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Abstract: Hyperspectral image analysis plays an important role in agriculture, mineral industry,
and for military purposes. However, it is quite challenging when classifying high-dimensional
hyperspectral data with few labeled samples. Currently, generative adversarial networks (GANs)
have been widely used for sample generation, but it is difficult to acquire high-quality samples with
unwanted noises and uncontrolled divergences. To generate high-quality hyperspectral samples,
a self-attention generative adversarial adaptation network (SaGAAN) is proposed in this work.
It aims to increase the number and quality of training samples to avoid the impact of over-fitting.
Compared to the traditional GANs, the proposed method has two contributions: (1) it includes a
domain adaptation term to constrain generated samples to be more realistic to the original ones;
and (2) it uses the self-attention mechanism to capture the long-range dependencies across the spectral
bands and further improve the quality of generated samples. To demonstrate the effectiveness of the
proposed SaGAAN, we tested it on two well-known hyperspectral datasets: Pavia University and
Indian Pines. The experiment results illustrate that the proposed method can greatly improve the
classification accuracy, even with a small number of initial labeled samples.

Keywords: hyperspectral image classification; sample generation; GAN; domain adaptation; self-attention

1. Introduction

With the fast development of remote sensing technology, hyperspectral sensors are now able
to capture high spatial resolution images with hundreds of spectral bands, such as those on the
recently launched satellites Zhuhai and Gaofen-5. With narrow and contiguous spectral bands, it is
now possible to identify land cover targets at high accuracy. Therefore, hyperspectral images have
been widely used in crop monitoring, mineral exploration, and urban planning. To achieve such
applications, the primary task for hyperspectral data application is image classification. Due to the
high-dimensionality of hyperspectral data, it is difficult to find representative features to discriminate
between different classes. To explore robust features in the spectral domain, the principal component
analysis (PCA), locally linear embedding, and neighborhood-preserving embedding have been widely
used for efficient unsupervised feature extraction [1,2]. Meanwhile, the supervised dimension
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reduction strategies also have been intensively studied to find discrimination features. For instance,
non-parametric weighted feature extraction (NWFE), linear discriminant analysis (LDA), and local
discriminant embedding (LDE) are efficient in discriminative feature exploration. In contrast to
unsupervised feature learning methods, the supervised dimension reduction strategies can explore
class-dependent features that could be used for image classification. However, instead of using
features in the spectral domain, the spatial features also play an important role in hyperspectral image
classification. Therefore, series of spectral-spatial classification methods were proposed, such as the 3D
Gabor filters and the Extended Morphological Profiles (EMPs). Although the elaborated spectral-spatial
features have demonstrated their capability in hyperspectral image classification, it is still difficult
to capture the most effective features while considering the variety of intra-class data. Instead of
relying on hand-crafted image features, deep learning has shown its great power in feature learning
and image classification. Deep learning frameworks can generate robust and representative features
automatically by using hierarchical structures. Consequently, deep learning-based methods have been
widely used for hyperspectral image classification. For example, the deep belief network (DBN) and
stacked auto-encoder (SAE) are investigated to extract non-linear invariant features. Complementary,
the convolutional neural network (CNN) uses receptive fields to explore effective features from both
spectral and spatial domains. To enhance this capability, derivative deep models such as ResNet,
VGG, FCN, and U-Net also have successfully applied in hyperspectral image classification. However,
deep learning frameworks require a large number of training samples, in order to efficiently classify
hyperspectral images.

However, the labeled data are quite scarce in hyperspectral datasets, since the label collection
involves expensive and time-consuming field investigation. Thus, labeled data shortage is one of
the biggest challenges for the task of hyperspectral image classification. According to the Hughes
effect, when the dimensionality of hyperspectral data is high, the limited number of labeled samples
will result in low classification accuracy. Besides, deep learning frameworks also face the over-fitting
problem when feeding with insufficient training samples. To compensate for the effects of labeled
sample shortage, the semi-supervised learning and domain adaptation techniques are developed
to increase the number of samples. In particular, the semi-supervised learning considers both the
unlabeled samples and labeled ones to be integrated for model training. Furthermore, the domain
adaptation aims to transfer existing labeled data to be used in new classification tasks. Meanwhile,
some works were devoted to generating high-quality samples based on the standard spectral database
by considering the correlations between spectral bands [3,4]. However, due to the impact of the
atmosphere, bidirectional reflectance distribution function (BRDF) effect, and even the intra-class
variation, it is difficult to generate realistic samples from the standard spectral library by considering
such corrupted conditions when referring to physical models, such as the radiative transfer model [5].

Following a different strategy, the generative adversarial networks (GANs) aims to mimic and
produce high-quality realistic data to increase the number of training samples. Standard GANs consist
of two adversarial modules: a generator that captures the original data distribution and a discriminator
that tries to make a discrimination between the generated data and the original ones [6]. To enrich
the training samples for hyperspectral image classification, an unsupervised 1D GAN was proposed
to capture the spectral distribution [7]. It is trained by feeding unlabeled samples, which are further
transformed as a classifier in a semisupervised manner. Thus, the generator cannot learn class-specific
features during the training process. To consider the label information, modified GANs have included
the label information, such as conditional GAN (CGAN) [8], InfoGAN [9], deep convolutional
GAN (DCGAN) [10], auxiliary GAN (AXGAN),and categorical GAN (CatGAN). Consequently,
the conditional GANs have been widely used in remote sensing image processing [11–14]. For example,
the conditional GAN has been used for data fill in cloud masked area. Meanwhile, for high-resolution
remote sensing imagery, a DCGAN-based model was proposed to classify image scenes. In addition,
the GAN-based semisupervised model has been utilized for hyperspectral image classification by
exploring the information from unlabeled samples [15,16]. However, the training of GANs can easily
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collapse due to the contradictory nature of two-player games. To improve the stability of GANs,
a triple GAN was proposed to achieve better performances in discriminative ability [17]. However,
to generate additional labeled spectral profiles, the current GANs are sensitive to noises and neglect
the relationships between spectral bands. Besides, the generated samples are often alienated from the
original ones which, inevitably fail in boosting classification results.

To solve the above problems, in this paper, we propose the self-attention generative adversarial
adaptation network (SaGAAN) to generate high quality labeled samples in the spectral domain for
hyperspectral image classification. In general, two modifications have been made in this framework:
the self-attention mechanism is included to formulate long-range dependencies [18] and reduce
unintentional noises to stabilize GAN models and the cross-domain loss term is added to increase
the similarity between generated samples and the original ones. Therefore, the SaGAAN is able to
generate high-quality realistic samples by considering band dependencies and cross-domain loss.
Based on the generated samples, better classification results can be achieved.

The rest of this paper is constructed as follows. Section 2 describes the background of relevant
studies. Section 3 gives the detailed information about the proposed SaGAAN. Section 4 details the
experimental results and comparisons with other methods. Finally, the conclusion is given in Section 5.

2. Related Work

2.1. Generative Adversarial Networks (GAN)

Different from the discriminative models, GAN is one of the representative models in the field
of generative modeling. Instead of exploring discriminative features, the generative model aims to
estimate the distribution from unknown data pdata. In the scope of discriminative modeling, GANs use
the framework of the deep neural network to formulate data distribution. Traditionally, a GAN consists
of two adversarial players: a generator and a discriminator. The generator aims to generate realistic
samples to fool the discriminator while the discriminator also constantly upgrades itself to make a
better identification of fake or real samples.

Mathematically, the generator can be represented by G with the parameters θG. Similarly,
the discriminator is denoted as D with the parameters of θD. The standard loss function of GAN
models is

min
G

max
D

(Ex pd [logD(x)]) + (Ez pz [log(1− D(G(z)))]) (1)

where x is the the sample data from unknown distribution pdata and z is the noise space to initialize
the generator. GAN has achieved great success in image generation, information restore and
data fusion [19–21]. Recently, some improved GANs can perform image classification by adding
class-specific terms to the discriminator (e.g., [7,14,15]). However, the power of the generator and
additional samples derived from the generator remain unexplored. Therefore, it is necessary to analyze
the quality of generated samples and its improvements in hyperspectral image classification.

2.2. Domain Adaptation

Although GAN has the ability to generate realistic samples to enrich the training dataset. It is
difficult to stabilize the GAN during its training process, especially for high-dimension data generation.
Moreover, the generated samples are often alienated from the original ones (e.g., due to spectral shifts),
which fail in high-quality sample generation. To improve the ability of sample generation, the domain
adaptation term is proven to be useful. In general, there are several categories in domain adaptation
methods, e.g. representation matching, transferable feature selection, and selective sampling [22].

To compensate for the effects of data shifts, domain adaptation aims to make samples transferable
across different datasets. Suppose there are two domains called source domain and target domain,
which are two data acquisitions of different times or regions. To formulate the classification problem,
the joint probability distribution of class labels and its observations from source and target domain are
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Js(Xs, L) and Jt(Xt, L), respectively. X is the input data (e.g., spectral bands) and L is the output
label. Domain adaptation methods can transfer the classifier trained on the source domain to
predict class labels in the target domain. In this scope, multidimensional histogram matching [23],
principle component analysis (PCA) based data alignment, and kernel PCA (KPCA) have been used for
domain adaptation [24]. Similarly, the maximum mean discrepancy (MMD) has been used to minimize
the sample distances between the source and target domain [25]. Meanwhile, the semisupervised
domain adaptation methods have also been intensively studied. For instance, the maximum-likelihood
(ML) classifier has been extended with Bayesian rules for the problem of domain adaptation. Based
on the assumption of Gaussian distribution, cross-domain information can be effectively captured.
To explore domain invariant features, deep learning algorithms such as CNN and GANs also could
be used to reduce domain shifts [26,27]. Therefore, domain adaptation is one of the most effective
strategies to reduce the discrepancy between two separate domains.

2.3. Attention Models

The generative models can directly estimate the data distribution from real samples. Compared to
nature image generation, hyperspectral samples have an abundant number of spectral bands,
which makes it hard for GANs to capture the dependencies between spectral bands. The attention
mechanism has the ability to capture the global contextual information and model long-range
dependencies. For instance, self-attention [28] calculates the response for a specific position inside
a sequence by attending to all positions within the same sequence. Self-attention has proven to be
useful in terms of machine translation models [29]. In addition, the combination of self-attention
and deep learning algorithms can significantly improve the precision of the image classification,
image generation, and spatial-temporal pattern recognition [30,31]. To formulate the conventional
self-attention models, we have

αi,j =
exp(Q(xi)

TK(x))

∑N
i=1 exp(Q(xi)TK(x))

(2)

where αi,j indicates the response when attending to the location i, j over the entire sequence. The output
of self-attention layer is

Attention(Q, K, V) = (QKT)V (3)

where Q = W f x, K = Wgx and V = Wvx. W ∈ RĈ×C are the convolution weights with the kernel sizes
of 1× 1. The final output of the attention layer has the form of gi = γAttention + xi.

3. Self-Attention Generative Adversarial Adaptation Network

To improve the stability of the traditional GANs and increase the quality of generated
samples, we propose the Self-attention Generative Adversarial Adaptation Network (SaGAAN) for
hyperspectral sample generation and classification, as shown in Figure 1. SaGAAN considers both
self-attention and domain adaptation to improve the quality of generated samples. Specifically, it is
difficult to stabilize the traditional GANs during the training process. Furthermore, the generated
samples are often alienated from the original ones. Therefore, to ensure that the generated samples
are similar to the input original ones, we introduce the domain adaptation technique to constrain the
similarity between generated and original samples. Suppose the generated samples are G(z) and the
original ones are O. To construct the domain adaptation term, for a N-layer discriminator D, we have

Ldomain(G(z), O) =
N

∑
n=1
||Dn(O)− Dn(G(z))|| (4)

where Dn(O) represents the deep features from the discriminator by middle layer activation. To better
measure the divergence between generated samples and the reference ones, the maximum mean
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discrepancy (MMD) loss function applied in this study measures the distances between two probability
distributions. The MMD attains its minimum zero if the original data and generated samples are equal.

Figure 1. The workflow of Self-attention Generative Adversarial Adaptation Network (SaGAAN).

Suppose the original hyperspectral profiles are o ∈ O with the data distribution PO to be learned.
For SaGAAN, the generator G learns to map a variant z from latent space to the original data space
G(z) ∈ X with the distribution of PG and conditional label y ∈ Y. Then, the discriminator evaluates
the sample whether from the original distribution or generated ones. Different from the minimax loss
or hinge loss, the MMD loss uses kernel k to map the discrepancy between two samples. Given two
distributions PG and PO, the square MMD distance have the following formulation

D2
k(PG, PO) =||µPG − µPO ||

2 = Eg,g′(k(g, g′))+
Eo,o′(k(o, o′))− 2Eo,g(k(o, g))

(5)

where g, g′ are two samples from the generator and o, o′ are two samples from the original dataset.
The kernel k(o, g) measures the similarity between two samples. When the generated samples have a
distribution that is equal to the original one PO, D2

k(PG, PO) is zero.
Instead of using MMD as the loss function for adversarial network optimization, SaGAAN

calculates the MMD term for domain adaption. Thus, the discriminator D has the ability to measure
the discrepancies between two samples. The objective function for discriminator can be formulated as

max
D

LDada = Eg,g′(kD(g, g′)) +Eo,o′(kD(o, o′))

−2Eo,g(kD(o, g))
(6)

To maximize the loss function, the discriminator aims to reduces Eo,g(kD(o, g)) that forces
generated samples away from the original ones. Meanwhile, the discriminator minimizes the intra-class
variance by implementing Eg,g′ and Eo,o′(kD(o, o′)). Similarly, the loss function for the generator is

min
G

LGada = Eg,g′(kD(g, g′)) +Eo,o′(kD(o, o′))

−2Eo,g(kD(o, g))
(7)

The discrepancy between generated samples and the original ones can be reduced by
implementing the MMD-based domain adaptation term. However, the generator usually introduces
noises from latent distribution and neglected long range dependencies. Therefore, it is still important to
consider the band dependencies for hyperspectral sample generation. For SaGAAN, the self-attention
mechanism is integrated to improve the quality of generated samples.

gi = γ(QKT)V + xi (8)

In general, the SaGAAN has two improvements compared to the traditional GAN model:
the MMD-based domain adaptation for the discriminator and the self-attention mechanism for
long-range dependency improvements. The final loss function can be formulated as
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Ltotal(G, D) = min
G

max
D

(LDada + LGada) (9)

For SaGAAN, the conditional adversarial network has been adopted for class-specific
hyperspectral data generation. Once the loss function is optimized, SaGAAN can produce high-quality
class-specific hyperspectral samples. Different from the traditional GAN, SaGAAN can effectively
capture the band dependencies over the spectral domain and reduce noises. Moreover, the generated
samples are closer to the original ones with the help of domain adaptation and MMD penalization.
With the help of generated samples, it is now able to perform hyperspectral imagery classification
without much additional training samples.

4. Experiments

4.1. Hyperspectral Datasets

To demonstrate the ability of the proposed SaGAAN, two well-known hyperspectral datasets were
included. These two datasets were collected by the Reflective Optics System Imaging Spectrometer
(ROSIS) and the AVIRIS sensor, respectively. Due to the high dimensionality of the above datasets and
lack of training samples, it is difficult to interpret them efficiently. The detailed description of these
two datasets are as follow.

4.1.1. Pavia University Dataset

The Pavia University dataset was acquired by the ROSIS sensor during a flight campaign over
Pavia, northern Italy. The sizes of this dataset are 610 × 340 pixels, with the ground spatial resolution
of 1.3 m. There are 103 spectral bands available after removing 12 noisy bands. The spectral bands
range from 430 to 860 nm. Nine types of land cover targets were labeled for identification and 10%
labeled samples were used for training and another 10% for testing. The pseudo-color composite
image and the reference map are shown in Figure 5.

4.1.2. Indian Pines Dataset

The Indian Pines dataset was acquired by the AVIRIS sensor over the Indian Pines test site
in northwestern Indiana. The size is the images in this dataset is 145 × 145 pixels, with high
dimensionality in the spectral domain. The sensor system used in this case measured pixel response
in 224 bands in the 400–2500 nm region of the visible and infrared spectrum. Due to atmospheric
absorption, after removing noisy bands, 200 spectral bands are left for data analysis; 10% labeled
samples were used for training and another 10% for testing. The pseudo-color composite image and
the reference map are shown in Figure 6.

4.2. Configuration of Sagaan

To serve the purpose of hyperspectral sample generation, the SaGAAN framework is developed
based on a 1D generator and a discriminator. To capture the data distribution over spectral bands,
SaGAAN converts noises from latent space to realistic spectral profiles. The configuration of SaGAAN
is illustrated in Table 1. Compared to the traditional GANs, SaGAAN uniquely pays attention to
long-range dependencies and domain adaptation for high-quality sample generation. For the attention
term, it is integrated inside of the generator to reduce noises and consider long-range dependencies
during sample generation. Meanwhile, to ensure the generated samples are equilibrium to the
original ones, the domain adaptation term is added inside of the discriminator. Due to the nature of
deconvolution operation, we added an additional band to make sure the number of spectral bands is
an odd number. Moreover, to better illustrate the effectiveness of SaGAAN, we included other sample
generation approaches (the traditional GAN, self-attention GAN (SAGAN), and adaptation GAN
(ADGAN)) for comparison.
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Table 1. Detailed configuration of SaGAAN.

Name Layer Kernel Stride Features Activation

G

1 1 × 13 1 128 ReLu
2 1 × 2 2 256 ReLu
3 1 × 2 1 64 ReLu
4 1 × 2 2 1 tanh

Att a 1 × 1 1 1 Non

D b,c

1 1 × 10 2 50 ReLu
2 1 × 10 2 100 ReLu
3 1 × 10 2 200 tanh
4 1 × 3 1 50 tanh
5 1 × 4 1 c Non
6 1 × 4 1 1 ReLu

a Att is self-attention layer; b The first four layers of discriminator are used for domain adaptation; c The first
five layers of discriminator are used for image classification. c represents the number of classes.

4.3. Effect of Domain Adaptation

Domain adaptation is one of the most important factors for high-quality sample generation. Due to
the difficulty of adversarial network training, the generated samples are often alienated from the
original ones. Therefore, how to reduce the discrepancies between generated samples and the original
ones is the major challenge for successful adversarial network training. In SaGAAN, the discriminator
contains an additional term to measure the feature distances between generated samples and the
original spectral profiles. Specifically, the discriminator D as a 1D convolutional neural network (CNN)
has L hidden layers. For each layer, the deep feature can be represented as Dl(x), l ∈ L, and the feature
distance between generate samples and the original ones are Dl(oi)−Dl(gi). Thus, SaGAAN is able to
produce realistic samples based on the similarity measurement. To better illustrate the effect of domain
adaptation term for SaGAAN, we developed two separate adversarial networks for hyperspectral
sample generation with/without domain adaptation.

For convenience, we tested the domain adaptation term on the Pavia dataset by using the
training dataset. Each network generated 0.2 million hyperspectral samples in total, which was about
22 thousand samples for each class. We mapped the generated samples into the lower dimension
for better illustration, as shown in Figure 2. We can conclude that the projection map from domain
adaptation samples has clear boundaries between different classes. Without domain adaptation,
the generated sample often mixed together, which failed to guide supervised classification. Especially,
for Classes 8 (Bitumen) and 3 (Self-Blocking Bricks), the inter-class similarity has been significantly
reduced. Meanwhile, intra-class variation such as for Classes 1 (Asphalt) and 7 (Bitumen) also has been
greatly suppressed. Therefore, domain adaptation is a major improvement in generative adversarial
networks since it considers the mismatches between generated samples and the original ones.

Figure 2. The 2D projection map based on generated samples before/after domain adaptation using
SaGAAN: (a) the projection map of training samples; (b) the projection map of generated samples
before domain adaptation; and (c) the projection map of generated samples after domain adaptation.
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4.4. Effect of Self-Attention

Hyperspectral data contain hundreds of spectral bands that have long-range dependencies
(e.g., vegetation has high reflectances in near infrared bands compared to the red band). However,
the traditional GANs only pay attention to mimic spectral reflectances at local scales which neglected
the relationships across spectral bands. Moreover, traditional GANs introduce noises that also impact
high-quality sample generation. Different from domain adaptation, the self-attention mechanism
focuses on capturing long-range dependencies between spectral bands. Meanwhile, the self-attention
reduces unwanted noises and makes the curves of generated hyperspectral samples smoother.

To demonstrate the effectiveness of the self-attention mechanism, we compared the generated
samples by using SaGAAN with/without self-attention constraint. To better understand the impact
of self-attention, we chose Classes 5 and 6 in Pavia dataset for hyperspectral data generation.
The generated samples are shown in Figure 3. The first two rows represent the spectral curves
of painted metal sheets and the last two rows are bare soil reflectances. For the first two rows, we
can conclude that much noise has been introduced, which resulted in spikes across the spectral
bands, especially for the middle column. In addition, for the bare soil, the generated curves suffer
from random noises when not using the self-attention constraint. However, the bare soil spectral
profiles become much more similar to the original ones after adding the self-attention term. Moreover,
long-range dependencies for spectral curves such as low points and high points have been well
represented by the self-attention mechanism.

Figure 3. The spectral curves generated by SaGAAN with/without self-attention mechanism: (a) the
Class 5 (Painted metal sheets) spectral curves generated without self-attention; (b) the Class 5 spectral
curves generated with self-attention; (c) the Class 6 (Bare Soil) spectral curves generated without
self-attention; and (d) the Class 6 spectral curves generated with self-attention.

4.5. Generated Sample Analysis

From the above, we can conclude that both domain adaptation and self-attention are crucial parts
of high-quality spectral profile generation. In SaGAAN, we utilize MMD measurement to minimize
the distances between the generated samples and the original ones. To calculate the MMD distance,
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the activation of hidden layers inside discriminator convert the generated samples and the original
ones into deep feature representations. Then, the similarity of those features can be measured by
implementing the MMD strategy. Meanwhile, the self-attention mechanism also enforces the generated
samples to be aware of long-range dependencies across different spectral bands. In general, the domain
adaptation and self-attention will strongly stabilize SaGAAN during the training process and prevent
potential gradient explosion. To illustrate the effectiveness of combining domain adaptation and
self-attention, the loss function values for both generator and discriminator are shown in Figure 4.
In this figure, the loss function values for generator and discriminator jitter at the beginning for
SaGAAN without domain adaptation and self-attention. Moreover, the loss values can reach almost
6 and then raise again at Iteration 420 where the generator is not stable during the training process.
When the domain adaptation and self-attention are involved, the loss values become much more stable
through the entire training stage.

Figure 4. The training losses and sample 2D projection for SaGAAN with/without domain
adaptation and self-attention: (a) the training loss values for SaGAAN without domain adaptation
and self-attention; (b) the training loss values for SaGAAN with domain adaptation and self-attention;
(c) the 2D projection of all available original hyperspectral samples; and (d) the 2D projection of
generated hyperspectral samples using SaGAAN.

To measure the quality of generated samples, we mapped all available training samples in Pavia
dataset to the two-dimension space, as shown in Figure 4c. The number of training samples is not
evenly distributed, where Class 2 (Meadows) represents almost half of the total samples. In addition,
samples are scattered in the feature space without significant class boundaries. Complementary,
SaGAAN generated high-quality samples based on a small fraction (only 10%) of all available ones.
In this experiment, SaGAAN generates 0.2 million samples and each class is equally distributed with
22 thousand samples, as shown in Figure 4d. With the help of domain adaptation and self-attention,
SaGAAN generated high-quality samples that contain rich intra-class variation and clear boundaries
between different classes. Based on high quality generated samples, better classification results can
be achieved.

4.6. Hyperspectral Image Classification and Comparison

To demonstrate the effectiveness of the generated samples, we combined generated samples
with the original dataset for the purpose of hyperspectral image classification. Specifically, for each
dataset, we selected a specific number of generated samples that have the same sizes as the original
training samples. For the purpose of image classification, the 1D CNN framework was applied for
hyperspectral image classification. The configuration of 1D CNN is the same as the first five layers
of the discriminator illustrated in Table 1. Finally, we tested the classification performances with or
without using the additional generated samples.

4.6.1. Pavia University Dataset

In the experiment, we compared the SaGAAN-based hyperspectral image classification method
with the three other image classification strategies. Specifically, the original training sample was directly
fed into the 1D CNN framework for training and classification. Then, the domain adaptation-based
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sample generation strategy was applied to generate additional samples. Furthermore, the generated
samples along with the original ones were fed into 1D CNN for training and classification. Meanwhile,
the self-attention based sample generation also was applied for sample generation and 1D CNN
training. During the entire experiment, each method generated 4273 additional samples for the Pavia
dataset, which is as same as the original training dataset.

The classification accuracies are reported in Table 2. For CNN with the original training dataset, the
classification accuracy can reach 91.48%. However, due to the training sample shortage, the accuracy
is relatively low for Class 7, where it is around 78%. With the help of sample generation strategy,
the classification accuracies get higher with additional training samples. For the Ada-CNN, the domain
adaptation has been adopted in the traditional GAN framework, and the generated samples along
with the original ones were fed into CNN for classification. Therefore, the classification accuracy has
increased to 92.08% with domain adaptation samples. Then, the self-attention based samples also
increased the overall accuracy about 0.4%. Lastly, the SaGAAN generated high-quality samples were
utilized to increase the classification accuracy. The classification maps of these four strategies are
shown in Figure 5.

Table 2. Classification accuracies on Pavia University dataset.

Class CNN Ada-CNN Att-CNN SaGAAN

1 93.86 94.61 94.92 93.90
2 93.49 94.36 95.17 96.13
3 76.44 75.26 74.04 75.35
4 96.74 96.56 96.47 98.63
5 100 100 100 100
6 89.59 92.62 90.53 85.09
7 78.57 84.96 82.52 87.30
8 83.73 79.25 83.51 85.00
9 98.95 100 100 98.94

OA 91.48 92.08 92.48 92.53
AA 89.11 89.32 90.31 90.55

Kappa 88.63 89.44 90.00 90.10

Figure 5. The classification maps of Pavia University dataset: (a) the original dataset; (b) the ground
truth labels; (c) classification map with the original dataset; (d) classification map with domain
adaptation term; (e) classification map with self-attention mechanism; and (f) classification map
with SaGAAN.

4.6.2. Indian Pines Dataset

For the Indian Pines dataset, we tested the SaGAAN with the three other classification strategies.
The classification accuracies are illustrated in Table 3. From the results in the table, we concluded
that the classification accuracy is quite low when performing the traditional CNN with a limited
number of training samples. For Classes 1 and 4, the classification accuracies are 60% and 55.64%,
respectively. The overall accuracy is 77.44% when only using the original samples. With the domain
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adaptation-based sample generation, the overall accuracy has increased to 80.58%, but still faces
challenges in Classes 1 and 9 where the number of samples is relatively low. The self-attention
mechanism has greatly improved the quality of generated samples; the overall accuracy is about
80.97%. However, the classification accuracies of each class are not in balance. SaGAAN considers
both domain adaptation and self-attention mechanisms have significantly improved the quality of
generated samples, and it improved the overall classification accuracy to 81.14%. In addition, detailed
information about classification maps is shown in Figure 6.

Table 3. Classification accuracies on Indian Pines dataset.

Class CNN Ada-CNN Att-CNN SaGAAN

1 60.00 57.14 76.92 82.35
2 74.77 72.98 67.47 80.68
3 74.07 82.01 85.46 80.12
4 55.64 65.38 71.88 68.29
5 83.19 91.27 88.09 86.13
6 83.25 86.42 89.61 88.92
7 80.00 68.75 76.47 64.71
8 93.85 93.90 91.76 94.38
9 40.00 50.00 100 62.50

10 75.00 77.14 80.22 78.83
11 72.83 76.09 78.39 74.81
12 68.95 77.74 79.92 77.41
13 89.72 95.24 96.04 91.59
14 87.19 90.64 90.96 90.09
15 73.45 72.66 71.15 69.44
16 97.79 97.78 97.87 100

OA 77.44 80.58 80.97 81.14
AA 72.67 74.47 77.25 78.16

Kappa 74.14 77.72 78.19 78.38

Figure 6. The classification maps of Indian Pines dataset: (a) the original dataset; (b) the ground truth
labels; (c) classification map with the original dataset; (d) classification map with domain adaptation
term; (e) classification map with self-attention mechanism; and (f) classification map with SaGAAN.

5. Conclusions

In this paper, to generate high-quality hyperspectral samples, we propose a self-attention
generative adversarial adaptation network (SaGAAN) to generate realistic samples and improve
the classification results of hyperspectral images. Specifically, we include the domain adaptation to
increase the similarity between generated samples and the original ones. Meanwhile, to capture the
long-range dependencies and reduce unwanted noises, the self-attention mechanism is also integrated
with SaGAAN. The experimental results demonstrate that the SaGAAN has the ability to generate
high-quality hyperspectral samples and boost the classification accuracy. In the future, we still need to
focus on the spatial feature generation, which is also important for hyperspectral image classification.
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