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Abstract: Aerosol optical depth (AOD) has been widely used to estimate near-surface particulate
matter (PM). In this study, ground-measured data from the Campaign on Atmospheric Aerosol
Research network of China (CARE-China) and the Aerosol Robotic Network (AERONET) were used
to evaluate the accuracy of Visible Infrared Imaging Radiometer Suite (VIIRS) AOD data for different
aerosol types. These four aerosol types were from dust, smoke, urban, and uncertain and a fifth
“type” was included for unclassified (i.e., total) aerosols. The correlation for dust aerosol was the
worst (R2 = 0.15), whereas the correlations for smoke and urban types were better (R2 values of 0.69
and 0.55, respectively). The mixed-effects model was used to estimate the PM2.5 concentrations in
Beijing–Tianjin–Hebei (BTH), Sichuan–Chongqing (SC), the Pearl River Delta (PRD), the Yangtze River
Delta (YRD), and the Middle Yangtze River (MYR) using the classified aerosol type and unclassified
aerosol type methods. The results suggest that the cross validation (CV) of different aerosol types
has higher correlation coefficients than that of the unclassified aerosol type. For example, the R2

values for dust, smoke, urban, uncertain, and unclassified aerosol types BTH were 0.76, 0.85, 0.82,
0.82, and 0.78, respectively. Compared with the daily PM2.5 concentrations, the air quality levels
estimated using the classified aerosol type method were consistent with ground-measured PM2.5, and
the relative error was low (most RE was within ±20%). The classified aerosol type method improved
the accuracy of the PM2.5 estimation compared to the unclassified method, although there was an
overestimation or underestimation in some regions. The seasonal distribution of PM2.5 was analyzed
and the PM2.5 concentrations were high during winter, low during summer, and moderate during
spring and autumn. Spatially, the higher PM2.5 concentrations were predominantly distributed in
areas of human activity and industrial areas.

Keywords: VIIRS AOD; PM2.5; aerosol type; mixed-effects model; China

1. Introduction

Studies have shown that human health can be affected by long-term exposure to fine particulate
matter (PM, with a diameter of < 2.5 µm), and PM2.5 is associated with various diseases such as
respiratory tract infections and lung diseases [1–4]. With rapid economic development, urbanization,
and industrialization, China has become one of the most polluted regions in the world [5,6]. Since
2013, the China National Environmental Monitoring Center (CNEMC) has established numerous
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ground-measured PM2.5 observation stations that are significant to the assessment of air quality in
China. The accuracy of ground-measured observations is high, but this method has certain limitations
in terms of spatial coverage, and the diversity of pollutant sources hinders the assessment of complex
air quality models [7–9]. In contrast, satellite remote sensing technology can compensate by providing
high spatial resolution over large regions.

The columnar integrated aerosol optical depth (AOD) represents the extinction of incoming
solar radiation by aerosols and its magnitude is directly proportional to the loading of aerosols
in the total atmospheric column [10–12]. A series of satellites have carried sensors capable of
retrieving AOD, which are widely used to estimate near-surface PM2.5 concentrations; these satellites
include the Moderate Resolution Imaging Spectroradiometer (MODIS) [13–17], the Multiangle
Imaging Spectroradiometer (MISR) [2,18–20], the Visible Infrared Imaging Radiometer Suite
(VIIRS) [13,18,21–23], and Himawari-8 [24], et al. The commonly used methods for estimating
PM2.5 concentrations from AOD are the proportional factor method [25,26], the semiempirical formula
method [16,27,28], and the statistical model method [7,13,19,24,29]. The proportional factor method and
the statistical model method are widely used by researchers to estimate regional PM2.5 concentrations
based on the relationship between AOD and PM2.5; however, the influence of the aerosol compositions
on the estimation results has not been considered. The semiempirical formula method is based on the
physical mechanism of the relationship between parameters such as the vertical profile and particle size.
The PM2.5 compositions vary with different regions, and the method for unconsidered aerosol types is
thus difficult to use in a large region with few ground-measurement stations. Therefore, Sunkun et
al. proposed a local aerosol concept to distinguish anthropogenic and natural source aerosols using
MODIS AOD to estimate PM2.5 in different regions and seasons [30]. The results showed that the
correlations had large differences over both seasons and regions. Chen et al. collected AErosol RObotic
NETwork (AERONET) data from the Xuzhou and Beijing sites and classified aerosols into urban type,
continental type, dust type, and biomass burning type [31]. The correlation coefficient between AOD
and PM2.5 increased from 0.25 to 0.34, and the classified aerosol type method thus improved the PM2.5

estimation accuracy. Additionally, the results showed that the urban and biomass burning aerosol
types had the best accuracy, and that the dust aerosol type was the worst. However, observation
stations have limitations due to various unfavorable conditions (such as terrain and climate), which
makes the method proposed by Sunkun difficult to generalize to large-scale regions. Previous studies
have shown that the classified aerosol type method can improve the PM2.5 estimation accuracy as long
as the ground station is nearby. Therefore, the classified aerosol type method is not widely used for
satellite data due to a lack of aerosol type information. However, since 2012, the VIIRS AOD product
has provided aerosol type attributes, which offers the possibility of PM2.5 estimation from satellite data
using this method.

Many studies ([27,32–34]) have shown that the most polluted areas in China are mainly located in
Beijing–Tianjin–Hebei (BTH), Sichuan–Chongqing (SC), the Pearl River Delta (PRD), the Yangtze River
Delta (YRD), and the Middle Yangtze River (MYR); the locations of these areas are shown in Figure 1.
For this paper, we obtained VIIRS AOD to estimate PM2.5 concentrations using both classified and
unclassified aerosol type methods across typical contaminated areas in China. The ground-measured
AOD was obtained to evaluate the accuracy of VIIRS AOD. Then, statistical models were used to
estimate PM2.5 concentrations using the two methods (classified and unclassified), and the accuracy of
the results was verified. The spatiotemporal distribution of PM2.5 concentrations in five typical areas
were analyzed.
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Figure 1. The locations of the five regions in China: Beijing–Tianjin–Hebei (BTH), Sichuan–Chongqing
(SC), Pearl River Delta (PRD), Yangtze River Delta (YRD), and Middle Yangtze River (MYR), and the
location of the ground_measured aerosol optical depth (AOD).

2. Materials and Methods

2.1. Data

2.1.1. Ground-Measured Aerosol Optical Depth (AOD)

Ground-measured AOD were obtained from the Campaign on Atmospheric Aerosol Research
network of China (CARE-China). CARE uses a new generation of portable solar photometers that are
produced by the United States (US) Department of Forestry and consist of four channels with center
wavelengths of 405, 500, 650, and 880 nm [35]. The measurement periods at each station were set within
the transit period of the satellite. Due to confidentiality, only seven data stations could be obtained to
evaluate the accuracy of VIIRS AOD. Figure 1 and Table 1 report the geographic distribution and details
of the network stations: Shapotou (SPT), Beijing Forest (BJF), Beijing City_1 (BJC_1), Nanjing (NJ),
Yucheng Agriculture (YCA), Yantai Coast (YTC), and Qianyanzhou (QYZ). Moreover, considering the
uniformity of the station distribution and to verify the accuracy of VIIRS AOD over different surface
types, we used three AERONET observations (listed in Table 1, Beijing City_2 (BJC_2), Xianghe (XH),
Hong Kong (HK)). AERONET observations can provide the basic characteristics of aerosol optical
properties including AOD, Ångström exponent (α), volume size distribution, and so on [36]. There are
three levels of AERONET data. The Level 1.0 data are the original data, while the Level 1.5 data are
cloud screened, and Level 2.0 data are cloud screened and quality assured. The Level 1.5 and 2.0
products (version 3.0) were used in this study. Cloudy conditions were removed from the dataset.
CARE and AERONET AOD at 0.55 µm were calculated by interpolating AOD using the reported
angstrom exponents for respective wavelengths to match the VIIRS wavelength and were averaged
to within ±30 minutes of the VIIRS overpass time. VIIRS AOD values were averaged within a 6 km
radius of each ground-measurement station.
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Table 1. Information about the ground-measurement stations.

No. Station Lon (◦ E) Lat (◦ N) Time Station type Source

1 Shapoou (SPT) 104.95 37.45 2013. Jan–Dec Desert
background CARE

2 Beijing Forest (BJF) 115.43 39.97 2013. Jan–Dec North China
background CARE

3 Beijing City_1 (BJC_1) 116.28 39.98 2013. Jan–Dec,
2016. Jun–Dec Megacity CARE

4 Beijing City_2 (BJC_2) 116.38 39.98 2015. Jan-2016. Dec Megacity AERONET

5 Xianghe (XH) 116.96 39.75 2015. Jan–2016. Dec City suburb AERONET

6 Nanjing (NJ) 118.42 32.12 2016. Jun–Dec Central city CARE

7 Yucheng Agriculture (YCA) 116.57 36.85 2013. Jan–Dec North China
country CARE

8 Yantai Coast (YTC) 120.27 36.05 2013. Jan-Dec East China sea
coast CARE

9 Qianyanzhou (QYZ) 115.03 26.45 2016. Jun–Dec South China
country CARE

10 Hong Kong (HK) 114.18 22.30 2015. Jan–2016. Dec South China sea
coast AERONET

* Note: The data only validated the retrieval VIIRS AOD accuracy.

2.1.2. Visible Infrared Imaging Radiometer Suite AOD

VIIRS was launched aboard the Suomi NPP satellite on October 28, 2011 and is mainly used for
global observations of land, sea, and atmospheric parameters. The VIIRS sensor is a 22-band cross-track
scanning radiometer with wavelengths that span a range from 0.412 to 12.013 µm. VIIRS has a swath
width of 3040 km and a high nominal spatial resolution of 375 m in the five imagery bands, and 750 m in
the 16 moderate-resolution bands and the day–night band (DNB). The VIIRS teams provide two types
of AOD products, the intermediate product (IP) AOD and the Environmental Data Record (EDR) AOD,
with spatial resolutions of 750 m and 6 km, respectively. VIIRS AOD delivers corresponding quality
flag (QF) data. QF was set to 0, 1, 2, or 3, which indicate no data and low-, medium-, and high-quality
products, respectively. Yao et al. found that including medium-quality VIIRS AOD data increased the
spatiotemporal coverage during winter, but leads to a decline in the model accuracy [13]. To minimize
the influence of the AOD accuracy, we only used high quality AOD data with QF = 3. We obtained the
“model” flag to distinguish the aerosol type. The numbers of 0, 1, 2, 3, and 4 represent dust, smoke-high
absorption, smoke-low absorption, urban-clean, and urban-polluted, respectively. The AOD data were
freely downloaded from the comprehensive larger array-data stewardship system [37].

2.1.3. PM2.5 Data

Ground-based PM2.5 data at a temporal resolution of one hour from January 2015 to December
2016 were obtained from the China National Environmental Monitoring Center (CNEMC). PM2.5

concentrations are measured using the tapered element oscillating microbalance (TEOM) approach or
the beta-attenuation approach, both of which comply with the National Standard for Environmental
Air Quality (GB3095-2012) [38]. By screening out outliers, only reliable observations were retained,
and the model is thus well formulated and can be reasonably applied to other areas and days. Several
preliminary steps were applied to PM2.5: (1) We omitted records with conflicting AOD and PM2.5

values (AOD < 50th percentile and PM2.5 > 95th percentile, or PM2.5 < 50th percentile and AOD > 95th

percentile); (2) records with a Pearson correlation coefficient between PM2.5 and AOD < 0.1 in one day
were removed; (3) data during precipitation were removed because high ambient humidity following
precipitation usually results in PM2.5 concentrations that cannot be determined reliably; and (4) the
average PM2.5 of one hour before and after the satellite overpass time was calculated as the input for
further analysis.
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2.1.4. Auxiliary Data

Meteorological conditions alter ground-level PM2.5 concentrations and need to be included when
assessing modeling performance [20,39–41]. For example, the planetary boundary layer height (PBLH)
is negatively correlated with PM2.5 [42]; the relative humidity (RH) and temperature (TM) correlate to
particle compositions, wind speed (WS), and wind direction (WD); and can affect the emission and
horizontal transport of air pollutants, and the surface pressure (SP) can influence the atmospheric
stability and vertical dispersion of air pollution. RH, TMP, WS, WD, and SP were retrieved from the
China Meteorological Data Sharing Service System (CMDSSS)for a total of 2380 stations; the data at
14:00 were selected to match the satellite overpass time. PBLH data provided by the ERA-Interim
reanalysis were downloaded from the European Center for Medium-Range Weather Forecasts [43]; the
spatial resolution was 0.125◦ × 0.125◦, and the temporal resolution was six hours. All the meteorological
data selected were the nearest to the satellite overpass time. The elevation data of the study area were
obtained from the Shuttle Radar Topographic Mission (SRTM) [44] and have a spatial resolution of
approximately 90 m. Population density at 1-km resolution for 2010 was downloaded from the Data
Center for Resource and Environmental Sciences, Chinese Academy of Sciences. Since the original
projections and spatial resolutions of the datasets varied greatly, all the datasets were reprojected to the
WGS-84 coordinate system and were resampled to 6 km × 6 km with ARCGIS, and all independent
variables were matched to the PM2.5 stations using the nearest sampling site.

2.2. Model and Validation

All datasets were acquired after all data were integrated, and each record corresponds to a specific
day and specific site; however, the data changed with the day and site. Data for days with less than
four records were removed to build the model. The mixed-effects model is a generalization of the
simple linear model. Lee et al. used the mixed-effects model to evaluate the relationship between
PM2.5 and AOD, and the results reflected the time difference [17]. Subsequently, Tian et al. proposed a
semiempirical model to characterize the nonlinearity relationship between AOD and PM2.5 [8]. Song et
al. employed a general linear model and a semiempirical model to compare the relationship between
AOD and PM2.5 in the PRD [45]. The accuracy of the regression model can be improved through the
integration of the semiempirical model into the line mixed effect model [46]. This study mainly aimed
to analyze the influence of different aerosol types on the PM2.5 estimation. Therefore, we selected a
mature statistical model to estimate the PM2.5 concentrations, which is defined as follows:

ln(PM2.5,st,i) = (α+ω) +
(
β1,i + u1,i

)
× ln(AODst,i) +

(
β2,i + u2,i

)
× TMPst

+
(
β3,i + u3,i

)
×RHst +

(
β4,i + u4,i

)
× ln(PBLHst)

+
(
β5,i + u5,i

)
× SPst

(
β6,i + u6,i

)
× ln(WSst)

+
(
β7,i + u7,i

)
× WDst + β8,i × ELEVs + β9,i × Pops + εst,i

(1)

where PM2.5,st,i are the dependent observation vectors and AODst,i , TMPst , RHst , PBLHst , SPst , WSst ,
and WDst are the independent vectors for grid s on day t. ELEVs and Pops are also independent
vectors. All parameters are listed in Table 2.

The slope and intercept were calculated by applying the model dataset to Equation (1), and
the PM2.5 concentrations can be estimated over the region. A ten-fold cross validation (CV) was
conducted to assess the performance of the model to avoid overfitting. The theory of CV is that the
entire model-fitting dataset is randomly split into 10 subsets, and 10 rounds of model fitting and
prediction are completed. Nine subsets are used to fit the model, and the tenth subset is selected as the
testing sample. The process is repeated 10 times in turn, and each predicted value is obtained. The
mean of all ten times is the result of the CV. To evaluate the goodness of fit of the model, we computed
the coefficient of determination (R2) and root mean square error (RMSE) for both the observed and
estimated PM2.5 concentrations.
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Table 2. Parameters used in this study.

Variable Unit Description

i Unit less Aerosol type
AOD Unit less VIIRS AOD
TMP ◦C Temperature
WS m/s Wind speed
WD ◦ Wind direction
RH % Relative humidity
SP hPa Surface pressure

PBLH m Boundary layer height
ELEV m Elevation

Pop Ten
thousand/km2 Population density

α Unitless Fixed effects intercept
ω Unitless Random effects intercept

β1–β9 Unitless Fixed effects slope
µ1–µ7 Unitless Random effects slope
ε Unitless Random errors

3. Results

3.1. Validation of VIIRS AOD

The relationship between ground-measured AOD and VIIRS AOD is presented in Table 3. Overall,
the correlation was relatively high, which indicates that the AOD determined by the two methods were
consistent with each other. However, the correlations had large differences between sites. For example,
the correlation was relatively low at the Shapotou Station, and there was a serious underestimation
compared with the ground-measured observations. The R2 values at Hong Kong and Yantai Stations
were low, and were high at the suburban and vegetation-covered dense stations (BJF, BJC_1, Nanjing,
etc.). VIIR AOD exhibited good consistency with the ground-measured observations when the AOD
was relatively low, but it was overestimated when the AOD was high.

Table 3. The relationship between ground-measured and Visible Infrared Imaging Radiometer Suite
Aerosol Optical Depth at each station.

Station Expression R2 RMSE N

Shapotou Y = 0.43 X + 0.01 0.27 0.32 182
Hongkong Y = 0.56 X + 0.33 0.25 0.29 61

Yantai Coast Y = 0.54 X + 0.30 0.33 0.32 155
Beijing Forest Y = 0.72 X + 0.04 0.52 0.14 180

Xianghe Y = 0.65 X+ 0.08 0.64 0.33 279
Yucheng Agriculture Y = 0.87 X + 0.33 0.66 0.28 239

Beijing-City1 Y = 0.62 X + 0.10 0.62 0.27 132
Beijing-City2 Y = 0.77 X + 0.18 0.66 0.26 198

Nanjing Y = 0.97 X – 0.04 0.59 0.19 43
Qianyanzhou Y = 0.78 X + 0.08 0.48 0.22 67

The accuracy of VIIRS AOD retrieval is different for different surface types, according to Table 3.
Therefore, taking into account the feasibility of the data when constructing models, we classified aerosol
types into four categories to evaluate the VIIRS AOD accuracy for different aerosol types: dust type,
smoke type (smoke-low and smoke-high), urban type (urban-clean and urban-polluted), and uncertain
type. Additionally, the “All” category was the unclassified aerosol type, in which the data contained
dust, smoke, urban, and uncertain data types. The definition of the uncertain type was that a pixel was
identified as different aerosol types when matching the lookup tables. Scatter plots between AODs
of different aerosol types and ground-measured data are shown in Figure 2. The retrieval accuracy
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of the dust aerosol type was relatively low and the AOD was seriously underestimated, within the
range of 0–0.5. A good agreement was found for the smoke aerosol type, and the AOD was evenly
distributed from 0–2, although there was a small underestimation when the AOD was high. The AOD
of an uncertain aerosol type was mostly concentrated from 0–1. However, the AOD was significantly
overestimated when the AOD value was less than 0.5. The urban aerosol AOD (between 0–1.5) was
relatively small when compared with the smoke aerosol AOD.
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3.2. Model Fitting and Validation

The AOD accuracy of different aerosol types was not the same, according to Figure 2. Simple
linear relationships between AOD and PM2.5 were calculated for 2015 and 2016, as indicated in Table 4.
The result shows that the R2 between the different aerosol types were not equal, the dust aerosol had
the lowest correlation, and the smoke aerosol had the highest correlations.

Table 4. The coefficients of determination between different types of Visible Infrared Imaging Radiometer
Suite Aerosol Optical Depth and PM2.5.

Year Dust Smoke Urban Uncertain All

2015 0.12 0.27 0.17 0.24 0.16
2016 0.13 0.24 0.16 0.22 0.15

Based on the inconsistent correlation between AOD and PM2.5 (Table 4), a model was established
for the different aerosol types according to Equation (1) (Method 1) and the unclassified aerosol types
(Method 2). Additionally, CV verification was applied to the data to test the potential model overfitting.
Taking BTH as an example, the density scatter plots verified by CV are shown in Figure 3. The figure
shows an underestimation when the PM2.5 concentrations exceeded 200 µg/m3, whereas the scatter
plots were evenly distributed when the PM2.5 concentrations were relatively low, and the correlation
was significantly improved. The dust aerosol only had a few data samples, which could be because
most dust aerosols over BTH come from long-distance transmissions from desert regions such as
Inner Mongolia during the winter and spring. Except for a few high values of PM2.5 (Figure 3b),
the scatterplots of smoke aerosol were evenly distributed on both sides of the fitted line. The point
distribution of an urban aerosol was more concentrated than that of the uncertain aerosol (Figure 3c,d).
The value of the uncertain aerosol was seriously underestimated when PM2.5 concentrations exceeded
150 µg/m3. The R2 of the unclassified aerosol type (Figure 3e) was greater than that of the dust aerosol,
but less than that for the smoke, urban, and uncertain aerosol types. The dust aerosol over the PRD,
MYR, SC, and YRD was classified as an uncertain aerosol type to avoid overfitting because of the small
amount of data, and the CV results are listed in Table 5.

Figure 3. Cont.
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Figure 3. Cross validation of the predicted vs. observed PM2.5 concentrations for different aerosol
types. (a), (b), (c), (d), and (e) show the dust, smoke, urban, uncertainty, and all, respectively.

Table 5. Parameters of cross validation for the model in Sichuan–Chongqing (SC), Pearl River Delta
(PRD), Yangtze River Delta (YRD), and Middle Yangtze River (MYR)

Location Value All Smoke Urban Uncertain

PRD
R2 0.76 0.83 0.83 0.78

RMSE (µg/m3) 8.7 9.6 7.95 7.83

MYR
R2 0.73 0.77 0.79 0.75

RMSE (µg/m3) 15.01 9.47 16.3 13.55

SC
R2 0.79 0.83 0.83 0.79

RMSE (µg/m3) 14.45 11.36 14.31 13.08

YRD
R2 0.80 0.89 0.85 0.81

RMSE (µg/m3) 12.58 9.61 12.31 10.80

The CV R2 of the urban aerosol was greater than that for smoke aerosol, except for the YRD. The
CV R2 (RMSE) of the classified aerosol type was greater (less) than that of the unclassified aerosol type.
The CV R2 of the smoke and urban aerosol was greater than that of the uncertain aerosol type, and the
uncertain aerosol type thus had a certain impact on the PM2.5 estimation accuracy. After the above
analysis, constructing models for different aerosol types helps to improve the PM2.5 estimation accuracy.

3.3. Comparison of PM2.5 Daily Estimates

The data from the clear and minimal cloud coverage conditions were selected from 2015 to 2016,
and the PM2.5 pollution levels were classified according to the national standards. The air quality
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level differences were compared between the satellite-retrieved data and ground-measured data, and
the accuracy of the PM2.5 satellite retrieval was quantitatively analyzed. The r and RMSE between
the ground-measured and satellite-estimated over five regions were calculated and are reported
in Table 6. The relative errors (RE = (Ground-measured–Satellite)/Ground-measured)), the PM2.5

estimation results (both methods), and ground-measured data at each station are shown in Figure 4.
According to the list of histograms, the estimation of PM2.5 via the classified method was closer to the
ground-measured data, and the REs were less so, when using the classified aerosol types compared
with the unclassified aerosol type (except for a few sites). Meanwhile, the statistics of the REs showed
that more than 60% of the data fell within ±30% in BTH, more than 80% of the data fell within ±30% in
SC, approximately 97% (88%) fell within ±30% (20%) in PRD, approximately 80% as within ±30% in
YRD, and approximately 92% (75%) were within ±30% (20%) in MYR.

To analyze the spatial distribution of PM2.5, the data selected are shown in Figure 5. In the air
quality grades, the distribution of PM2.5 grades estimated using the classified aerosol type method was
generally more consistent with the ground-measured observations. For example, the PM2.5 values
of some stations in Shijiazhuang and Tangshan, based on the classified aerosol type, were closer to
the ground-measured data than those based on the unclassified aerosol type in BTH. In SC, the result
obtained using the classified aerosol type method could articulate more detailed information, while the
unclassified aerosol type method did not show the differences among different regions compared to the
ground-measured PM2.5. In PRD, the estimation result using the unclassified aerosol type method was
seriously overestimated in some regions such as Jiangmen and Zhongshan. The spatial distributions of
PM2.5 in the YRD and MYR exhibited little differences between the classified and unclassified aerosol
type methods. On 6 December, 2016, heavy and serious pollution areas were mainly located west of
Jiujiang and Yichun, but Xinyang had better air quality. Overall, although some were overestimated or
underestimated using the satellite estimation method, it was obviously advantageous in determining
the spatial distribution and could contribute to the evaluation of air quality on the macro level.

Table 6. Statistical parameters for the ground-measured and satellite-estimated values in
Beijing–Tianjin–Hebei (BTH), Sichuan–Chongqing (SC), Pearl River Delta (PRD), Yangtze River Delta
(YRD), and Middle Yangtze River (MYR)

Regions Time
Classified Unclassified

r RMSE (µg/m3) r RMSE (µg/m3)

BTH 2016-05-10 0.76 11.0 0.73 11.1
SC 2015-10-14 0.80 16.45 0.75 19.65

PRD 2015-01-18 0.75 6.34 0.65 13.8
YPD 2015-10-12 0.73 9.15 0.71 12.85
MYR 2016-12-06 0.94 10.98 0.92 12.54

Figure 4. Cont.
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Figure 4. The relative error (RE) in the PM2.5 concentrations for the ground-measured and satellite
retrieval result using the classified and unclassified aerosol type methods in Beijing–Tianjin–Hebei
(BTH), Sichuan–Chongqing (SC), Pearl River Delta (PRD), Yangtze River Delta (YRD), and Middle
Yangtze River (MYR). The red dashed, green solid, and dark lines are the RE values calculated via
ground-measured, classified, and unclassified methods. The red, green, and dark rectangles are the
PM2.5 obtained using the ground-measured, classified, and unclassified methods, respectively.
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Figure 5. Cont.



Remote Sens. 2020, 12, 881 13 of 26

Figure 5. The distributions of PM2.5 obtained using the classified and unclassified aerosol type methods
in Beijing–Tianjin–Hebei (BTH), Sichuan–Chongqing (SC), Pearl River Delta (PRD), Yangtze River Delta
(YRD), and Middle Yangtze River (MYR).

3.4. Spatiotemporal Variations in Satellite-Retrieved PM2.5

The estimation results obtained using the two methods suggest that satellite remote sensing
technology is a simple but effective means to estimate the regional PM2.5 concentrations, especially for
some areas with sparse ground-measurement stations. To analyze the PM2.5 variations for heavily
polluted areas in China from 2015 to 2016, the spatiotemporal distributions of the PM2.5 estimates based
on the classified aerosol type method in BTH, SC, YRD, MYR, and PRD are shown in Figures 6–10.
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Figure 6. Spatiotemporal distributions of PM2.5 concentrations in Beijing–Tianjin–Hebei BTH.
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Figure 7. Spatiotemporal distributions of PM2.5 concentrations in Sichuan–Chongqing (SC).
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Figure 8. Spatiotemporal distributions of PM2.5 concentrations in the Yangtze River Delta (YRD).

(1) Beijing–Tianjin–Hebei (BTH)

Figure 6 shows the seasonal variations in PM2.5 as estimated with the aerosol type method and
VIIRS AOD in BTH during January 2015 to December 2016. The spatial distributions exhibit a strong
south-to-north increasing gradient, which is mainly related to the topography, weather conditions, land
cover types, and emission sources. The Taihang Mountains west of Hebei Province inhibit pollutant
dispersion, which leads to pollutant accumulation in the North China Plain. Heavy pollution areas
are located in southern and urban regions with lower vegetation coverage, higher pollution density,
and lower topography. Northwest of the mountainous region is an area of good air quality with
denser vegetation cover, less population, and higher topography. The PM2.5 concentrations in the
southern Hebei Province were higher than those in Beijing and Tianjin because of the large amount
of industrial pollution, and the air quality was thus poor. According to the ground observations, the
pollutants are released into the air due to heating in winter, and poor weather conditions are not
conducive to pollutant diffusion in BTH, which leads to high PM2.5 concentrations. However, the
satellite-retrieved data did not reflect the high PM2.5 concentrations in winter, which is related to the
lack of high-quality AOD data. The seasonal variations were consistent with the ground measurements,
and the concentrations of PM2.5 were the highest in winter and lowest in summer. During summer,
the prevailing unstable atmospheric conditions and precipitation are conducive to pollutant diffusion,
and the air quality is better. The seasonal average concentrations of PM2.5 are higher in spring due
to the influence of dust, and in autumn due to straw and coal burning for heating in November.
Compared with 2015, in 2016, the seasonal average concentrations of PM2.5 in BTH decreased, and the
air quality improved.

(2) Sichuan–Chongqing (SC)

Figure 7 shows the seasonal distribution of PM2.5 in both 2015 and 2016 over SC. Spatially, the
high PM2.5 concentrations were located in the city clusters of the Sichuan Basin (SB), and the air quality
was better in the western Sichuan Plateau, which could be attributed to the following reasons. First, the
city clusters of the SB are densely populated, and the discharge of a large amount of vehicle exhaust
and industrial pollutants will lead to higher PM2.5 concentrations. Second, the SB is located southeast
of the Tibetan Plateau at a low altitude and is surrounded by mountains; therefore, unfavorable
topography and climatic conditions inhibit the diffusion of pollutants. Third, the western Sichuan
Plateau has a high elevation, a sparse population, dense vegetation coverage, and fewer pollution
sources, which create better air quality [47]. Regarding seasonal variations, the PM2.5 concentrations
were the highest during winter and lowest during summer, and the second-highest concentrations
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occurred during spring and autumn. The main reason is that the lower PBLH is dry with little rainfall,
which easily leads to the inversion of temperature and the accumulation of pollutants in the bottom
layer of the atmosphere, which is not conducive to the diffusion of pollutants during spring and
winter [48]. In summer and autumn, the temperature and humidity are high in PBLH during summer,
which is conducive to the diffusion of pollutants and thus the lowest PM2.5 concentrations. In 2016,
the concentrations of PM2.5 decreased in winter but increased in the southwestern SB in autumn and
spring compared with 2015, consistent with the results of Zhao et al. [47]

Figure 9. Cont.
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Figure 9. Spatiotemporal distributions of PM2.5 concentrations in the Middle Yangtze River (MYR).

(3) Yangtze River Delta (YRD)

The seasonal and spatial variations in PM2.5 in 2015 and 2016 are shown in Figure 8. The spatial
distributions exhibit a strong north-to-south decreasing gradient. The high PM2.5 concentrations
were mainly located in city clusters such as Shanghai, Suzhou, and Wuxi, where the generation of
aerosols due to human activities is larger and large amounts of pollutants (from industrial sources,
vehicle exhaust, road dust, and other sources) are released into the atmosphere, leading to high PM2.5

concentrations. There is better air quality south of the YRD, where the vegetation cover is dense, human
activity and pollution sources are relatively less, and the dense vegetation can block some surface
particles from entering the atmosphere. The seasonal variation in PM2.5 concentrations showed an
obvious pattern, winter > spring > autumn > summer, which agreed well with the conclusions by He et
al. [27]. In winter, the PM2.5 concentrations in the YRD are affected by the air flow transmission carrying
pollutants from north and east China. The dominant source of PM2.5 in the YRD is the secondary
reactions of sulfur, nitrogen, and ammonia emissions from industry, coal, vehicles, and dust. Therefore,
the following climatic conditions that prevail in the downdraft result in difficulties in spreading the
local pollutants, and the PM2.5 concentrations are high in winter. As the East Asian monsoon and
mainly northwesterly winds prevail over the YRD in the spring, some of the large-diameter dust
aerosols are transmitted by the monsoons from the north, which leads to higher PM2.5 concentrations
than in the autumn; however, the difference is small [49]. In summer, the strong atmospheric motion
is conducive to pollutant diffusion, and heavy rainfall promotes the wet deposition of particles to
reduce pollutant concentrations in the atmosphere [50]. Simultaneously, the clean air provided by the
ocean monsoon transmitted via the Pacific Ocean has a strong dilution effect on air pollution and thus
reduces the PM2.5 concentrations in the atmosphere [51]. The PM2.5 concentrations in most cities of the
YRD decreased in 2016 compared with 2015. However, in the winter of 2016, the PM2.5 concentrations
in some cities such as Shanghai, Suzhou, and Wuxi were relatively high. This was mainly because the
area experienced four periods of high-concentrations and large-scale and long-term particle pollution
in December 2015, which was influenced by the long-distance transport of the southwest and northern
air currents [52].

(4) Middle Yangtze River (MYR)

The MYR is also one of the most heavily polluted areas according to the statistical analysis of
the national PM2.5 concentrations. The spatiotemporal distributions of PM2.5 concentration during
2015–2016 are shown in Figure 9. The high PM2.5 concentrations were mainly concentrated southwest
of Hubei and northeast of Hunan. The PM2.5 concentrations in Hubei had a unique spatial distribution.
The PM2.5 concentrations were the highest in the central regions (such as Jingmen, Tianmen, and
Qianjiang) and lowest in the western regions (such as Enshi and Shiyan), and concentrations in the
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eastern regions were higher than in the western regions (such as Huangshi). The unique distribution
might be explained by the mountains surrounding the eastern, western, and northern sides of Hubei
Province; the center is low-lying, and the incomplete basin is slightly open to the south, which forms two
transmission channels of pollutants (Xiangyang–Jingmen–Jingzhou and Suizhou–Xiaogan–Wuhan).
Therefore, the PM2.5 accumulated in the central area, and the eastern and western areas were relatively
low [53]. In the cities of Changsha, Zhuzhou, Xiangtan, and Changde, which are Hunan’s economic
development centers, industrial and vehicle emissions led to relatively high PM2.5 concentrations.
Jiangxi Province had higher PM2.5 concentrations in Nanchang and Yichun. The seasonal distribution
of PM2.5 concentrations in MYR had similar characteristics in 2015 and 2016: winter > spring > autumn
> summer [54]. This distribution could be explained by the following two factors. First, the MYR
is located in southern China, where the temperature is high, and heavy rainfall directly removes
atmospheric particulates in summer. Moreover, heavy rainfall increases the humidity in the air, which
helps to increase the mass and viscosity of the particulate matter and accelerate the wet deposition of
PM2.5 particulate matter, which reduces the pollutants in the air. However, the temperature is relatively
low in the winter, and the rainfall is relatively little. The discharge of pollutants increases with heating,
which leads to higher concentrations of PM2.5. Second, in summer, the southeast wind prevails, and
the WS is relatively high, which are both conducive to the diffusion of pollutants. The northerly wind
prevails, carrying some pollutants from the north to the MYR, which increases the concentration of
pollutants in winter and is not conducive to the diffusion of pollutants.

(5) Pearl River Delta (PRD)

According to the spatiotemporal distributions of PM2.5 in the PRD from 2015 to 2016 (Figure 10),
the PM2.5 concentrations were relatively low when compared with BTH, SC, YRD, and MYR, which
could be attributable to two factors. First, to hold the 16th Annual Asian Games in 2010, many factories
were forced to control PM2.5 concentrations through various means such as the closure or relocation
of heavily polluting factories. Second, the PRD is located in the southernmost part of China and is
close to the sea. Heavy rainfall occurs frequently, which is conducive to the removal of pollutants. The
PM2.5 concentrations around Guangzhou and Foshan were higher than in other regions because of
the high emission of fuel sources and vehicles located in urban centers. In the PRD, PM2.5 is mainly
formed by the secondary conversion of gas precursors such as sulfur dioxide and nitrogen oxides,
which results in high PM2.5 concentrations. The PM2.5 concentrations were high in winter, but low in
summer. The PRD is mainly affected by the inland and Fujian coastal air masses, northerly winds, and
little rainfall, which lead to the poor performance of atmospheric diffusion and air mass cleanliness in
winter. Most of the air masses that reach the PRD in summer come from the clean air masses of the
China Sea and South Pacific; the heavy rainfall promotes the wet deposition of particulate matter, thus
the PM2.5 concentrations are low.

Figure 10. Cont.
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Figure 10. Spatiotemporal distributions of PM2.5 concentrations in the Pearl River Delta (PRD).

4. Discussion

Satellite data have been proven to have the capacity to estimate spatiotemporal PM2.5

concentrations in areas with few ground measurements such as suburbs. The particle compositions are
not the same in different regions, which leads to inaccuracy of the PM2.5 estimation. In this study, we
first obtained ground-measured AODs to evaluate the accuracy of VIIRS AOD retrieval for different
aerosol types and found large differences among the different aerosol types. The dust aerosol type
had the lowest correlation, which could be because the algorithm used to retrieve VIIRS AOD adopts
the 6SV to construct a lookup table; this process only assumes the scattering function of spherical
particles and does not well reflect the characteristics of nonspherical particles. In addition, in the case
of dust (and thus also in the case of longer-range transported particles), the variability of the aerosol
distribution, especially in the vertical dimension, is higher, and so the AOD–PM2.5 relationship can
work less well than for local aerosol types. The correlation of salt aerosols is relatively low, and it
could be that most of the sea salt particles are coarse and mixed, which would impact the retrieval
of AOD over land. The verification results are consistent with Tian’s research [55], which used the
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Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data to analyze the
different aerosol types in different regions.

The relationship between PM2.5 and AOD has been discussed by many researches; however, these
studies have mainly focused on exploring new models or finding new variables related to PM2.5 to
improve the performance of PM2.5 estimation. However, aerosol types have been less discussed in the
use of satellite data, perhaps because it is difficult to obtain accurate aerosol types at a large regional
scale due to rapid changes in particle composition. Therefore, with the aerosol types given in VIIRS
AOD, we proposed a classified aerosol type method to estimate PM2.5. Moreover, our main objective
in this study was to explore the performance of using the classified aerosol type method to estimate
PM2.5, and we thus selected a mature statistical model. More advanced and complex models (e.g.,
artificial neural networks, random forests, and support vector machines) will be used to estimate PM2.5

in the future.
The models were constructed for dust, smoke, urban, uncertain, and “All” type categories in

five different regions to demonstrate the statistical applicability of the method. The CV R2 of dust
aerosols was the lowest, which is related to the accuracy of AOD retrieval. The CV R2 values of
smoke, urban, and uncertain aerosol types were greater than that of the “All” type (unclassified
aerosol type), which shows that the classified aerosol type performed better in determining the
relationship between AOD and PM2.5 than the unclassified aerosol type. This result was similar to that
from the research of Chen et al. [31]. Although the research by Chen had higher accuracy based on
ground measurements, it was spatially and temporally limited because there were fewer and unevenly
distributed ground-measurement stations and the data needed to be further processed to distinguish
different aerosol types, generating high costs. Therefore, the method proposed in this study is more
suitable for long time periods and large spatial regions.

We compared the PM2.5 daily estimates, and the results show that the classified aerosol type
method was more consistent with the ground-measured observations than the unclassified aerosol
type, and the RE was relatively lower. Moreover, compared with the ground-measured observations in
Shijiazhuang, in general, the daily average errors were relatively low. However, the RE at some stations
was larger and higher with the classified aerosol type method than with the unclassified aerosol type,
which can be attributed to two factors. First, the AOD accuracy could be affected by clouds because
the edges of the clouds are not cleanly removed, which can lead to large errors in PM2.5 estimation.
Second, the assumed optical properties used by VIIRS aerosol retrieval were taken from Dubovik et al.
(2002) [56], where data from only twelve stations were used. This parameter information thus might
not fully represent the aerosol characteristics in China, which could lead to an inaccurate identification
of the aerosol types. Therefore, it is critical to obtain accurate aerosol types and AODs to improve
PM2.5 concentrations.

In addition, according to the distribution of PM2.5 in BTH, the lack of data is very serious in
winter, which is related to the AOD data. VIIRS AOD is retrieved by the dark pixel algorithm; the
vegetation coverage is sparse in the north during winter, which leads to less data availability. On the
other hand, the surface reflectance of the nonvegetated areas is estimated to be quite different under
heavy haze conditions, and parts of the data are thus classified as non-high-quality products to ensure
the high-precision data quality of the AOD.

5. Conclusions

The accuracy of the PM2.5 concentrations obtained from ground measurements was high, but the
distribution of the sites was uneven, and the number was limited; that is, most nonurban areas have
fewer observations than needed to effectively estimate the regional PM2.5 concentrations. In contrast,
based on the satellite remote sensing technology used to retrieve the AOD with high spatial resolution
and continuous coverage characteristics, the relationship established between the AOD and PM2.5 can
be used to estimate PM2.5 concentrations. In this study, based on the characteristics of different aerosol



Remote Sens. 2020, 12, 881 23 of 26

types, the VIIRS AOD was used to estimate PM2.5 concentrations via the classified and unclassified
aerosol type methods, and the following conclusions were obtained:

(1) Using the ground-measured AOD to verify the accuracy of the VIIRS AOD (Figures 1 and 2), the
correlation was high (R2 > 0.5) in dense-vegetation-coverage regions, and the correlation with
mixed dust or sea salt particles was low (R2 < 0.3). The accuracy of retrieval for different aerosol
types was discussed, and the correlation of the smoke (dust) aerosol was the highest, with R2 =

0.69 (lowest R2 = 0.15).
(2) The linear relationships between the four different aerosol types of AOD and PM2.5 in 2015 and

2016 were calculated. The smoke aerosol correlation was the highest (R2 values of 0.27 and 0.24,
respectively), but was greatly improved after construction of the model estimates (Figure 3 and
Table 5). The CV R2 was relatively low for dust aerosols and high for smoke and urban aerosols
based on the two methods used to estimate the PM2.5 concentrations in BTH, SC, YRD, MYR, and
PRD. The uncertain aerosol type had a certain influence on the accuracy of PM2.5 estimation.

(3) The spatiotemporal distribution of PM2.5 from 2015 to 2016 was analyzed in BTH, SC, YRD,
MYR, and PRD, and the regional PM2.5 concentrations were relatively low in the PRD. Spatially,
high PM2.5 concentrations were located in the city clusters and industrially developed areas,
and an unfavorable topographic factor resulted in higher PM2.5 concentrations. Some regions
at high elevations with dense vegetation coverage and less pollution sources had a low PM2.5

concentration. Seasonally, the increase in emissions and unfavorable pollutant diffusion climatic
conditions led to the highest PM2.5 concentrations in winter. The increase in heavy rainfall, higher
WS, and unstable boundary layer height are favorable for the wet deposition and diffusion of
pollutants, and the PM2.5 concentrations were relatively low in summer.

However, in this study, the aerosol type obtained from the VIIRS attributes could have certain
limitations in China. If the aerosol type can be accurately discerned, this will help to improve the
accuracy of PM2.5 estimation.
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