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Abstract: Building extraction from high-resolution remote sensing images is of great significance in
urban planning, population statistics, and economic forecast. However, automatic building extraction
from high-resolution remote sensing images remains challenging. On the one hand, the extraction
results of buildings are partially missing and incomplete due to the variation of hue and texture
within a building, especially when the building size is large. On the other hand, the building
footprint extraction of buildings with complex shapes is often inaccurate. To this end, we propose
a new deep learning network, termed Building Residual Refine Network (BRRNet), for accurate
and complete building extraction. BRRNet consists of such two parts as the prediction module and
the residual refinement module. The prediction module based on an encoder–decoder structure
introduces atrous convolution of different dilation rates to extract more global features, by gradually
increasing the receptive field during feature extraction. When the prediction module outputs the
preliminary building extraction results of the input image, the residual refinement module takes the
output of the prediction module as an input. It further refines the residual between the result of the
prediction module and the real result, thus improving the accuracy of building extraction. In addition,
we use Dice loss as the loss function during training, which effectively alleviates the problem of
data imbalance and further improves the accuracy of building extraction. The experimental results
on Massachusetts Building Dataset show that our method outperforms other five state-of-the-art
methods in terms of the integrity of buildings and the accuracy of complex building footprints.

Keywords: building residual refine network; convolutional neural network; building extraction; high
resolution; remote sensing images

1. Introduction

With the development of imaging sensor technology, the imaging quality of remote sensing
images is constantly improving, which makes obtaining high-resolution remote sensing images more
convenient. High-resolution remote sensing images play an important role in many aspects, not only
in marine, agricultural, and ecological protection but also in urban planning [1–4]. With the increasing
amount of remote sensing images, automatic and accurate extraction of useful information from images
has become valuable topic. Among them, the automatic extraction of buildings from high-resolution
images is of great significance in the establishment and updating of urban geographic information
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databases and urban planning. However, the phenomenon of “synonyms spectrum” or “foreign
objects with the same spectrum” often appear in the remote sensing images, such as inconsistent hues
and textures of the same building and similar spectra of the building and the bare land, which brings
great challenges to the automatic extraction of buildings. The improvement of the spatial resolution of
remote sensing images makes the information of ground features more abundant, but it also brings
greater challenges to the extraction of buildings [5–8]. For example, the difference in hues and textures
of the same building increases, which aggravates the problem of incomplete building extraction,
and the footprints of buildings on high-resolution images are more complicated, which makes accurate
extraction of them difficult for a neural network-based method. Many researchers are working on
the automatic extraction of buildings from remote sensing images, and have proposed some effective
building extraction methods. These methods can roughly be classified into two categories: one is based
on artificially designed features and the other is based on deep learning.

The artificial features-based methods mainly make use of geometric, spectra, and contextual
information design features of buildings in remote sensing images for building extraction. Lin and
Nevatia [9] used the edge detection algorithm for the first time to extract buildings by detecting roof,
walls, and shadows of buildings. After the edge detection, geometric constraint processing for line
segment detection, or the combination of region segmentation, region growing, and region merging
can contribute to the accurate extraction of buildings [10]. Katartzis et al. [11] combined the edge
detection with the Markov model and used the onboard image to extract the buildings. However,
the method of edge detection is vulnerable to many objects close to the building such as roads, so that
the result of the extraction contains a large number of non-building areas. In addition to the use of edge
or corner detection methods, researchers also use image segmentation methods for building extraction.
Baatz [12] presented a fractal network algorithm to segment the image in multiple scales, and combined
the image features, texture, and other features to extract the building. In the study of image feature
extraction, image segmentation by a certain threshold of the index is often used for extracting features.
Zhang et al. [13] proposed a pixel shape index, which extracts the buildings by clustering homogeneous
pixels with similar shape and contour information. Shao et al. [14] proposed a new index to extract
built-up areas from high-resolution remote sensing images by visual attention model. Liu et al. [15]
used the texture, shape, spectrum, and structural features of the extracted image to construct the feature
vector; introduced the machine learning method to take feature vector as input; and classified each pixel
to distinguish the building. Although the traditional image segmentation methods for high-resolution
images used to extract buildings have made some achievements, the extraction accuracy is not high at
present. The main reason is that the spatial resolution of remote sensing images is improved, which
makes the information of ground features more abundant. Overall, methods based on artificial design
features often only make use of the shallow features of ground targets rather than deep features
being able to effectively distinguish different ground features, leading to the low extraction accuracy.
Additionally, they also require various rules to predefine features, which is thus laborious.

With the rapid development of deep learning, especially the convolutional neural network (CNN),
deep learning methods have deserved great breakthrough in tasks such as natural image classification,
object detection, and semantic segmentation. At present, commonly used convolutional neural
networks mainly include AlexNet [16], VGGNet [17], GoogleNet [18], and ResNet [19]. Convolutional
neural networks mainly consist of convolutional layers, non-linear activation functions, and pooling
layers. Convolutional layers use a large number of convolution kernels to extract local features of the
input image. The introduction of non-linear activation functions improves the network’s extraction
of non-linear features of the input image. The pooling layers can further improve the receptive field
to extract more global features. Compared with the traditional artificial design feature methods,
the convolutional neural network can automatically extract the features of the input image, which has
gradually replaced the traditional artificial feature methods due to its powerful feature representation
ability. As convolutional neural networks show strong advantages in the field of natural images, more
and more researchers have tried to apply convolutional neural networks to the field of remote sensing
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images, with some progress made in the segmentation and recognition of remote sensing images.
Lv et al. classified remote sensing images with SEEDS-CNN and scale effectiveness analysis [20].
Chen et al. applied multi-scale CNN and scale parameter estimation in land cover classification [21].
Zhou et al. proposed So-CNN for urban functional zone fine division with VHR remote sensing
images [22]. Lv et al. proposed a new method for region-based majority voting CNNs for very
high-resolution image classification [23]. As an important issue of ground feature extraction, automatic
building extraction has also obtained many results in the application of convolutional neural networks.
Minh first applied the convolutional neural network to the building extraction of remote sensing
images and proposed a building block extraction method based on image blocks. This method can
directly obtain the building extraction results in the middle region of the input image [24]. To further
improve the accuracy, Minh proposed using CRF or post-processing to refine the extraction results of
the network. However, because these methods can only obtain the results of the middle region of the
input image rather than the entire image, there are still discontinuous image blocks in the results.

In 2015, the Fully Convolutional Neural Network (FCN) was proposed to achieve pixel-level
dense prediction of images [25]. FCN restores the size of the input image by using an upsampling
operation and finally obtains the prediction result of each pixel of the input image. Most of the
methods proposed later for image semantic segmentation were improved based on FCN, mainly
including SegNet [26], DeconvNet [27], U-Net [28], and DeepLab [29]. Many researchers have also
applied FCN-based methods to the automatic extraction of buildings from remote sensing images.
Huang et al. proposed an improved DeconvNet, adding upsampling and dense connection operations
to the deconvolution layer to get the results of building extraction [30]. Based on FCN, Maggiori et al.
proposed a two-stage network that comprehensively considers the problems of identification and
precise positioning [31]. Wu et al. used multi-constraint FCN to automatically extract buildings from
aerial images [32]. Aiming at the problem that the use of the pooling layer will lose the information of
the original image [33], Shariah et al. used FCN without the pooling layer to make the network retain
as much important and useful information of the original image as possible [34]. Xu et al. combined
the fully convolutional neural network and guided filtering to further optimize the extraction results of
buildings [35]. Although FCN-based methods has achieved many results on the building extraction of
remote sensing images, there are still some problems when applying them to the automatic extraction
of buildings with high-resolution remote sensing images. On the one hand, due to the different hues
and textures of the same building on the image, the extraction is incomplete or the extracted buildings
are partially missed. On the other hand, these methods are not accurate enough for the building
footprint extraction of buildings with complex shapes.

To better address the problems of incomplete building extraction and inaccurate building footprint
extraction of complex buildings in high-resolution remote sensing images, this paper proposes a new
network named Building Residual Refine Network (BRRNet). BRRNet is composed of a prediction
module and a residual refinement module. The prediction module outputs the preliminary building
extraction results of the input image and then the residual refinement module takes the output of
the prediction module as an input. By correcting the residual between the result of the prediction
module and the real result, it finally further improves the accuracy of building extraction. In the
task of building extraction from high-resolution images, there is a problem of data imbalances due to
the large difference in the total number of pixels between the building and the background, which
affects the accuracy of building extraction. Therefore, we adopt Dice loss as the loss function during
training, which effectively solves the problem of data imbalance and further improves the accuracy of
building extraction.

The contributions of this paper mainly include the following three aspects.
(1) This paper proposes a new network named Building Residual Refine Network (BRRNet)

composed of the prediction module and the residual refinement module for accurate and complete
building extraction in remote sensing images. The extensive experimental results on Massachusetts
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Building Dataset [24] show that our method outperforms other five state-of-the-art methods in terms
of the integrity of buildings and the accuracy of complex building footprints.

(2) It was verified on Massachusetts Building Dataset that using Dice loss as the loss function
during training is more conducive to alleviating the problem of data imbalance in building extraction
tasks than BCE (Binary Cross Entropy) loss and thus boosts the accuracy of building extraction.

(3) This paper proposes a new residual refinement module named RRM_Bu equipped with deeper
layers and atrous convolution and confirms that it can be readily migrated to other fully convolutional
neural networks and improve the performance of the basic network.

The following sections present the proposed method and the experiments performed. Section 2
elaborates on the proposed network BRRNet. Section 3 gives the experiments and analysis, which
explains in detail our comparative experiments and analysis of experimental results. In Section 4, we
discuss the total parameters of different networks and the generalization ability of BRRNet. Finally,
Section 5 concludes the paper.

2. Methodology

This section describes the method proposed in this paper. In particular, Section 2.1 introduces
the atrous convolution. Section 2.2 presents the overall architecture of BRRNet. Section 2.3 details the
network’s prediction module. Section 2.4 details the network’s residual refinement module. Section 2.5
describes the loss function used in the training process.

2.1. Atrous Convolution

Convolutional neural networks usually use pooling layers to expand the receptive field during
feature extraction to extract more global information. Moreover, the use of pooling layers reduces the
size of feature maps, which can reduce network parameters. However, because of the use of pooling
layers, the resolution of the obtained feature maps are reduced so that the information of the input
image is lost, which finally affects the positioning accuracy in image semantic segmentation. To further
expand the receptive field during feature extraction without serious loss of input image information,
researchers introduce atrous convolution into convolutional neural networks [29,36]. The atrous
convolution kernel is obtained by performing a certain amount of zero paddings between the adjacent
weight values of the ordinary convolution kernel. The distance between adjacent weights is called
dilation rate. Compared with ordinary convolution, atrous convolution can expand the receptive field
of feature extraction without increasing parameters to extract more global features. Figure 1a shows
a single 3 × 3 ordinary convolution, whose number of parameters is 9. Figure 1b shows an atrous
convolution with the size of 3 × 3 and the dilation rate of 2. Since the atrous convolution is obtained by
filling zeros between the adjacent weights of the ordinary convolution, the atrous convolution keeps
same with the number of parameters of the corresponding ordinary convolution, but the receptive field
of the atrous convolution becomes larger so that it can extract more global features. We incorporate
atrous convolution into the proposed network which will be explained in detail below.

Figure 1. Examples of ordinary convolution and atrous convolution. Red dots in the grid represent
weights, and non-red dots indicate that the grid has a value of 0: (a) an ordinary convolution with the
size of 3 × 3; and (b) an atrous convolution with the size of 3 × 3 and the dilation rate of 2.
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2.2. BRRNet

To better address the problems of incomplete building extraction and inaccurate building
footprint extraction of complex buildings in high-resolution remote sensing images, we propose
a new deep learning network Building Residual Refine Network (BRRNet). The network consists
of two parts: the prediction module and the residual refinement module. The prediction module is
based in an encoder–decoder structure, which gradually increases the receptive field during feature
extraction by introducing atrous convolution with different dilation rate to extract more global features.
The prediction module finally outputs the preliminary building extraction results of the input image.
The residual refinement module takes the output of the prediction module as an input. By correcting
the residual between the result of the prediction module and the real result, it finally further improves
the accuracy of building extraction. The network’s structure is shown in Figure 2.

Figure 2. The structure of Building Residual Refine Network (BRRNet). BRRNet consists of two parts:
the prediction module and the residual refinement module. The prediction module is based on an
encoder–decoder structure, which gradually increases the receptive field during feature extraction by
introducing atrous convolution with different dilation rate to extract more global features. The prediction
module finally outputs the preliminary building extraction results of the input image. The residual
refinement module takes the output of the prediction module as an input. By correcting the residual
between the result of the prediction module and the real result, it finally further improves the accuracy
of building extraction.

2.3. Prediction Module

The design of the prediction module is inspired by U-Net and the atrous convolution structure.
It consists of five parts: input, encoder, bridge connection, decoder, and output. The inputs in our
experiments are remote sensing image tiles. The encoder uses the first three blocks of U-Net’s encoder,
where each block is a two-layer convolution and a max-pooling layer with a window size of 2 × 2 and
a step size of 2. After the convolution operation, Batch Normalization and ReLu activation functions
are performed. The convolution kernel size used in these blocks is 3 × 3, and the number of the kernel
is 64, 128, and 256, respectively. The encoder of our prediction module removes the fourth block in
the U-Net’s encoder because the fourth block has a large number of parameters. The previous deep
learning methods applied to building extraction from high-resolution images generally have problems
of incomplete building extraction and inaccurate building footprint extraction. An important reason
for these problems is that, to avoid serious loss of input image’s information, which affects the final
positioning accuracy, the previous networks only use a small number of pooling operations. For remote
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sensing images, the number of pixels occupied by buildings will increase relatively rapidly as the
resolution increases. We call buildings with more pixels in the image as large buildings, and many
large buildings have inconsistent hue and texture or complicated shape in high-resolution remote
sensing images. The use of only a small number of pooling layers causes the receptive is insufficient to
cover the entire building and the surrounding background. Therefore, it is not possible to extract the
global features of the entire building, which causes problems such as incomplete building extraction
and inaccurate building footprint extraction in the obtained results. To further increase the receptive
field to extract more global information, and at the same time to avoid losing the information of the
image as much as possible, we use a dilated convolutional series structure by successively increasing
dilation rate in the bridge connection part of the prediction module. The size of the convolution
kernel is 3 × 3 and the number of convolution kernels is 512. The dilation rate is set to 1, 2, 4, 8, 16,
and 32 in turn. These hyper parameters are tuned on the validation set in experiments. After each
convolution operation, Batch Normalization and ReLu activation function are used. To produce more
rich information, we fuse different scales of feature maps from various dilated convolution outputs.
The decoder part corresponding to the encoder part has three blocks to restore the size of the original
image. Each block includes a deconvolution layer and two convolution layers. The function of the
deconvolution operation is to upsample the feature maps obtained in the previous stage by two
times, and then the upsampled feature maps and the corresponding encoder maps are concatenated.
Then, two convolution layers are followed to extract features. Each convolution layer is followed by
the Batch Normalization and ReLu activation function. Following the decoder, we use a convolution
kernel of size 1 × 1 × 64 to convert the number of channels of the feature maps to 1, and then the
Sigmoid activation function is used to finally obtain the prediction probability map of the prediction
module. To further correct the residual between the result of the prediction module and the real result,
the prediction probability map is inputed to the residual refinement module.

2.4. Residual Refinement Module

At present, most of the methods for automatic building extraction of remote sensing images
based on deep learning generate the building extraction results in one step without further correcting
the obtained results in the model. For example, when using networks such as encoder–decoder
for building extraction, the input remote sensing image is first subjected to feature extraction by
the encoder, and then the size of the original image is restored by the upsampling operation of the
decoder. Finally, the building extraction results can be obtained. However, the building extraction
results obtained in this way may be significantly different from the real results. To further correct the
residuals between the results obtained from the prediction module and the real results, we propose a
new residual refinement module RRM_Bu. It takes the single-channel probability map output by the
prediction module as the input, and automatically learns the residual between the input image and
the corresponding real result during the training process to further refine the input image, producing
more accurate building extraction results.

The residual refinement module RRM_Lc based on local context information was originally
proposed by Peng et al. [37], and is used to further refine the boundary. This structure is shown in
Figure 3a. Although RRM_Lc can improve the accuracy of the boundary to a certain extent, due to
the small number of network layers, it is impossible to extract deeper features of the input image.
On the other hand, this structure does not increase the receptive field during feature extraction so
that it cannot extract more global features. In high-resolution remote sensing images, there are a
large number of large buildings with inconsistent tone and textures or complex shapes. When using
RRM_Lc to extract features from the input image, the receptive field is not enough to contain the entire
building and the surrounding background. Consequently, it is impossible to extract sufficient global
features, which fails to handle the problems of incomplete building extraction and inaccurate building
footprint extraction. Therefore, we propose a new residual refinement module RRM_Bu which has
more layers and larger receptive field when extracting features.
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The structure of RRM_Bu is shown in Figure 3b. It is similar to the structure of the bridge
connection part in the prediction module, which uses six atrous convolutions with a dilation rate of
1, 2, 4, 8, 16, and 32 to extract features and then fuses feature maps of different scales in an additive
manner. After each convolution operation, the Batch Normalization and ReLu activation function
are used. The number of kernels of the atrous convolution is 64. Then, a convolution kernel of size
3 × 3 × 64 and a step size of 1 is used to convert the number of channels of feature map to 1. Since the
input image of RRM_Bu contains the preliminary information of the prediction module, we fuse the
input image with the feature map obtained at this stage in an additive manner and then input the
fused result into the Sigmoid function to obtain the final probability map. Compared with RRM_Lc,
the residual refinement module proposed in this paper has deeper layers, which can further extract the
deep features of the input image. In addition, the use of atrous convolution gradually extracts more
global information and fuse multi-scale information, which is not only beneficial to improving the
building footprint extraction accuracy of the building but also beneficial to obtaining more complete
building extraction results. The experiments presented in Section 3 demonstrate that our residual
refinement module performs better than RRM_Lc.

Figure 3. Comparison of: (b) the structure of RRM_Bu proposed in this paper; and (a) the structure of
RRM_Lc proposed in [37], and di represents dilation rate.

2.5. Loss Function

The loss function adopted in the training process of the network is Dice loss, which is calculated as:

ldice = 1 − Dice (1)

where ldice represents Dice loss and Dice is Dice coefficient.
Dice coefficient, first proposed in [38], demonstrates that maximizing the Dice coefficient in

training networks can solve the problem of data imbalance in medical image segmentation. Since
minimizing Dice loss when training a network is essentially consistent with maximizing the goal of
Dice coefficient, we use the Dice loss as the loss function. The calculation of Dice coefficient is shown
in Equation (2):

Dice = ∑N
i pi × gi

∑N
i p2

i + ∑N
i g2

i
(2)

where pi is the predicted probability value of the ith pixel of the image, gi is the true value of the ith
pixel of the image, and N is the total number of pixels of the image.
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In the two-class image segmentation task, the Binary Cross Entropy loss (BCE loss) [39] is the
most commonly used loss function, which is shown in Equation (3).

lbce = − 1
N

N

∑
i
(gilogpi + (1 − gi)log(1 − pi)) (3)

where lbce is BCE loss, pi is the predicted probability value of the ith pixel of the image, gi is the true
value of the ith pixel of the image, and N is the total number of pixels of the image.

We compare BCE loss and Dice loss in Section 3 to determine the loss function of BRRNet.

3. Experiments and Analysis

This section presents the experimental evaluation of the effectiveness of BRRNet proposed in this
paper on the automatic building extraction of high-resolution remote sensing image, by comparing
BRRNet with five other state-of-the-art methods. Section 3.1 describes the dataset used in the
experiments. Section 3.2 presents the evaluation metrics of the experiments. Section 3.3 illustrates the
details of the experiments. Section 3.4 shows the comparative experimental results along with analysis.

3.1. Dataset

The dataset used in the experiments is the Massachusetts Building Dataset [24]. This dataset
contains 151 aerial images of the Boston area. The size of each image is 1500 × 1500 pixels and the
resolution is 1 m. This dataset is already divided into three parts. The training set has 137 images,
the validation set has 4 images, and the testing set has 10 images. The buildings in this dataset are
mainly villas and commercial center buildings. There are many buildings with different tones and
textures or complex shapes. Two types of buildings are shown in Figure 4.

Figure 4. Two typical types of buildings in the Massachusetts Building Dataset: (a) the building with
different tones and textures; and (b) the building with complex shapes.

3.2. Evaluation Metrics

We adopted two evaluation metrics to measure the effectiveness of our method: Intersection over
Union (IoU) and F1-Score.

Mostly four indicators are used to evaluate the effectiveness in image pixel-level prediction tasks:
true positive case (TP), false positive case (FP), true negative case (TN) and false negative case (FN). TP
refers to the positive sample that is predicted to be a positive example. FP refers to the negative sample
that is predicted to be a positive example. TN refers to the negative sample that is predicted to be a
negative example. FN is the positive sample that is predicted to be a negative example. The evaluation
metrics used to measure the effectiveness of our method are calculated based on these four indicators.

IoU is a common evaluation metric in image semantic segmentation. The degree of similarity
between the predicted result and the ground truth is measured by calculating the IoU of them.
The larger is the IoU value, the higher is the similarity between predicted results and ground truths.
The calculation of IoU is shown in Equation (4).

IoU =
TP

FN + TP + FP
(4)
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F1-Score is also a commonly used evaluation metric and is the harmonic mean of precision and
recall. Precision means the proportion of positive cases that are predicted to be true among all predicted
positive cases. The calculation of precision is shown in Equation (5). Recall means the proportion
of positive examples that are predicted to be true among all positive examples. The calculation of
recall is given by Equation (6). These evaluation metrics relate to the effectiveness of the model from
different aspects. To balance the results of precision and recall, we used F1-Score as another measure,
as expressed in Equation (7).

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1-Score =
2 × Precision × Recall

Precision + Recall
(7)

3.3. Implementation Details

Due to memory limitations, remote sensing images needed to be cropped into tiles and then input
into the network for training. We used a sliding window with a size of 256× 256 pixels and set the step
size in both the horizontal and vertical directions to 64 for image cropping. Therefore, the size of image
tiles was 256 × 256 pixels. The same parameter initialization method and optimizer were used in the
training process in all experiments. We used the glorot_uniform to initialize the parameters of the
convolution operation. The batch size was set to 8. We used Adam as the optimizer and initialize the
learning rate to 10−3. We calculated the loss of validation set after each epoch. If the loss of validation
set did not decrease after three epochs, the previous learning rate was multiplied by the attenuation
coefficient of 0.1, and used as the new learning rate. We used a GPU to train our model and the entire
training process took about 20 h.

The implementation of our model was based on TensorFlow v1.14. The experimental environment
was Ubuntu16.04. The CPU model was Intel(R) Xeon(R) CPU E5-2683 v3 @ 2.00GHz and the GPU
model is TITAN XP.

3.4. Comparisons and Analysis

To evaluate the effectiveness of BRRNet proposed in this paper, several sets of comparative
experiments were carried out on the Massachusetts Building Dataset. Firstly, we compared different
network structures and different loss functions to determine the structure and loss function of
BRRNet, then compared BRRNet with five state-of-the-art methods, and finally performed migration
experiments of RRM_Bu.

Comparative experiments of different network structures. We took U-Net as the baseline.
Firstly, we compared our prediction module with U-Net to evaluate its effectiveness, and then we
applied our residual refinement module RRM_Bu to U-Net for validation. Then, we combined
the prediction module and the residual refinement module RRM_Bu to form our network BRRNet
and compared it with the network combining the prediction module and the residual refinement
module RRM_Lc. To ensure fairness, we used BCE loss in all comparative experiments of the network
structure. Table 1 shows the results of the comparative experiment. As shown in Table 1, our prediction
module for building extraction is significantly better than U-Net, with IoU/F1-Score increased by
0.0271/0.019. Applying our residual refinement module RRM_Bu to U-Net also significantly improve
the result, with IoU/F1-Score increased by 0.0358/0.025. Therefore, the prediction module and the
residual refinement module proposed in this paper are effective. Moreover, the combination of our
prediction module and the residual refinement module RRM_Bu is better than the combination of our
prediction module and RRM_Lc and obtained the highest scores in IoU and F1-Score in the comparative
experiment of network structure. To further evaluate the effectiveness of our method, we analyzed
the building extraction results of different methods from a qualitative perspective. Figure 5 shows
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the building extraction results of the baseline U-Net and the combination of our prediction module
and residual refinement module RRM_Bu. Rows 1 and 2 of Figure 5 show that, for the buildings with
inconsistency of tone and textures, there is an obvious problem of missing part of the building in the
building extraction results obtained using U-Net. In contrast, the buildings of this type extracted
by our method are more complete. As shown in Row 3 of Figure 5, for the buildings with complex
shape, the building footprints obtained by U-Net differ greatly from the ground truth, but the building
footprints obtained by our method are very similar to the ground truth, which demonstrates that our
method can obtain much more accurate building footprints.

Table 1. Experimental results of different network structures.

Method IoU F1-Score

Baseline(U-Net [28]) + bce loss 0.6743 0.8054
En-De + bce loss 0.7014 0.8245

U-Net+RRM_Bu + bce loss 0.7101 0.8304
En-De+RRM_Lc + bce loss 0.7240 0.8399

En-De + RRM_Bu(BRRNet) + bce loss 0.7325 0.8456

Figure 5. Typical results of the baseline U-Net and our network BRRNet, which is the combination of
En-De and RRM_Bu. We used BCE loss as the loss function in these experiments: (a) input image; (b)
ground truth; (c) the results of our network BRRNet; and (d) the results of the baseline U-Net. The areas
in the yellow boxes are the more obvious results.

Comparative experiments of different loss functions. The number of pixels in background is
usually much larger than that in the buildings in the remote sensing images, which leads to a serious
data imbalance problem in the building extraction task. This problem causes the extraction results
to be more biased towards the background, which causes problems with missing building parts in
the results. The Dice loss proposed by Milletari et al. [38] can effectively solve the problem of data
imbalance in medical image segmentation tasks. Therefore, we attempted to use Dice loss as the
loss function in training to solve the data imbalance problem in the task of building extraction from
remote sensing images. To validate the effectiveness of Dice loss, we used different loss functions
including BCE loss, Dice loss, and the sum of BCE loss and Dice loss to train our network BRRNet.
As shown in Table 2, when we used BCE loss as the loss function, the result is not so good. The result
obtained by using the sum of BCE loss and Dice loss as the loss function is slightly better. Moreover,
the result obtained by using Dice loss as the loss function achieves the highest score on both IoU
and F1-Score. On the other hand, from a qualitative perspective, Figure 6 shows that the integrity of
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building extraction in the results obtained by using Dice loss is better than that of the others. Therefore,
we used Dice loss as the loss function of our network BRRNet.

When BCE loss was used as the loss function in training, the penalty weights for the pixels in
buildings and background are the same. However, because the number of pixels in background is much
larger than that in buildings, it is easy to fall into the local optimum instead of the global optimum in
training, which causes the extraction result to be biased to the background, so that the extraction result
of buildings may be partially missing. The difference from BCE loss is that the essence of Dice loss is
to make the intersection over union of the predicted result and the real result continuously increase
during the training process, which is conducive to approaching the global optimal. Therefore, Dice
loss can better solve the problem of data imbalance and improve the integrity of building extraction.

Table 2. Experimental results of different loss functions.

Method IoU F1-Score

BRRNet + bce loss 0.7325 0.8456
BRRNet + bce_dice loss 0.7354 0.8475

BRRNet + dice loss 0.7446 0.8536

Figure 6. Typical results of different loss functions: (a) input image; (b) ground truth; (c) the result of
Dice loss; (d) the result of BCE loss; and (e) the result of the sum of BCE loss and Dice loss. The areas in
the yellow boxes are the more obvious results.

Comparative experiments with state-of-the-art methods. To further evaluate the effectiveness
of our method, we compared BRRNet with five state-of-the-art methods including SegNet [26],
Bayesian-SegNet [26], RefineNet [40], PSPNet [41], and DeepLabv3+ [42]. Table 3 shows the
experimental results. It can be seen that our method gets higher scores than other methods in
both IoU and F1-Score. Figure 7 shows the results of some typical buildings. The buildings in Rows
1 and 2 of Figure 7 are large buildings with inconsistent hue and texture. The results of the other
five methods generally have the problem of incomplete building extraction. However, our method
obtains much more complete results when extracting such buildings. The buildings in Rows 3 and 4
of Figure 7 have complex shape. In the results of the other five methods, the building footprints are
generally different from the real results, and the details are not prominent. However, the results of our
method show higher accuracy in terms of the building footprints, and the details are similar to the real
results. Therefore, our method can effectively solve the problems of incomplete building extraction
and inaccurate building footprint extraction of the buildings with complex shapes.
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Table 3. Experimental results of our method and five other state-of-the-art methods.

Method IoU F1-Score

PSPNet (Dilated ResNet50) [41] 0.5847 0.7379
DeepLabv3+ (Xception) [42] 0.5913 0.7431
RefineNet (ResNet50) [40] 0.5949 0.7460

SegNet [26] 0.6798 0.8094
Bayesian-SegNet [26] 0.7003 0.8237

Ours 0.7446 0.8536

Figure 7. Typical results of our method and five other state-of-the-art methods: (a) Input image;
(b) ground truth; (c) the result of our method BRRNet; (d) the result of SegNet; (e) the result of
Bayesian-SegNet; (f) the result of RefineNet; (g) the result of PSPNet; and (h) the result of DeepLabv3+.
The areas in the yellow boxes are the more obvious results.

We analyzed the reasons for the above results in detail. Most of the previous fully convolutional
neural networks use pooling layers to increase the receptive field during feature extraction to extract
more global information. The introduction of the pooling layers reduces the size of the feature maps
and causes the loss of information of the original image, which eventually affects the positioning
accuracy. To avoid serious loss of input image information, these models do not use too many pooling
layers, and the number of pooling layers is generally less than 5. However, there are many large
buildings with inconsistent tones and textures and complex shapes in high-resolution remote sensing
images. This type of building occupies many pixels; thus, the methods using a small number of
pooling layers to expand the receptive field cannot contain the whole building and the surrounding
background. These methods can only extract local features of this type of building, which leads to
incomplete extraction of such buildings and inaccurate building footprint extraction for buildings
with complex shapes. Besides, because these networks are based on encoder–decoder single-stage
structures, it is not possible to further refine the results.

The BRRNet proposed in this paper has two stages: preliminary prediction and residual
refinement. We use our prediction module to output the preliminary results of input image.
The prediction module first uses three pooling layers to expand the receptive field during feature
extraction. To avoid the loss of image information due to the continued reduction in the size of the
feature maps, we use an atrous convolution series structure with a gradually increasing dilation rate to
further increase the receptive field, so that it can contain as much as possible the whole building and
the surrounding background to extract more global information. Then, it fuses the multi-scale feature
maps of different atrous convolutions to obtain richer information, which better solves the problem of
incomplete extraction of such buildings. Furthermore, we use the output of the prediction module
as the input of our residual refinement module RRM_Bu, so that our network can further learn the
residuals between the output of the prediction module and the real results. Particularly, when the
difference between the preliminary result and the real label becomes large, our network will further
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refine the residuals to produce more complete buildings and accurate building footprints. In addition,
we use Dice loss as the loss function in training to handle the data imbalance that biases the extraction
results to the background, which also improves the accuracy of buildings.

Migration experiments of RRM_Bu. The prediction module and the residual refinement module
proposed in this paper are two separate parts of our network BRRNet. We use the residual refinement
module to further refine the residuals between the output of the prediction module and the ground
truth so as to obtain more accurate building extraction results. To confirm that our residual refinement
module can be readily migrated to other networks and improve the performance of the basic networks,
we migrated it to three different networks: FCN-32s [25], SegNet [26], and Bayesian-SegNet [26].
The experimental results are shown in Table 4. As shown in the table, migrating our residual refinement
module to these networks significantly improves the effectiveness of the corresponding counterparts,
especially in the case of poor results given by the basic network. For example, the result of FCN-32s
has been greatly improved after migrating RRM_Bu to it.

Table 4. Experimental results in migrating RRM_Bu to other networks.

Method IoU F1-Score

FCN-32s [25] 0.4203 0.5918
FCN-32s + RRM_Bu 0.5039 0.6702

SegNet [26] 0.6798 0.8094
SegNet + RRM_Bu 0.6888 0.8157

Bayesian-SegNet [26] 0.7003 0.8237
Bayesian-SegNet + RRM_Bu 0.7026 0.8253

4. Discussions

4.1. Total Parameters of Different Networks

As shown in Section 3.4, we compared the efficiency of our proposed network BRRNet with five
state-of-the-art methods on the Massachusetts Building Dataset, and experimentally demonstrated
that BRRNet obtains the highest scores on IoU and F1-Score. In addition to IoU and F1-Score, the total
parameters of the network is also an important metric for evaluating the efficiency of a network.
The more the parameters the network has, the larger the memory it needs to occupy during the
training and testing process. Therefore, we further analyzed the total parameters of the proposed
network and the five other state-of-the-art methods. Figure 8 shows the total parameters of different
networks and the F1-Scores evaluated on the Massachusetts buildings dataset. Figure 8 shows that the
total parameters of Bayesian-SegNet and SegNet are the least. The total parameters of our proposed
BRRNet are slightly larger than those of the two methods while it obtains significantly higher F1-Score.
In contrast, RefineNet, DeepLabv3+, and PSPNet have much more parameters and require a lot
of memory during training and testing. Our proposed BRRNet is based on the improvement of
U-Net. The total parameters of U-Net is 31.0M, while the total parameters of BRRNet is only 17.3M
because BRRNet removes the fourth block of the encoder and the first block of the decoder of U-Net,
which greatly reduces total parameters. It can be seen that our proposed BRRNet can not only obtain
good results in the task of building extraction, but also has a relatively few parameters.
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Figure 8. Segmentation accuracy and total parameters comparison of different networks. The bar
diagram represents the F1-Scores evaluated on the Massachusetts Building Dataset and the line chart
represents total parameters of different networks. The unit is Million (M).

4.2. Generalization Ability of BRRNet

To further discuss the generalization ability of our proposed BRRNet, we performed experiments
on transfer learning. We trained several networks on the training set of the Massachusetts Building
Dataset, and then tested the trained networks on the new test set which consists of 20 images randomly
selected from the Inria Aerial Image Labeling (IAIL) Dataset [43]. This dataset is made up of 360
ortho-rectified aerial RGB images of 5000 × 5000 in size, with a spatial resolution of 0.3 m/pixel.
Since the Massachusetts Building Dataset and the Inria Aerial Image Labeling Dataset cover different
regions and consist of images with different spatial resolutions, the features of the buildings in these
two datasets are quite different. Table 5 shows the test results of different networks. As shown
in Table 5, when different networks were trained on the training set of the Massachusetts Building
Dataset and then tested on the new test set, our proposed BRRNet obtained the highest scores on IoU
and F1-Score compared with the other three networks, which demonstrates that BRRNet has better
generalization ability. However, since the features of the buildings in these two datasets are quite
different, the IoUs and F1-Scores evaluated on the Inria Aerial Image Labeling Dataset are much lower
than those evaluated on the Massachusetts Building Dataset. In future studies, we will try to use a
small number of images from the training set of the Inria Aerial Image Labeling Dataset to fine-tune
these networks to obtain better test results.

Table 5. Transfer learning results of different networks.

Method Massachusetts IAIL

IoU F1-Score IoU F1-Score

SegNet 0.6798 0.8094 0.2118 0.3196
DeepLabv3+ 0.5847 0.7379 0.2322 0.3769

U-Net 0.6743 0.8054 0.2587 0.4110
Ours 0.7446 0.8536 0.2790 0.4363

The column “Massachusetts” represents the results of the networks that were trained on the training
set of the Massachusetts Building Dataset and then tested on the test set of the Massachusetts Building
Dataset. The column "IAIL" represents the results of the networks that were trained on the training set of the
Massachusetts Building Dataset, and then tested on the new test set which consists of 20 images randomly
selected from the Inria Aerial Image Labeling (IAIL) Dataset.
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5. Conclusions

In this paper, we propose a new end-to-end deep learning network BRRNet to address the
problems of incomplete building extraction and inaccurate building footprint extraction of the buildings
with complex shapes in high-resolution remote sensing images. BRRNet consists of two parts: the
prediction module and the residual refinement module. The prediction module uses the atrous
convolution with different dilation rates for gradually increasing the receptive field during feature
extraction so as to extract more global information, and then fuses multi-scale features from different
layers to gain richer information. Then, the residual refinement module further refines the residuals
between the preliminary results from prediction module and the ground truth, in order to improve the
accuracy of building extraction. In addition, we also experimentally validated that the Dice loss-based
loss function in training can effectively alleviate the problem of data imbalances and improve the
accuracy of building extraction from remote sensing images. Experimental results on Massachusetts
Building Dataset show that BRRNet is significantly superior over five other state-of-the-art methods in
terms of building integrity and building footprint accuracy.
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