid deep learning algorithm not only performs well under a relatively simple
meteorological background but also is robust under more complex meteorological conditions. Adding
atmospheric temperature vertical profile as additional information further improves the accuracy
of VTH retrievals. The methodology and approaches can be applied to the measurements from
the advanced imagers onboard the new generation of international geostationary (GEO) weather
satellites for retrieving the VTH science product.

Keywords: volcanic ash cloud top height; stacked noise reduction encoder; CALIOP radar data;
geostationary satellite imager; retrieval algorithm; deep learning

1. Introduction

Volcanic eruptions are natural disasters that can strongly affect climate and aviation safety [1,2].
Volcanic ash cloud top height (VTH) is a key parameter in the transport models [3]. During the past
two decades, both space-based and ground-based remote sensing techniques have been widely used to
quantitatively estimate the height and concentration of volcanic ash clouds [4–11].

Ground-based remote sensing instruments, such as microwave weather radar, can gather
three-dimensional information of atmosphere with a repeat cycle of few minutes and in all weather
conditions [12]. Many techniques have been developed for retrieving the VTH from these ground-based
remote sensing measurements [12,13], and these approaches typically offer very accurate estimates
of VTH [14,15]. However, these ground-based instruments can only offer observations with spatial
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coverage up to several hundreds of kilometers, which limits their further applications in large
scale monitoring.

Compared with the ground-based instruments, space-based satellites (including both passive and
active sensors onboard the satellites) offer observations with better spatial coverage. Generally, there
are four methodologies for estimating the VTH using space-based remote sensing measurements [7,14],
which includes the parallax method [8,14,16], the wind correlation method [17], the lidar method [18],
and the infrared (IR) radiation method [4–6]. Active lidar method and parallax method have higher
accuracy (with an accuracy better than 200 m). However, the spatial coverage and repeat cycle
are limited for large-scale applications. Passive remote sensing from satellites, especially from the
geostationary (GEO) satellites [5], on the other hand, provides multispectral observations for volcanic
ash with large coverage and high spatial–temporal resolution, but with limited retrieval accuracy.

Since the 1990s, estimates of VTH have been achieved from satellite-based IR observations. By
comparing laboratory measurements of the spectral absorptions of ice clouds, water clouds, and
volcanic minerals, a “reverse absorption” signal was found for volcanic ash [10]. The signal is from the
difference between the absorptions in two IR spectral channels, centered at 11 and 12 µm, and can
be used to distinguish the volcanic ash from land surfaces and other meteorological clouds. Until
now, the Split Window Temperature Difference (SWTD) algorithm, which is based on the reverse
absorption signal, has been widely used for retrieving VTH from satellite-based IR observations [6,19].
However, the reverse absorption signal was found to be effective for volcanic ash retrieval only in
laboratory measurements. When applied to real satellite remote sensing observations, many factors can
influence the signal. For example, the temperature of the volcanic ash, ambient atmospheric conditions,
atmospheric moisture content, atmospheric temperature, and surface emissivity with complicated
spectral, temporal and spatial variations all influence the signal and may lead to failure of the SWTD
method [4,7,20–22].

In addition to the two “split window” channels, there are also other channels that are found
sensitive to the mineral composition and SO2 in the volcanic cloud. For example, volcanic SO2

absorbs strongly in both 7.3 um and 8.6 um spectral regions [23,24]. In addition, a 13.3 µm channel
from the new generation of international GEO weather satellites [25,26] adds considerable sensitivity
to clouds [5,27], which is closely related to VTH. Therefore, the traditional SWTD technique has
been improved through the addition of observations from more IR channels for volcanic SO2 and
ash property retrieval [4,23,27,28]. Based on the combined use of forward radiative transfer model
(RTM) and inverse theory, many algorithms have been developed for retrieving volcanic ash and SO2

parameters (such as height and mass loading), those include the look-up table method [4,6,23,28], a
one-dimensional variational (1DVAR) method [5,29–31], linear statistical regression methods [7], and
neural network method [15,32].

Although those algorithms have been used for retrieving volcanic ash and SO2 parameters in
the past two decades, uncertainties remain. The retrieval uncertainties from those algorithms are
attributed to many factors including observation errors (detector noise, geolocation, calibration and
channel-to-channel coregistration, data processing, etc.), the uncertainty of ancillary data and the
forward RTM, the assumption of cloud vertical structure, and the complicated nonlinear relationship
between volcanic ash parameters and satellite-based IR observations, etc. [7,14,33–37]. It is estimated
that about 40% of total mass retrieval error is attributed to the uncertainties of input parameters
including atmospheric vertical profiles, plume geometry, surface temperature, IR emissivity, and
ash type [28]. In addition, forward RTM calculations are also associated with significant retrieval
uncertainties, especially when performed over land surfaces and under cloudy skies [5,38]. When the
optical thickness of a volcanic ash cloud is low (such as for a semi-transparent cloud), more uncertainties
will contribute to the calculated top-of-atmosphere (TOA) radiances. Furthermore, current RTMs
used in operations have been limited to clear skies or single-layer cloud situations [39]. In case of
vertically distributed multilayer clouds that are blocked by upper meteorological layers, forward
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RTMs cannot accurately simulate the IR radiative transfer process, potentially resulting in large VTH
retrieval uncertainties.

In summary, no single remote sensing system can give a comprehensive description of eruptive
activity [11]. Recently, a multisensor approach for volcanic ash cloud retrieval was developed by
integrating satellite-based passive satellite data and ground-based active weather radar [11], which
provides a way for using multisensor measurements. In our work, data from both passive remote
sensing from GEO and active remote sensing from polar orbit (LEO) satellites are combined using
a hybrid deep learning method for deriving the VTH. The uniqueness of this study consists in the
following: (1) combining active remote sensing data from LEO with vertical information and passive
remote sensing measurements from GEO with large coverage and high spatial–temporal resolution,
and (2) using machine learning techniques to handle the nonlinearity between satellite-based IR
radiances and VTH and avoid the RTM uncertainties in ash cloudy situations, especially in multilayer
cloudy skies. Three machine learning methods, the Stacked Denoising AutoEncoder (SDA), the
Genetic Algorithm (GA), and the Least Squares Support Vector Regression (LSSVR), are used to
remove redundant information among IR channels and solve the multiconstraint nonlinear problem.
The descriptions of those machine learning algorithms are given in the Appendix A. A series of
eruptions over Iceland’s Eyjafjallajökull volcano from April to May 2010, and the eruptions of the
Puyehue-Cordón Caulle volcanic complex (PCCVC) in Chilean Andes in June 2011, were chosen as
typical cases for independent validation of VTH retrievals.

Section 2 introduces the data used in this study. Section 3 describes the methodology based on
the hybrid use of the SDA, the GA, and the LSSVR, for retrieving VTH. Independent validation on
VTH retrievals from the Eyjafjallajökull and PCCVC cases is given in Section 4. The VTH retrieval
sensitivity to the atmosphere temperature profile input is analyzed in Section 5, and the VTH retrieval
sensitivity to feature selection is investigated in Section 6. Uncertainty analysis is given in Section 7.
Section 8 contains the concluding remarks. In addition, the detailed descriptions of the machine
learning algorithms used in this study are given in Appendix A.

2. Data

2.1. SEVIRI L1 Data

Brightness temperature (BT) from Spinning Enhanced Visible and Infrared Imager (SEVIRI) IR
channels, the channel 4 (3.9 µm), 5 (6.25 µm), 7 (8.7 µm), 9 (10.8 µm), 10 (12.0 µm), and 11 (13.4 µm),
were used to build a volcanic ash matchup dataset for training and testing the VTH retrieval model.
SEVIRI is a 12-channel imager onboard the Meteosat Second Generation (MSG) with a repeat cycle of 15
min [40]. SEVIRI data corresponding to the eruptions of interest were downloaded from the European
Organization for the Exploitation of Meteorological Satellites’ (EUMETSAT) Earth observation portal
(https://eoportal.eumetsat.int/userMgmt).

The main physical basis behind the discrimination of volcanic ash in thermal IR observations is
that silicate ash has the opposite spectral signature to water/ice clouds in the thermal IR split window
(which is defined by spectral channels centered on wavelengths near 11 and 12 µm). Based on the
difference between radiances recorded in the split window channels, the height and concentration
of the VTH can be estimated by simulating the radiative transmission through the cloud. Any SO2

gas present in the volcanic ash cloud absorbs strongly around 8.5 µm, where a SEVIRI channel is
centered [41,42]. Furthermore, SEVIRI channel 11 (centered on 13.4 µm) is sensitive to cloud radiative
temperature [27]. To maximize the utilization of information for deriving VTH, data from six thermal
IR channels were included in training the retrieval model and verifying VTH results.

2.2. CALIOP Data

VTH derived from CALIOP L2 cloud top height products with 5 km horizontal resolution was
used as a “true” data for both training and independent validation. CALIOP is an active Cloud-Aerosol
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Lidar, developed jointly by the National Aeronautics and Space Administration (NASA) and the French
Space Agency (CNES). It is the main instrument onboard the Cloud-Aerosol LIDAR and Infrared
Pathfinder Satellite Observation (CALIPSO) platform [18,43,44]. The CALIPSO platform was launched,
together with the CloudSat satellite, on 28 April 2006. CALIPSO is a key satellite within NASA’s
A-train constellation which also includes Aqua, CloudSat, Parasol, and Aura [45]. CALIOP can provide
vertical profiles of clouds and aerosols by measuring backscatter signals at 532 nm (both parallel and
perpendicular) and at 1064 nm [43]. The vertical sampling resolution of CALIOP is 30 m under 8.2 km
and 60 m from 8.2 to 20.2 km. The horizontal resolution is 333 m in the lower troposphere. Three types
of profiles are provided in CALIOP level 1B product: total backscatter (parallel plus perpendicular) at
535 and 1064 nm and the 532 nm perpendicular backscatter. In addition, there are three basic types of
level 2 data products derived from CALIOP at various spatial resolutions, including layer products,
profile products, and the vertical feature mask (VFM) [43]. In this study, the CALIOP level 1B data (532
nm total attenuated backscatter product with 333 m horizontal resolution in the lower troposphere)
were also used to analyze the vertical structure of volcanic cloud and distinguish meteorological cloud
and volcanic ash. CALIOP Level 1B and Level 2 data are available from the NASA Langley Research
Center Atmospheric Science Data Center (ASDC) website (http://reverb.echo.nasa.gov/reverb).

2.3. Atmospheric Profile Data

To account for the influence of atmospheric temperature on the observed radiances, the temperature
vertical profiles from the European Centre for Medium-Range Weather Forecasts’ (ECMWF) reanalysis
data, ERA-Interim, were colocated with the training samples in the training data set. ERA-Interim
data are derived from a much improving atmospheric model and assimilation scheme, relative to
those used for the ERA-40 reanalysis. ERA-Interim data are provided on a grid with a horizontal
resolution of 80 km and 37 vertical levels from the surface to 0.1 hPa. The products include global
three-hourly surface parameters, including ocean-wave and land-surface conditions, and six-hourly
upper-air parameters [46]. For this study, temporally and spatially interpolated temperature profiles
should be used. The data are provided in 37 vertical layers, distributed according to changes in air
pressure. The ERA-Interim data used in this paper were downloaded from the National Center for
Atmospheric Research (NCAR) climate data website (http://www.ecmwf.int/research/era).

2.4. VTH Product From 1DVAR Approach

By constructing a pair of spectral indices (a so-called beta ratio) from observations made at 8.6,
11.0, 12.0, and 13.3 µm, background effects such as surface temperature, surface emissivity, and the
ambient atmospheric conditions can be taken into account. A volcanic ash retrieval approach, which
has served as the official operational volcanic ash algorithm for the National Oceanic and Atmospheric
Administration’s (NOAA) new-generation weather satellite GOES-R series, was developed based on
beta ratios, forward simulations of IR radiances, and 1DVAR inverse method [5,29,47]. This algorithm
(hereafter referred to as the 1DVAR approach) requires real-time or near-real-time (NRT) atmospheric
profile data as input to drive simulations of clear and cloudy sky radiances, and it is more accurate
under clear sky and single-layer cloudy sky conditions.

In this work, VTHs retrieved from SEVIRI radiance measurements using both the 1DVAR approach
and the hybrid deep-learning-based algorithm, are compared and validated with CALIOP VTH product
(see details in Section 4).

2.5. Data Preprocess and Quality Control

There are two main steps to preprocess all sources of data before constructing the hybrid retrieval
model. In the first step, SEVIRI L1 data, CALIOP L2 cloud top data, the atmospheric profile data,
and the VTH product with 1DVAR approach, from the eruptions, were collected and colocated. In
the second step, a CALIOP overpass overlaying on the contemporary SEVIRI RGB false-color image,
together with the volcanic ash mask using NOAA’s volcanic ash detection algorithm [29], were analyzed

http://reverb.echo.nasa.gov/reverb
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(see Figure 1 as an example). The points that fell into the cloud mask area along the contemporary
CALIOP overpass were collected for further analysis. The corresponding CALIOP L2 cloud top heights
of these points are considered as “true” VTH values. In this way, a total of 1900 colocated samples
were collected from the Icelandic Eyjafjallajökull volcanic eruptions, from which 1500 samples were
randomly selected for training while the other 400 samples were used for validation. In addition,
a total of 1280 samples were collected from the eruptions of the Puyehue-Cordón Caulle volcanic
complex (PCCVC), from which 1000 samples were randomly selected as training while the other 280
samples were used for validation.
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Figure 1. An example of Spinning Enhanced Visible and Infrared Imager (SEVIRI) RGB false-color image
(red: 12-10.8µm, green: 10.8-8.7µm, and blue: 10.7µm) from 04:00 UTC on 8 May 2010 (Eyjafjallajökull
eruption). The contemporary Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) overpass
(black line) and volcanic ash mask (yellow area) are overlaid.

3. Methodology

3.1. SDA-GA-LSSVR Model

Deep learning techniques developed for visual pattern and speech recognition have become
more generalized, with improved transfer learning properties [48–50]. Deep learning techniques can
automatically learn features from training data, and this learning can be used for feature extraction to
provide highly effective solutions to pattern recognition problems. In this section, SDA is combined
with the LSSVR and the GA to retrieve VTH from SEVIRI brightness temperatures (BT) measurements.
In order to ensure that overfitting occurs, the k-fold cross-validation was used for training data. Figure 2
is the flowchart for the VTH algorithm in this study. The specific implementation steps are as follows:

1. BT data from the SEVIRI’s 6 IR channels, which are channel 4 (3.9 µm), 5 (6.25 µm), 7 (8.7 µm), 9
(10.8 µm), 10 (12.0 µm), and 11 (13.4 µm), VTH product derived from CALIOP observations, and
atmospheric temperature vertical profile data from the ERA-Interim reanalysis [46] are used as
the original features (samples). These data are preprocessed and further normalized to eliminate
the effect of nonuniform dimension lengths for training the hybrid deep learning model.

2. Based on the collected original features, SDA were performed through the following 3 steps:
(1) To set the values of super-parameters such as the number of nodes in each layer of the SDA
(learning rate = 0.1, input zero masked fraction = 0.5, activation function = “sigm”); (2) To perform
a layer-by-layer pretraining to find the local optimum for each noise-reducing self-encoder
parameter; and finally, (3) the pretrained noise-reducing self-encoder parameters for all layers are
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formed into a neural network, and an unsupervised training is carried out. Through this step,
the network is automatically optimized and the new features which highly represent the main
characteristics of the original data were generated.

3. The new features extracted by the SDA were further passed to the least squares support vector
machine, and the LSSVR model was established to estimate the VTH. In this process, the GA was
used to optimize 2 key parameters for LSSVR, which are the regularization parameter c and the
radial basis function g, respectively.
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Figure 2. Flowchart of procedures in the Stacked Denoising AutoEncoder, Genetic Algorithm, and
Least Squares Support Vector Regression (SDA-GA-LSSVR) model.

3.2. Evaluation of Retrieval Accuracy

Four evaluation indices were used to verify the accuracy of the VTH retrievals during validation:
the bias, the mean absolute percentage error (MAPE), the standard deviation (STD), and the correlation
coefficient (R). The formulae for the four evaluation indexes are defined by the following equations:
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where n is the number of samples used for validation, Yi is the actual value of the ith VTH,
∧

Yi is the

retrieval value of the ith VTH, Zi is the value of
∧

Yi −Yi, and µ is the average of Zi.

4. Results and Validation

4.1. Eyjafjallajökull Eruption

To verify the VTH retrievals from the hybrid SDA-GA-LSSVR model, a series of eruptions over
Iceland’s Eyjafjallajökull volcano from April to May 2010 were selected as typical suitable cases. Back
Propagation (BP), SDA, LSSVR, and GA-LSSVR were used as four benchmark models for comparisons
with the hybrid SDA-GA-LSSVR model, and VTHs from CALIOP data in the independent samples
were used as “truth” data for validation. The four evaluation indices mentioned above are used
for inter-comparisons (Figure 3). Compared with the other four benchmark models, the hybrid
SDA-GA-LSSVR model performs the best, with the lowest bias, STD, and MAPE, and the highest
correlation with the CALIOP VTH product. Therefore, combining SDA, GA, and LSSVR increases the
model performance.
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Figure 3. (a) shows bias and mean absolute percentage error (MAPE); (b) shows standard deviation
(STD) and R calculated for volcanic ash cloud top height (VTH) retrievals using different models
(Eyjafjallajökull eruption).

To analyze the influence of the SDA and the GA optimization on the proposed hybrid model,
the following four additional comparisons were conducted. The first comparison (Comparison I) is
intended to verify the superiority of SDA in terms of the retrieval accuracy. Results from the hybrid
model are compared with those from the GA-LSSVR model. The second comparison (Comparison II) is
intended to assess the contribution of the GA optimization to the LSSVR model by comparing retrievals
from the GA-LSSVR model with those from the LSSVR model. The third and fourth comparisons
(Comparisons III and IV) compare retrievals from SDA model with those from the LSSVR model
and the BP model respectively. The comparison between the hybrid SDA-GA-LSSVR and the hybrid
GA-LSSVR in Table 1 shows that the SDA-GA-LSSVR model achieves reduced bias, STD, and MAPE,
but an increased R. This indicates the advantage of SDA on automatically extracting features through
multiple hidden-layer learning structures without any further prior knowledge. In Comparison II,
the GA optimization effectively improves the accuracy of retrievals from the LSSVR model and can
be used to achieve a strong approximation capability. Comparison III shows that LSSVR is more
effective for small sample learning, and the SDA is more effective for learning with large sample size.
In Comparison IV, results from the SDA model and the BP model are compared because they both use
the same error propagation mechanism in the fine-tuning. The main difference between the SDA and
the BP is in the ways the weights and thresholds are set. In BP, the weights and thresholds are obtained
after initialization, while in the SDA, weights and thresholds are known values, generated after the
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pretraining encoding and decoding steps. Denoising the original data used in the SDA can reduce the
correlation of the input data and increase the robustness of the retrieval.

Table 1. Four evaluation indexes of VTH retrievals from four different methods (Eyjafjallajökull
eruption).

Proportion (%)

Index
(+ for Increase, −

for Decrease)

SDA-GA-LSSVR
VS.

GA-LSSVR
(I)

GA-LSSVR
VS.

LSSVR
(II)

LSSVR
VS.

SDA
(III)

SDA
VS.
BP

(IV)

bias −36.11 −9.24 −37.04 −4.06
STD −12.84 −6.33 −33.05 −2.88

MAPE −37.43 −8.53 −32.51 −0.09
R 4.05 10.44 55.81 12.56

From the scatter plots of the VTHs from three machine learning models, along with the traditional
1-DVAR algorithm and the corresponding VTH product from CALIOP (marked as TRUE) (Figure 4), it
can be seen that the hybrid SDA-GA-LSSVR model has the highest correlation with the “true” data
(R = 0.77). The use of the GA-LSSVR yields a slightly reduced R of 0.74. When only the LSSVR was
used, R is reduced further to 0.67. It is also worth noting that the three machine learning models
generally perform better than the traditional 1-DVAR algorithm (GOES-R series algorithm) in this
particular study.
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4.2. Puyehue-Cordón Caulle Eruption

In the Eyjafjallajökull cases, the meteorological background to the ash was relatively simple and
the influence of meteorological cloud was weak. However, in many other cases, volcanic ash is mixed
with meteorological cloud or consists of more than one vertical layer, which makes the retrieval of
VTH more complicated [7]. To verify the performance of the hybrid SDA-GA-LSSVR model in a more
complex meteorological situation, VTHs retrievals from a series of eruptions over the Puyehue-Cordón
Caulle volcanic complex (PCCVC) in Chilean Andes in June 2011 are evaluated. The four evaluation
indices, bias, STD, MAPE, and R, are shown in Table 2. Compared with the Eyjafjallajökull case, the
bias, STD, and MAPE from the hybrid SDA-GA-LSSVR model increase slightly (Figure 5), which is
probably attributed to the increased complexity of the atmospheric background. In general, the hybrid
SDA-GA-LSSVR model still provides the highest accuracy, with the lowest bias, STD, and MAPE, but
the highest correlation with CALIOP observations in this study, when compared with the other three
machine learning models.
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Figure 5. (a) shows bias and MAPE; (b) shows STD, and R calculated for VTH retrievals using different
models (Puyehue-Cordón Caulle eruption).

The scatter plots of VTH retrievals from the four machine learning models, and the CALIOP VTH
product show that the hybrid SDA-GA-LSSVR model has the highest correlation with the “true” VTHs
(R = 0.79) (Figure 6). When the GA-LSSVR was used, R was decreased to 0.68. When only the LSSVR
was used, R was further decreased to 0.60. It is also worth noting that the four machine learning
models also perform better than the traditional 1DVAR retrieval method under these more complicated
meteorological conditions in this particular study.
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Figure 6. Scatterplots of the “true” VTHs from CALIOP versus the VTHs retrieved from (a)
SDA-GA-LSSVR model, (b) GA-LSSVR model, (c) LSSVR model, and (d) 1DVAR approach
(Puyehue-Cordón Caulle eruption).

Table 2 presents paired comparisons of the four machine learning models. The SDA model shows
an improved estimation ability compared with the BP, as bias, STD, and MAPE are all reduced and R is
increased (Table 2, Comparison IV). For Comparison III, where the SDA is compared to the LSSVR,
both bias and MAPE are increased while STD is decreased. It is therefore difficult to conclude that
the LSSVR results have improved accuracy over the SDA (Comparison III). If the GA is used with the
LSSVR, the accuracy is increased (Comparison II), suggesting that through the hybrid use of the GA
and the LSSVR, the retrieval accuracy could be further improved. If the SDA is further used with the
GA-LSSVR (Comparison I), the bias is increased sharply from 7.3% to 43.03%, the STD is increased
from 5.33% to 21.13%, and the MAPE is increased from 7.65% to 46.17%.

Table 2. The four evaluation indexes from the four different methods (Puyehue-Cordón Caulle
eruption).

Proportion (%)

Index
(+ for Increase, −

for Decrease)

SDA-GA-LSSVR
VS.

GA-LSSVR
(I)

GA-LSSVR
VS.

LSSVR
(II)

LSSVR
VS.

SDA
(III)

SDA
VS.
BP

(IV)

bias −43.03 −7.3 2.29 −4.92
STD −21.13 −5.33 −5.86 −4.4

MAPE −46.17 −7.65 1.83 −3.94
R 16.18 7.54 9.67 6.68
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Different from the Eyjafjallajökull cases, the meteorological situations are more complicated
for the Puyehue-Cordón Caulle eruption cases. There always is more than one layer of cloud in
the vertical scale (such as Puyehue-Cordón Caulle case at 04:00 UTC, 16 June 2011, when there is a
meteorological cloud underlying volcanic ash cloud, see Figure 7) [7]. When compared with results
from Eyjafjallajökull cases, the hybrid SDA-GA-LSSVR model not only performs well under a relatively
simple meteorological background but is also robust under more complex meteorological conditions, as
seen in the Puyehue-Cordón Caulle cases (Figure 6), which indicates that the hybrid SDA-GA-LSSVR
model has the ability to simulate complicated nonlinear relationship between IR radiances and volcanic
ash cloud parameters through deep learning. In contrast, the traditional 1DVAR inverse method
has the relatively lowest correlation with the “true” data in Puyehue-Cordón Caulle cases (R = 0.27)
(Figure 6d). Currently, most forward RTM models used in the 1DVAR inverse method have been
limited to clear skies or single-layer cloud situations. In the case of vertically distributed multilayer
clouds, forward RTM models cannot accurately simulate the IR radiative transfer process, potentially
resulting in large VTH retrieval uncertainties.
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Figure 7. A CALIOP 532 nm total attenuated backscatter cross-section from 04:01 UTC to 04:07 UTC on
16 June 2011 (Puyehue-Cordón Caulle eruption). The solid black line denotes the tropopause. (This
figure is from reference [7]).

5. Sensitivity to Atmosphere Temperature Vertical Profile Data

The atmosphere temperature vertical profile is a key driver for the radiative transfer simulations
required for forward modeling. Regardless of whether the traditional 1DVAR inverse method or the
statistical estimation method is used, retrievals are inevitably sensitive to meteorological conditions [5,7].
In this section, a sensitivity analysis was performed to test the sensitivity of the hybrid SDA-GA-LSSVR
model to the atmospheric temperature by adding temperature vertical profile data to the training
samples. Such atmospheric profiles can be derived in NRT from numerical weather prediction (NWP)
model-based short-range forecasts or from the advanced geostationary imager measurements [25,51].
The inclusion of temperature profile data in the training samples resulted in reduced bias, STD, and
MAPE and increased R. Table 3 demonstrates that adding atmospheric temperature vertical profiles to
the training samples can further improve the accuracy of VTH retrievals.
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Table 3. Impact of atmospheric temperature on VTH retrievals.

(+ for Increase, −
for Decrease) bias (km) STD (km) MAPE (%) R

Eyjafjallajökull
Adding profile data 0.69 1.29 23.67 0.77

No profile data 1.16 1.78 35.82 0.59
Adding VS. No −40.51 −27.53 −33.92 +29.51

Puyehue-Cordón
Caulle

Adding profile data 0.94 1.68 29.36 0.79
No profile data 1.05 1.80 32.11 0.76
Adding VS. No −10.48 −6.67 −8.56 +3.95

6. Sensitivity of VTH Retrieval to Feature Selection with the SDA Model

A SEVIRI image acquired at 04:00 UTC on May 08, 2010 was used to assess the sensitivity of VTH
retrieval to feature selection with the SDA model. Pattern recognition performance can be greatly
improved by using the SDA to extract features. Figure 8 shows grayscale images of the radiances in
each of the original six IR channels. The outline of the volcanic ash cloud can only be clearly seen in
the channel 7 (8.7 µm), 9 (10.8 µm), and 10 (12.0 µm). It is difficult to detect the volcanic ash cloud
information directly in the images from the other three IR channels. It is also difficult to infer any
height variation from the images. The original grayscale images were compared with new features
extracted from the SDA model (Figure 9). Figure 9 shows that most information about the volcanic ash
cloud is contained in features 2 and 3, and there is very limited information in features 1 and 4 since
channel decorrelation is performed by the SDA model.
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The corresponding ash area in features 2 and 3 appears darker in the grayscale image. This 

shows that through using the SDA model, information useful in estimating the VTH can be enhanced, 

which demonstrates the advantage of the SDA deep learning method on retrieving VTH. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 8. Brightness temperatures (BTs) of original six grayscale IR channels from SEVIRI images
acquired at 04:00 UTC on 8 May 2010. (a): SEVIRI channel 4; (b): SEVIRI channel 5; (c): SEVIRI channel
7; (d): SEVIRI channel 9; (e): SEVIRI channel 10; (f): SEVIRI channel 11 (The red dotted box indicates
the location of the volcanic ash cloud).
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Figure 9. Grayscale images of four features identified by the SDA from SEVIRI images acquired at
04:00 UTC on 8 May 2010. (a): Feature 1; (b): Feature 2; (c): Feature 3; (d): Feature 4 (The red dotted
box indicates the location of the volcanic ash cloud).

The corresponding ash area in features 2 and 3 appears darker in the grayscale image. This shows
that through using the SDA model, information useful in estimating the VTH can be enhanced, which
demonstrates the advantage of the SDA deep learning method on retrieving VTH.

The performance of a deep learning model depends on the choice of hyperparameters. For the
SDA model, the choice of hyper-parameters is particularly important. The SDA’s hyperparameters
include the cycle count, the learning rate, a momentum term, and a noise reduction factor. In general,
there are three ways to set the hyperparameters: random searching, grid searching, and manually
setting. In Section 4, an automatic grid searching method was used to set hyperparameters in the
SDA model. To test the sensitivity of VTH retrieval to the hyperparameters with the SDA model, the
choice of hyperparameters was changed from grid searching to manually setting. By changing the
value of the layer-by-layer pretraining learning rate ([0.1:0.1:1.0]), ten parameter sets are created for the
experiments. A loss function (Equation (5) below) was used to measure the ability of the SDA model
to reconstruct the original feature matrix for each parameter set. The lower the value is, the better
ability the reconfiguration has.

LOSS =
1

2m

m∑
i=1

n∑
j=1

(Ai j − Bi j)
2, (5)

In Equation (5), Ai j and Bi j are the original matrix and the reconstruction matrix, respectively.
Parameters m and n are the number of rows and columns of the matrix, respectively.

Table 4 and Figure 10 show the relationship between the different parameter sets used for the SDA
reconstruction of the original features and the final MAPE of the derived VTHs. The LOSS varies with
the learning rate. The highest loss function value is 0.0921 and the lowest is 0.0475, which indicates
that the choice of hyperparameters directly influences the learning ability of the SDA. The MAPE
also varies with LOSS. When the LOSS is 0.0832, the MAPE value peaks at 0.4741. When the LOSS is
0.0502, the MAPE reaches its lowest value of 0.2096. Figure 10 shows that there is a significant positive
correlation between LOSS and MAPE (R = 0.62). These results suggest that the selection of features



Remote Sens. 2020, 12, 953 14 of 21

directly affects the accuracy of the final retrieval. In addition, the results obtained using the manual
searching method, rather than using the grid searching method, for selecting the hyperparameters, are
not stable. Therefore, implementing the grid searching method improves the accuracy and stability of
the model.

Table 4. Influence of feature selection on inversion results.

LOSS MAPE Pretraining Learning Rate

0.0502 0.2096 0.1
0.0921 0.3644 0.2
0.0683 0.1906 0.3
0.0805 0.4285 0.4
0.0792 0.3209 0.5
0.0832 0.4741 0.6
0.0508 0.2477 0.7
0.0537 0.3071 0.8
0.0513 0.2173 0.9
0.0475 0.217 1
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7. Uncertainty Analysis

In this study, four types of data were used together to develop a hybrid SDA-GA-LSSVR
deep learning model for VTH retrieval, and each data source may introduce uncertainties on the
final retrievals.

First, in the data preprocessing stage, although the cloud mask and the RGB false-color image
are used together to further distinguish meteorological and volcanic ash clouds, uncertainties may
still exist under certain situations. For example, when the volcanic ash cloud is very thin with a
meteorological cloud underlying (Figure 11), the CALIOP L2 cloud top height data may reflect the
height of the underlying meteorological cloud instead of the VTH. This may lead to underestimation
of VTHs. In addition, the volcanic ash mask used in this study is derived from NOAA’s volcanic ash
detection algorithm [29], and the algorithm may produce some false alarms or missing ash/dust clouds
when it is applied in global scale [5]. Further investigation is needed on better distinguishing volcanic
ash clouds and meteorological clouds.

Second, the horizontal and vertical variability of the atmospheric temperature may not be
captured well by very coarse-resolution ERA-Interim, especially near the surface. In the future, the
input ERA-Interim data could be replaced by data with higher horizontal or vertical resolution, such
as ERA5 or GNSS Radio Occultation data [52].

Third, the process of collocating different sources of data such as SEVIRI L1 data, CALIOP L2
cloud top data, atmospheric vertical profile data, etc. may also introduce additional uncertainties. The
spatial resolution of SEVIRI L1 IR data and cloud mask data is 3 km, which may reach to 10 km or
greater in high latitude. While the horizontal resolution of CALIOP L2 cloud top data used in this
study is 5 km. The horizontal resolution of atmosphere vertical profile data is 80 km. Large VTH
retrieval errors may occur when the GEO satellite viewing angle is large.
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UTC–04:05:04 UTC on 8 May 2010 (Eyjafjallajökull eruption). The contemporary CALIOP L2 cloud
heights products (red dots) are overlaid.

8. Conclusions

In this study, BT data from the SEVIRI onboard the Meteosat-8 satellite platform and the VTH
product from CALIOP were used to construct a sample dataset for developing a deep-learning-based
statistical retrieval model. A deep-learning-based method through hybrid use of the SDA and the
LSSVR, optimized by the GA, has been developed to establish a nonlinear relationship between SEVIRI
IR measurements and VTH. The following conclusions can be drawn from independent validation and
analysis of the results:

1. By comparing the retrievals obtained from the hybrid SDA-GA-LSSVR, the GA-LSSVR, the
LSSVR, the SDA, and the BP models for two typical cases, it is found that the GA optimization
algorithm can effectively improve the approximation of the LSSVR and improve the accuracy of
VTH retrievals. For small samples, the LSSVR is a novel learning method with a solid theoretical
basis. The SDA performs better for larger samples size. The SDA model and the BP model are
compared because they both use the same mechanism for fine-tuning. The use of the SDA to
denoise the satellite measurements can reduce correlation among the input data and increase
the robustness of the retrieval. The hybrid uses of the SDA, the GA, and the LSSVR achieve the
most accurate VTH retrievals, with the smallest error and highest correlation with the “true” data
(CALIOP measurements).

2. Since the hybrid SDA-GA-LSSVR model has the ability to simulate the complicated nonlinear
relationship between IR radiances and the volcanic ash cloud parameters through deep learning,
it not only performs well under a relatively simple meteorological background but also is robust
under more complex meteorological conditions, as seen in the Puyehue-Cordón Caulle cases (R =

0.79).
3. Using the hybrid SDA-GA-LSSVR retrieval algorithm, the nonlinear relationship between IR

channel observations and VTH can be well established. However, due to the uncertainties that
are attributed to different eruption times, atmospheric conditions, surface conditions, and satellite
observation angles, it is difficult to fully capture temporal and spatial changes in VTH retrievals
using only satellite IR observations as input, especially in the case of complex meteorological
conditions. Adding atmospheric temperature vertical profiles to the training samples results in
significant reduced bias, STD, and MAPE but increased R; the R is increased by 3.95% for the
Eyjafjallajökull cases and 29.51% for the Puyehue-Cordón Caulle cases. These results demonstrate
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that adding atmospheric temperature vertical profile information to training samples can further
improve the VTH retrievals, while the moisture profiles do provide a little impact since moisture
mostly resides in low troposphere and has little radiative effect on the IR channels used for VTH
retrieval (results now shown).

4. The IR channel observations are spectrally correlated. The SDA can automatically extract
complex features due to its multi-hidden-layer structure. Therefore, the SDA is capable of
enhancing volcanic ash information from satellite IR measurements. In addition, the choice of
hyperparameters directly influences the learning ability of the SDA and the final retrievals.

Since only the eruptions over Iceland’s Eyjafjallajökull volcano from April to May 2010, and
the eruptions over the Puyehue-Cordón Caulle volcanic complex in Chilean Andes in June 2011
were considered in constructing training samples, more work is needed to include more volcanic
eruption cases in future for training so that the samples contain a variety of volcanic ash spectral and
mineral properties.

China’s new generation of GEO meteorological satellites, Fengyun 4A (FY-4A) [53,54], has finished
in-orbit tests, and data were released to users worldwide in May 2018. The primary instrument AGRI
(the Advanced Geosynchronous Radiation Imager) onboard FY-4A has similar infrared channels to
those included in instruments onboard the Geostationary Operational Environmental Satellite (GOES-R
series, NOAA), and Himawari-8/-9 (JMA). The hybrid deep learning method has the potential to be
used to exploit imager data from this new generation of international GEO weather satellites and to
provide global VTH products. It is also applicable to the measurements from the hyperspectral IR
sounders [55], especially the hyperspectral IR sounders from GEO orbit [56,57].
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Appendix A. Algorithm Principle

Appendix A.1. Stack Noise Reduction Encoder

The autoencoder is an unsupervised learning model, first proposed by Rumelhart in 1986 [58]. It
is a kind of neural network and is often used in deep learning techniques. The network consists of
two parts: an encoder f (x) and a decoder g(x). It is assumed that the automatic encoder inputs an
n-dimensional signal x to the input layer. In the intermediate layer, the signal becomes h as follows:

h = f (Wx + b), (A1)

where W is the connection weight for the input layer to the middle layer, and b is the offset of the
middle layer. This processing of x to give h is the encoding process. The signal h is decoded by the
decoder, and output to the output layer of the neuron. In the output layer, the signal becomes r as
follows:

r = g(W′x + b′), (A2)
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where W′ is the connection weight for the middle layer to the output layer, b′ is the offset of the output
layer, and the processing of h to give r is the decoding process. The autoencoder is trained to copy
the input so that h captures useful characteristics from x and is independent of the decoder output.
One way to obtain useful features from a self-encoder is to limit the dimension of h to be smaller
than x. An autoencoder whose coding dimension is smaller than the input dimension is called an
undercomplete autoencoder. Learning an undercomplete representation forces the encoder to capture
the most significant features in the data.

The training can be described as the minimization of a loss function:

L(x, g( f (x))), (A3)

where L is a loss function used to minimize the difference between g( f (x)) and x. When the decoder
is linear and L is the root mean square error, the undercomplete encoder will generate a subspace
equivalent to a Principal Component Analysis (PCA). In contrast to PCA, the autoencoder learns
the principal subspace of the training data while training to perform the copy task. Therefore, an
autoencoder with a nonlinear encoder function f (x) and a nonlinear decoder function g(x) represents a
powerful nonlinear extension of PCA and can be used to capture multimodal aspects of the input data.

The SDA is an autoencoder that handles training data which includes noise. It was first proposed
by Bengio in 2007 [59]. To avoid problems associated with overfitting, noise is added to the input data,
making the learned encoder more robust and enhancing the potential of the model for generalized
applications. The principle behind the noise reduction encoder is similar to that of the autoencoder. In
the input layer, noise is randomly added to the signal for encoding, using a fixed signal-to-noise ratio.

For a single-layer autoencoder with a hidden layer, a backpropagation algorithm is usually used
for training, and this can be effective. However, if a backpropagation algorithm is applied to a network
with multiple hidden layers, then the error is likely to become extremely small after the first few
layers and the training will become invalid. Although more advanced backpropagation methods have
addressed this problem, the additional problem of a slow learning speed remains, particularly when
the amount of training data is limited. By pretraining each layer as a simple self-decoder and then
stacking it, training efficiency is greatly improved. The implementation steps for the two-layer stack
noise reduction encoder are as follows.

1. Take a training sample x from the training data.
2. Set the noise reduction ratio k, denoise x to obtain new input information x̃, where nk data in x̃

is 0.
3. Replace the input information with x̃, estimate the reconstructed distribution of the self-encoder,

and re-enter the training.
4. Using the first three steps to denoise the first Denoising Autoencoder (DA) unit, use the hidden

layer of the first DA unit as input to the second DA unit, and then denoise again to extract the
hidden layer as the feature output.

For this study, the sample consists of six dimensions, corresponding to brightness temperatures in
six SEVIRI channels.

Appendix A.2. Stack Noise Reduction Encoder Least Squares Support Vector Regression Method Based on a
Genetic Algorithm

The support vector machine is a machine learning model proposed by Suykens in the 1990s
and is important in the field of remote sensing [60]. In contrast to traditional linear regression
methods, support vector machines use complex optimization techniques to classify features according
to nonlinear relationships within the training data. This paper uses a computationally efficient least
squares support vector machine with a fast solution speed to construct nonlinear relationships between
the spectral characteristics and heights of volcanic ash clouds. The set of data points found after
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the SDA calculation is as follows: A =
{
(ui, yi)

∣∣∣i = 1, 2, . . . n
}
, where ui ∈ Rm and m is the number of

dimensions calculated by the SDA from the brightness temperatures in the six channels. The next step
is to use a nonlinear mapping ϕ:Rm

→ H to map x to the high-dimensional feature space H. This gives
a regression function describing the input and output:

y(u) = wϕ(u) + b, (A4)

where w is a weight, b is a bias, and ϕ(u) is a nonlinear function.
The LSSVR model follows from solution of the following optimization problem:

Minimize : J(w, a) =
1
2
||w||+

c
2

n∑
i=1

ρ2
i , (A5)

Subject : yi = w′v(ui) + b + ρi, (A6)

where c is a regularization parameter and ρi is a relaxation variable. To solve the above optimization
problem, the constraint optimization problem becomes an unconstrained optimization problem, and
the Lagrangian function is introduced:

L(w, a, b,ρ) = J(w, a) −
n∑

i=1

ai(w′v(ui) + b + ρi − yi), (A7)

where ai is a Lagrangian multiplier,
∑n

j=1 a j = 0. After canceling ρi and w, the following linear equations
are obtained:

n∑
j=1

a j
(
ϕ(ui),ϕ

(
u j

))
+ b + ai/c = yi, (A8)

Using the kernel function k
(
ui, u j

)
=

(
ϕ(ui),ϕ

(
u j

))
, (A3) is converted to:

n∑
j=1

a jk
(
ui, u j

)
+ b + ai/c = yi, (A9)

If the number of features is much smaller than the number of samples, Radial Basis Function
(RBF) can be used as the kernel function and the regression function becomes:

y(u) =
n∑

i=1

aiexp(−
||U −Ui||

2

2g2 ) + b, (A10)

When dealing with regression problems, LSSVR requires the regularization parameter c and the
radial basis function g of the function to be set. The choice of values for these parameters has an
important influence on the effectiveness of the regression. The values are usually based on an empirical
method, which makes the results uncertain. In this study, the genetic algorithm is used to intelligently
search the parameters in order to extract the optimal parameters to improve the effectiveness of the ash
cloud height derivation.

GA is often used to solve optimal problems under multiple constraints. It is a random search
method derived from evolutionary biology (the genetic mechanism that underlies the “survival of the
fittest” concept). It was first proposed by Professor J. Holland in the United States in 1973 [61], who
used it to simulate natural evolution processes. The genetic algorithm is able to quickly search the
entire solution space to find the global optimal solution, avoiding local minima in the optimization to
ensure that the calculated solution is not just a local optimal solution.
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In this paper, the genetic algorithm is used to obtain the optimal parameters required by the
LSSVR prediction model. The optimization process is as follows:

1. Set the largest evolutionary algebra and randomly generate the number of individuals as the
initial state (initialization).

2. Calculate the fitness of each individual in the initial population (calculation of fitness).
3. Determine recombinant or crossed individuals and subindividuals according to the fitness

obtained above (select).
4. Generate new individuals by mating the information from the population with the father (cross).
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