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Abstract: Primary production by marine phytoplankton is one of the largest fluxes of carbon on
our planet. In the past few decades, considerable progress has been made in estimating global
primary production at high spatial and temporal scales by combining in situ measurements of
primary production with remote-sensing observations of phytoplankton biomass. One of the major
challenges in this approach lies in the assignment of the appropriate model parameters that define the
photosynthetic response of phytoplankton to the light field. In the present study, a global database of
in situ measurements of photosynthesis versus irradiance (P-I) parameters and a 20-year record of
climate quality satellite observations were used to assess global primary production and its variability
with seasons and locations as well as between years. In addition, the sensitivity of the computed
primary production to potential changes in the photosynthetic response of phytoplankton cells under
changing environmental conditions was investigated. Global annual primary production varied
from 48.7 to 52.5 Gt C yr−1 over the period of 1998–2018. Inter-annual changes in global primary
production did not follow a linear trend and regional differences in the magnitude and direction of
change in primary production were observed. Trends in primary production followed directly from
changes in chlorophyll-a and were related to changes in the physico-chemical conditions of the water
column due to inter-annual and multi-decadal climate oscillations. Moreover, the sensitivity analysis
in which P-I parameters were adjusted by±1 standard deviation showed the importance of accurately
assigning photosynthetic parameters in global and regional calculations of primary production. The
assimilation number of the P-I curve showed strong relationships with environmental variables
such as temperature and had a practically one-to-one relationship with the magnitude of change
in primary production. In the future, such empirical relationships could potentially be used for a
more dynamic assignment of photosynthetic rates in the estimation of global primary production.
Relationships between the initial slope of the P-I curve and environmental co-variables were more
elusive.

Keywords: primary production; phytoplankton; photosynthesis; ocean-colour remote-sensing;
climate change

1. Introduction

The oceans play a key role in biogeochemical processes on Earth. Phytoplankton are responsible
for almost half of the total global net primary production [1–5]. This does not only provide the
basis for the marine food web, but also has a strong impact on carbon sequestration in the ocean’s
interior [6]. Marine primary production, estimated to be of the order of 50 Gt C per annum [2–5,7],
is one of the largest fluxes of carbon on our planet. Because of its importance, phytoplankton primary
production has received considerable attention from the scientific community. Studies based on in
situ observations are now supplemented by satellite-based calculations to estimate global primary
production patterns at high spatial and temporal resolutions. Yet, trends in biological fields estimated
from remote-sensing observations have not been taken into account in recent studies on global carbon
budgets and pools and fluxes of carbon in the ocean [8,9]. In recent years, considerable efforts have
been made to correct inter-sensor biases and merge data from multiple ocean-colour satellite sensors
to provide a long (over two decades) record of phytoplankton biomass in the global oceans through
the Ocean Colour Climate Change Initiative of the European Space Agency [10]. This time series
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now offers the opportunity to undertake a systematic study of changes in phytoplankton primary
production over the last 20 years.

Phytoplankton primary production is forced by physico-chemical conditions in the water column,
including temperature, light and micro- and macronutrients. These drivers are influenced by
seasonal, inter-annual and multidecadal variations in oceanic and atmospheric processes. For example,
phytoplankton primary production in polar regions is strongly influenced by seasonal solar irradiance
patterns and the formation of surface mixed layers due to ice melt in spring and summer [11–14].
In contrast, at lower latitudes where trade winds prevail, phytoplankton primary production can be
nutrient-limited year-round and seasonal patterns are less obvious [15,16]. Superimposed on seasonal
cycles are the variations associated with inter-annual and multidecadal ocean-atmospheric oscillations.
These oscillations are associated with anomalies in Sea Surface Temperature (SST), precipitation and
wind patterns, leading to changes in water column stability and nutrient loading into the euphotic
zone [17–19]. The El Niño-Southern Oscillation (ENSO), North Pacific Gyre Oscillation (NPGO),
Indian Ocean Dipole (IOD) and Atlantic Multidecadal Oscillation (AMO) have all been shown to
affect phytoplankton primary production [17–21]. These natural variations in water column conditions
can cause a 10-fold variation in primary production between different regions, with low-nutrient
subtropical waters at the lower end of production and highly eutrophic coastal regions at the upper
end [22,23].

Given these natural variations in physico-chemical conditions and in phytoplankton primary
production, it is expected that the physical changes associated with climate change will redistribute
phytoplankton primary production. Over the past decades, increases in SST and ocean heat content,
along with enhanced precipitation relative to evaporation and sea ice melt, have caused significant
variations in physico-chemical conditions of the water column [23,24]. Subsequent changes in
temperature and density stratification, and nutrient loading into the euphotic zone, are expected
to affect phytoplankton growth and primary production under global climate change [23,24]. Several
studies based on in situ, satellite and/or modelling observations have shown that changes in global
primary production associated with climate change ranged from a 0.57–13% decrease [25–28] to a 2%
increase [29]. Discrepancies between these estimates may be based on differences in methodology or
in variations in temporal and spatial scales. It therefore seems that care has to be taken in estimating
global primary production, especially considering that some regions will experience additional local
forcing under climate change, such as melting of sea ice in polar regions. Overall, it is expected that
primary production will decrease in temperate to tropical oceanic regions and will increase at high
latitudes, while there is uncertainty in the direction, magnitude and differences of changing primary
production in shelf and coastal regions [30].

One of the major challenges in estimating primary production from remote-sensing observations
lies in the assignment of the photosynthetic efficiency of phytoplankton cells [31–33]. Models based on
ocean-colour remote-sensing observations typically use a relationship between phytoplankton biomass
and Photosynthetic Active Radiation (PAR, 400–700 nm) to compute primary production [4,31,34,35].
One such relationship is the photosynthesis versus irradiance (P-I) curve, which can be represented by
a variety of mathematical equations [36,37]. The initial slope (αB) and the assimilation number
(PB

m) of the P-I curve may vary with environmental conditions such as irradiance, temperature
and nutrient concentrations, and the taxonomic composition and size structure of phytoplankton
communities [33,38–43]. One of the strategies for the assignment of photosynthetic parameters in
the computation of primary production on a global scale is to assign parameters on the basis of
ecological provinces of the ocean [2,16,31,44,45], allowing for variations in photosynthetic parameters
with season and with province. This strategy was adopted in the present study, and an existing global
database of P-I parameters [33] was extended to improve spatial and temporal coverage. The global
P-I database was subsequently partitioned using Longhurst’s geographical classification system of
biomes and provinces [16]. The biogeographic classification is based on physical conditions that shape
the structure and function of phytoplankton communities over large (basin) scales, and the supply
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of nutrients and the average irradiance within the surface mixed layer that impact the physiological
capacity of phytoplankton cells [16,33]. Another challenge in the estimation of primary production
from satellite observations lies in the requirement to specify the vertical structure in phytoplankton
biomass, given that the satellite observations are confined to a finite surface layer that is much smaller
than the euphotic depth and is not resolved with depth. To overcome this limitation, we have used a
large database of in situ chlorophyll-a profiles to extrapolate ocean-colour remote-sensing observations
of surface chlorophyll-a through the water column [2,44,45]. Seasonal means of P-I parameters and
chlorophyll-a profile parameters were then used together with a 20-year time series of remotely-sensed
chlorophyll-a concentrations and surface PAR to establish global primary production and its changes
over the two decades. The results are discussed in the context of the sensitivity of computed primary
production to potential changes in the photosynthetic response of phytoplankton cells under changing
environmental conditions.

2. Materials and Methods

2.1. Surface Chlorophyll-a Data from Satellites

Surface chlorophyll-a concentrations at 9 km spatial resolution and monthly temporal resolution
for the period of 1998–2018 were obtained from the European Space Agency (ESA) Ocean Colour
Climate Change Initiative project (OC-CCIv4.1, https://esa-oceancolour-cci.org/). The dataset
contains merged products of observations from the Sea-viewing Wide Field-of-View Sensor (SeaWiFS,
1997–2010), the Medium Resolution Imaging Spectrometer (MERIS, 2002–2012), the Moderate
Resolution Imaging Spectroradiometer (MODIS, 2002–present) and the Visible Infrared Imaging
Radiometer Suite (VIIRS, 2012-present) that are climate-quality controlled, bias-corrected and
error-characterised (see details below) [10].

2.2. Primary Production Model

Several models have been described to estimate primary production based on ocean-colour
remote-sensing observations [29,35,46–48]. All models calculate daily water column production as a
function of some measure of phytoplankton biomass and the photosynthetic response of phytoplankton
to light. However, the different models can be categorised as linear or non-linear; spectral or
non-spectral; vertically-uniform or vertically-non-uniform; or a combination of these [46,47]. They have
also been categorised as depth-integrated or resolved and as wavelength-integrated or resolved [35].
Reducing models to a canonical form helps analyse similarities and differences between models
and highlights the importance of model parameters [46,47,49]. The differences between spectral and
non-spectral models are systematic and significant [47], but they can be corrected for [47,50,51]. In a
study at the scale of the entire North Atlantic Ocean, Sathyendranath et al. [52] showed that ignoring
the vertical structure in chlorophyll-a concentration reduced the computed primary production by
about 9%, but in individual provinces, the difference could be higher (maximum reported value was
about 16%). But the differences are systematic, and therefore, information on vertical structure should
be taken into account when available. Furthermore, primary production within the deep chlorophyll
maximum is likely fuelled by new production and would be important in calculations of new and
export production [52].

In this study, we used a spectrally-resolved model that incorporates vertical structure in
chlorophyll-a concentration [2,31,44,45,52], with recent updates [49]. This model simulates changes in
photosynthesis as a function of irradiance using a two-parameter photosynthesis versus irradiance
(P-I) function. The model has consistently performed well when compared with other models [5,35,53]
and has been implemented on a global scale [2]. In the present study, considerable improvements
have been made to the global coverage of the parameter database, while data provided by the Ocean
Colour Climate Change Initiative (OC-CCI) project [10,54] allowed for the use of over 20 years
of remote-sensing observations. The OC-CCI products [10] are multisensor products (reducing
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missing data), in which biases between sensors have been corrected (avoiding artificial trends in
data arising from systematic differences between biases) and have been processed with a common
protocol for calculation of chlorophyll-a concentration (minimising any systematic differences arising
from differences between algorithms). Melin et al. [55] have shown that the chlorophyll-a trends
calculated with OC-CCI time series are consistent with those calculated from single sensor products,
demonstrating the fitness of the data for climate change studies. All of these, along with the length
of the time-series data, are key considerations when studying the variability in ocean primary
production in the context of climate change. The model used here is identical to the one described in
Sathyendranath et al. [49] (see Appendix A for a brief description of the steps involved), but with a
notable improvement to the P-I parameter assignment, based on an enhanced in situ database.

2.3. Photosynthesis versus Irradiance Parameters

Parameters of the photosynthesis versus irradiance (P-I) curve were obtained from a global
database [33,56] and additional literature sources [57–94]. A quality check was performed on all data
(9765 experiments) following Bouman et al. [33], using lower limits of the initial slope of the P-I curve
αB (0.002 mg C mg Chl-a−1 h−1 (µmol photons m−2 s−1)−1) and the assimilation number of the P-I
curve PB

m (0.2 mg C mg Chl-a−1 h−1) and an upper limit for the maximum quantum yield of carbon
fixation φm (0.15 mol C mol photons−1). The value of φm was calculated as αB / ā∗B × 0.0231 [95] using
αB and either simultaneous measurements of the mean specific chlorophyll-a absorption coefficient ā∗B
(in m2 mg Chl-a−1) or an estimate of ā∗B based on Brewin et al. [96,97] (see Appendix A). In addition,
major outliers in the dataset were identified using the outermost fences of the interquartile range.
After quality control, 8676 experiments were used for further analysis. Note that this is a significant
improvement over the P-I parameter database that was available at the time of Longhurst et al. [2];
they had access to 1862 P-I observations at that time, mostly from the North Atlantic Ocean.

To estimate regional primary production, P-I data were assigned to biogeographic provinces
according to Longhurst [16] (Appendix B). The P-I database covered 53 provinces, representing
96.6% of the world’s oceans (Figure 1). No in situ P-I experiments could be found for the coastal
areas of Africa (EAFR) and India (INDE) and two regions in the North Pacific Ocean (NPPF, NPSE).
The data were divided into seasons using 3-month intervals; i.e., March–May for spring/autumn,
June–August for summer/winter, September–November for autumn/spring and December–February
for winter/summer in the Northern/Southern Hemisphere. Mean and standard deviations of αB

and PB
m were calculated for each season and biogeographic province available in the P-I database

(Table 1). Temporal and spatial data gaps in αB and PB
m were filled by statistical analysis of the

relationships between seasons within each biogeographic province and the relationships between
adjacent biogeographic provinces (Figure 2). To this end, values of αB and PB

m were log-transformed
and significance (p < 0.05) was tested using ANOVA analysis followed by Tukey-Kramer post-hoc
testing for unequal sample sizes (Past 3, Hammer et al. 2001). Results were used to assign mean
and standard deviations of αB and PB

m for missing seasons and/or biogeographic provinces (Table 1)
respecting boundaries of the ocean basins and biomes [16]. Linear- and log-scaled mean values of
αB and PB

m were highly similar (r2 = 0.989, p < 0.001, with the majority of data normally distributed
on regional and seasonal scales), and calculations of primary production were performed with the
linear-scaled mean and standard deviation of each P-I parameter (Table 1) to support interpretation of
(linear) trends in the sensitivity analyses (see below).
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Figure 1. Sample locations for photosynthesis versus irradiance (P-I) experiments obtained from
databases and literature with seasonal coverage in each biogeographic province as defined by Longhurst
(2007). A total of 8676 P-I experiments were used in the present study, covering 53 biogeographic
provinces and 96.6% of the world’s ocean. High seasonal data coverage was obtained for 37 provinces
(3–4 seasons, 79.9% coverage).

Figure 2. Relationships of photosynthesis versus irradiance (P-I) parameters between adjacent
biogeographic provinces. Seasonal relationships are indicated by colour blocks, with significant
differences (p < 0.05) denoted for the initial slope (αB) and assimilation number (PB

m) of the P-I curve
(red), αB only (dark blue) and PB

m only (light blue). Comparisons were not available for the coastal
areas of Africa (EAFR) and India (INDE), two regions in the North Pacific Ocean (NPPF, NPSE) and
some seasons in other biogeographic regions due to lack of data (light grey). Biogeographic provinces
are listed in Appendix B.

2.4. Analyses of Primary Production

The sensitivity of primary production to changes in photosynthetic parameters was estimated
using three separate model runs for the period between 1998 and 2018, with three different P-I
parameters assignments as follows: (a) with the mean of the P-I parameters for each of the provinces
and seasons (the main run); (b) with the mean minus one standard deviation of the two P-I parameters
(−1 SD); and (c) with the mean plus one standard deviation of the two P-I parameters (+1 SD) (Table
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1). All other input variables (i.e., light, chlorophyll-a and chlorophyll-a profile parameters) were kept
the same for each of these model runs. To assess the magnitude of change in primary production with
change in individual P-I parameters, an additional sensitivity analysis was performed for a sample
year (arbitrarily chosen to be 2003) in which either αB or PB

m was adjusted by ±1 standard deviation,
while the other parameter was maintained at its mean value. In the full model computations in which
αB and PB

m were adjusted simultaneously, the relationship between αB and PB
m, given by the light

adaptation parameter (Ik in µmol photons m−2 s−1), remained largely unchanged. In the additional
sensitivity analysis Ik was allowed to vary and increased for −1 SD αB and +1 SD PB

m and decreased for
+1 SD αB and −1 SD PB

m. For all model computations, both annual and seasonal primary production
rates were estimated on global and regional scales. Regions were selected based on Longhurst’s
definitions of ocean basins (Antarctic, Atlantic, Indian and Pacific) and biomes (Coastal, Polar, Trades
and Westerlies) [16].

Table 1. Sample size (n), mean and standard deviation (SD) of the initial slope (αB in mg C mg Chl-a−1

h−1 (µmol photons m−2 s−1)−1) and the assimilation number (PB
m in mg C mg Chl-a−1 h−1) of the

photosynthesis versus irradiance (P-I) curve for each biogeographic province and season. Values in blue
are obtained from statistical comparisons between seasons and biogeographic provinces, while other
values are directly obtained from the P-I database. Biogeographic provinces are listed in Appendix B.

Spring Summer Autumn Winter

BIOME αB PB
m αB PB

m αB PB
m αB PB

m
/BASIN PROV n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD

Coastal

Atlantic NECS 18 0.020 0.005 18 3.25 0.64 12 0.022 0.007 15 2.83 1.62 30 0.021 0.006 1 2.22 30 0.021 0.006 34 3.04 1.18
CNRY 1 0.035 1 4.00 33 0.022 0.006 34 3.92 1.56 11 0.026 0.005 34 4.08 1.70 1 0.016 3 3.30 1.13
GUIN 1 0.012 1 1.50 48 0.017 0.008 50 1.68 1.04 20 0.017 0.006 19 1.68 0.62 48 0.017 0.008 50 1.68 1.04
GUIA 77 0.024 0.017 34 2.52 1.88 109 0.023 0.016 56 2.71 1.90 2 0.024 0.008 2 2.71 1.35 109 0.023 0.016 6 2.90 1.21
NWCS 495 0.031 0.020 515 2.49 1.18 259 0.024 0.017 260 3.23 1.47 335 0.044 0.021 332 3.58 1.66 121 0.037 0.018 125 2.85 1.36
CHSB 41 0.036 0.018 41 3.29 1.46 35 0.016 0.013 36 2.04 1.66 18 0.041 0.018 19 4.80 1.43 59 0.038 0.018 96 3.12 1.82
BRAZ 9 0.029 0.016 10 2.22 1.82 48 0.017 0.008 15 2.69 1.95 5 0.014 0.005 5 3.63 2.05 48 0.017 0.008 15 2.69 1.95
FKLD 28 0.017 0.009 31 1.68 1.24 48 0.017 0.008 50 1.68 1.04 20 0.017 0.006 19 1.68 0.62 48 0.017 0.008 50 1.68 1.04
BENG 2 0.044 0.000 4 4.24 2.52 25 0.027 0.012 26 3.66 1.67 23 0.026 0.011 22 3.56 1.52 25 0.027 0.012 26 3.66 1.67

Indian EAFR 117 0.027 0.009 101 4.76 1.66 32 0.030 0.009 17 5.36 1.07 285 0.027 0.011 6 3.43 1.27 280 0.027 0.010 203 4.38 1.62
REDS 46 0.013 0.007 85 3.29 1.36 4 0.022 0.006 4 4.13 2.07 117 0.027 0.009 101 4.76 1.66 32 0.030 0.009 17 5.36 1.07
ARAB 13 0.034 0.010 98 4.00 1.48 114 0.024 0.011 81 3.72 1.40 117 0.027 0.009 101 4.76 1.66 32 0.033 0.009 17 5.36 1.07
INDE 65 0.042 0.021 62 3.39 2.13 5 0.034 0.028 7 4.10 1.53 56 0.034 0.018 56 2.97 1.89 6 0.039 0.015 6 2.50 1.01
INDW 9 0.033 0.027 6 3.43 1.27 114 0.024 0.011 64 3.94 1.70 117 0.027 0.009 35 3.65 1.48 32 0.030 0.009 29 4.29 1.91
AUSW 56 0.034 0.018 56 2.97 1.89 6 0.039 0.015 6 2.50 1.01 56 0.047 0.019 56 3.38 2.21 19 0.028 0.017 3 4.05 0.80

Pacific ALSK 7 0.029 0.012 8 3.91 0.89 61 0.026 0.020 35 4.67 1.90 23 0.023 0.011 43 4.53 1.77 51 0.025 0.010 43 4.53 1.77
CCAL 42 0.038 0.023 53 3.80 1.76 9 0.012 0.007 26 4.17 1.91 11 0.008 0.001 28 3.21 1.47 2 0.016 0.006 20 1.70 1.08
CAMR 1 0.026 2 1.50 0.20 31 0.020 0.009 26 4.17 1.91 18 0.026 0.014 28 3.21 1.47 2 0.016 0.006 28 3.48 2.22
CHIL 8 0.032 0.011 7 2.50 0.93 79 0.031 0.012 78 2.35 1.36 33 0.029 0.010 89 2.35 1.35 4 0.016 0.016 4 2.10 2.12
CHIN 25 0.026 0.007 17 5.48 1.72 31 0.020 0.009 22 3.59 1.99 18 0.026 0.014 10 4.48 3.23 2 0.016 0.006 2 4.55 1.34
SUND 26 0.025 0.010 20 4.10 2.30 12 0.041 0.018 16 3.43 2.13 67 0.031 0.012 68 2.85 1.51 11 0.029 0.014 12 2.55 2.13
AUSE 19 0.050 0.020 320 4.41 1.53 4 0.050 0.018 4 4.65 3.15 31 0.047 0.019 15 2.53 2.13 8 0.042 0.018 11 1.75 0.94
NEWZ 8 0.045 0.013 9 4.48 1.46 23 0.021 0.011 22 4.63 1.51 9 0.036 0.009 8 3.70 1.42 2 0.044 0.003 2 3.30 0.28

Polar

Antarctic ANTA 1 0.007 2 1.01 0.92 41 0.018 0.009 75 1.27 0.50 12 0.021 0.005 9 1.58 0.72 54 0.019 0.008 11 1.48 0.74
APLR 52 0.035 0.009 67 1.66 0.92 268 0.029 0.014 340 1.89 1.26 140 0.026 0.009 162 1.86 0.90 54 0.019 0.008 569 1.86 1.13

Atlantic BPLR 141 0.031 0.016 154 2.03 0.83 542 0.030 0.017 572 1.67 0.99 189 0.024 0.013 192 1.65 0.84 21 0.031 0.019 21 1.85 0.78
ARCT 278 0.039 0.017 329 2.38 1.07 298 0.036 0.016 313 2.24 0.99 39 0.032 0.018 59 2.18 0.78 27 0.028 0.013 27 2.38 0.85
SARC 116 0.044 0.017 126 2.74 1.09 89 0.041 0.014 92 2.59 1.27 206 0.043 0.016 2 1.40 0.46 206 0.043 0.016 220 2.66 1.17

Pacific BERS 7 0.029 0.012 8 3.26 1.81 21 0.024 0.007 22 2.85 1.18 23 0.023 0.011 25 2.41 1.39 51 0.025 0.010 55 2.71 1.38

Trades

Atlantic NATR 15 0.025 0.015 14 3.60 1.76 165 0.035 0.021 165 2.85 1.84 27 0.027 0.011 26 2.52 2.40 6 0.032 0.018 7 5.23 1.60
WTRA 16 0.013 0.007 16 3.06 2.18 109 0.023 0.016 6 2.90 1.21 32 0.025 0.019 34 2.52 21.88 109 0.023 0.016 56 2.71 1.90
ETRA 4 0.037 0.026 4 2.90 3.23 62 0.026 0.016 61 3.01 1.79 6 0.024 0.014 6 2.97 1.06 52 0.025 0.016 51 3.02 1.76
SATL 77 0.024 0.017 77 1.99 1.37 109 0.023 0.016 109 1.87 1.35 32 0.020 0.014 32 1.59 1.28 109 0.023 0.016 109 1.87 1.35
CARB 22 0.010 0.005 21 3.20 1.99 16 0.023 0.010 2 6.25 0.92 25 0.028 0.012 16 5.73 1.76 28 0.022 0.009 28 3.48 2.22

Indian MONS 5 0.028 0.005 64 3.94 1.70 9 0.024 0.007 64 3.94 1.70 40 0.022 0.007 35 3.65 1.48 35 0.027 0.006 29 4.29 1.91
ISSG 10 0.007 0.003 10 1.94 1.61 14 0.007 0.003 6 2.50 1.01 4 0.009 0.002 26 2.86 1.31 14 0.007 0.003 3 4.05 0.80

Pacific NPTG 3 0.013 0.008 9 4.97 0.66 8 0.015 0.003 6 4.39 2.12 10 0.017 0.006 18 4.79 1.70 7 0.016 0.004 26 4.88 0.74
PNEC 2 0.031 0.011 9 3.46 1.49 12 0.017 0.006 15 3.94 1.85 11 0.017 0.004 27 3.54 1.74 27 0.018 0.005 3 1.75 0.77
PEQD 11 0.017 0.004 18 4.85 1.58 27 0.018 0.005 6 3.79 1.04 27 0.018 0.005 8 4.76 0.97 16 0.019 0.005 17 4.39 1.33
WARM 163 0.030 0.015 160 2.23 1.31 220 0.031 0.016 221 2.16 1.28 220 0.031 0.016 221 2.16 1.28 57 0.033 0.020 61 1.97 1.19
ARCH 67 0.031 0.012 68 2.85 1.51 11 0.029 0.014 12 2.55 2.13 26 0.025 0.010 20 4.10 2.30 19 0.028 0.017 22 2.81 1.92

Westerlies

Antarctic SSTC 18 0.021 0.016 47 4.12 2.01 45 0.034 0.011 83 2.25 1.56 33 0.029 0.010 53 4.42 1.39 4 0.016 0.016 5 5.30 1.57
SANT 3 0.026 0.002 28 1.85 0.42 41 0.023 0.006 136 1.58 0.53 10 0.027 0.003 18 1.99 0.54 55 0.023 0.006 242 1.62 0.54

Atlantic NADR 47 0.032 0.014 42 3.32 1.25 4 0.051 0.023 4 3.03 0.73 49 0.025 0.014 52 2.14 1.20 7 0.036 0.007 7 2.83 0.45
GFST 50 0.034 0.012 47 4.39 1.60 14 0.013 0.006 13 2.40 1.99 24 0.040 0.016 28 3.08 1.67 7 0.054 0.020 7 4.32 2.06
NASW 137 0.031 0.018 96 3.84 2.53 113 0.029 0.021 92 2.13 1.85 65 0.036 0.024 57 4.09 2.23 33 0.041 0.019 30 4.66 1.35
MEDI 46 0.013 0.007 85 3.29 1.36 26 0.005 0.003 36 2.65 1.86 77 0.032 0.021 113 2.57 1.66 55 0.040 0.019 105 2.64 1.35
NASE 25 0.029 0.018 27 3.95 1.78 17 0.030 0.009 17 2.72 1.67 44 0.025 0.014 60 2.86 2.01 86 0.031 0.018 7 5.23 1.60

Pacific PSAE 18 0.035 0.014 18 2.48 0.74 42 0.032 0.013 46 2.54 0.81 8 0.025 0.012 9 2.35 1.06 68 0.032 0.013 73 2.50 0.82
PSAW 33 0.039 0.011 31 3.32 0.93 8 0.036 0.018 8 3.51 1.55 41 0.038 0.013 39 3.36 1.06 41 0.038 0.013 39 3.36 1.06
KURO 83 0.020 0.009 81 3.62 1.64 61 0.017 0.007 60 2.88 1.41 82 0.020 0.007 86 3.62 1.70 10 0.021 0.009 9 4.63 0.52
NPPF 134 0.027 0.013 144 3.28 1.46 111 0.024 0.013 114 2.79 1.23 96 0.020 0.008 100 3.48 1.65 10 0.021 0.009 9 4.63 0.52
NPSE 134 0.027 0.013 144 3.28 1.46 111 0.024 0.013 114 2.79 1.23 96 0.020 0.008 100 3.48 1.65 10 0.021 0.009 9 4.63 0.52
NPSW 83 0.020 0.009 81 3.62 1.64 61 0.017 0.007 60 2.88 1.41 6 0.015 0.005 5 3.22 0.59 10 0.021 0.009 9 4.63 0.52
OCAL 10 0.007 0.002 10 1.87 0.59 12 0.017 0.006 46 2.54 0.81 1 0.006 9 2.35 1.06 10 0.021 0.009 73 2.50 0.82
TASM 8 0.053 0.017 12 5.10 1.51 19 0.053 0.013 25 4.68 2.04 3 0.029 0.001 19 5.99 1.54 12 0.053 0.012 13 4.52 1.22
SPSG 240 0.021 0.015 246 1.79 1.33 27 0.022 0.011 29 1.35 0.79 3 0.029 0.001 281 1.77 1.30 4 0.025 0.004 6 3.16 1.37
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Statistical analyses were used to assess relationships between P-I parameters and other
(environmental) variables available in the P-I database (latitude, depth, chlorophyll-a, PAR,
temperature and nutrients; correlation and regression analysis), relationships between primary
production estimates and input variables (chlorophyll-a, PAR and P-I parameters; correlation and
regression analysis) and changes in primary production trends on various spatial and temporal scales
(correlation analysis). To estimate the rate and direction of change in annual primary production
between 1998 and 2018 for each grid point, monthly means were corrected for seasonality by subtracting
monthly climatologies. The rate of change over time and its significance were calculated using linear
regression and Student’s t tests following Santer et al. [98]. Using the slope and intercept from
the regression analysis, the percentage change per year in primary production (PP) was calculated
as 100 · ((12 · slope) / (intercept + PPclimatology)). Before all statistical procedures, data were tested
for normality and homogeneity of variances and transformed for further statistical analysis when
necessary. Differences were considered significant when p < 0.05.

The impacts of different climate indices on global and regional primary production were
characterised based on annual mean anomalies that were corrected for seasonality following
Racault et al. [19]. Student’s t tests were used to assess the statistical significance of the
relationships considering autocorrelations of the time series following Santer et al. [98]. Climate
indices were obtained from the National Oceanic and Atmospheric Administration (NOAA)
(www.esrl.noaa.gov/psd/data/climateindices/), Kao and Yu [99] (www.ess.uci.edu/~yu/2OSC/)
and Di Lorenzo et al. [17] (www.o3d.org/npgo/).

3. Results

3.1. Global and Regional Annual Primary Production

Global annual primary production computed using mean photosynthesis versus irradiance (P-I)
parameters (for each biogeographic province and for each season) varied from 48.7 to 52.5 Gt C y−1 in
the period 1998–2018 (Table 2; Figures 3 and 4A). Summer (14.6–16.0 Gt C) was the most productive
season in each of the years, followed by spring (13.5–14.7 Gt C), autumn (11.0–11.9 Gt C per season)
and winter (9.4–10.2 Gt C per season) (Figure 4B). On regional scales, annual primary production was
highest in the Pacific Ocean (43.2–44.5%), followed by the Atlantic (27.8–28.8%), Indian (15.7–16.7%)
and Antarctic oceans (11.3–12.0%) (Table 2; 3). In addition, the highest annual primary production rates
were found at low latitudes in the Trades biome (39.2–40.7%), followed by the Westerlies (29.7–31.1%),
Coastal (22.2–23.7%) and Polar biomes (6.3–7.3%) (Table 2; 3). These regional differences in annual
primary production were related to the surface areas of the specific ocean basins and biomes (r2 = 0.674,
p < 0.01), with the coastal regions being relatively more and polar regions relatively less productive
than the other regions when computed as a rate per unit area (Table 2; 3A).

3.2. Trends in Primary Production

Linear trends in annual primary production between 1998 and 2018 varied considerably on
regional scales (Figure 3B). At low and mid latitudes, trends in primary production were generally
weak and negative (up to −3.0%), although large areas of positive trends were also observed in the
South Atlantic Ocean and the South Pacific Ocean. In polar and coastal (upwelling) regions, stronger,
positive trends in primary production were observed (up to +4.5%). Although significant linear trends
were observed at individual pixels, the observed inter-annual changes in primary production on global
and regional scales did not follow a linear pattern.

Inter-annual trends in global primary production showed an increase in rates between 1998 and
2003; relatively stable rates between 2003 and 2011; and a subsequent decrease in rates until 2015,
after which rates showed a minor increase (Figure 4A). Annual primary production in the Atlantic
and Pacific oceans showed similar inter-annual trends to global primary production (r2 = 0.856, 0.913,
p < 0.001) (Figure 4C). Trends in annual primary production in the other ocean basins varied from

www.esrl.noaa.gov/psd/data/climateindices/
www.ess.uci.edu/~yu/2OSC/
www.o3d.org/npgo/
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the global trend, with relatively lower production between 2003 and 2011 in the Antarctic Ocean
(r2 = 0.712, p < 0.001) and a relatively early decrease in production in the Indian Ocean (r2 = 0.767
p < 0.001) (Figure 4C). Annual primary production in the Coastal, Trades and Westerlies biomes
showed inter-annual trends comparable with that in global primary production (r2 = 0.794–0.922,
p < 0.001), with relatively higher rates observed between 1998 and 2000 in the Trades biome and a
relatively slow increase in production between 1998 and 2011 in the Westerlies biome (Figure 4E). In
the Polar biome, production decreased relatively early between 2004 and 2011 and was relatively high
after 2015 compared with the trends in global annual primary production (r2 = 0.583, p < 0.001).

Table 2. Climatological mean and standard deviation (n = 21) of annual primary production (in Gt C
y−1) between 1998 and 2018 for each ocean basin and biome as defined by Longhurst (2007). Range
in annual primary production between 1998 and 2018 is given in parentheses. Results are given
for primary production estimates based on mean, −1 standard deviation and +1 standard deviation
photosynthesis versus irradiance (P-I) parameters. Surface areas (in km2) for each ocean basin and
biome are also provided.

Mean P-I

Coastal Polar Trades Westerlies Total
47 × 106 57 × 106 141 × 106 131 × 106 376 × 106

Antarctic 79 × 106 1.06 ± 0.09 (0.88−1.21) 4.83 ± 0.14 (4.66–5.14) 5.88 ± 0.19 (5.58–6.20)
Atlantic 94 × 106 3.13 ± 0.16 (2.89–3.33) 1.54 ± 0.09 (1.39–1.76) 6.52 ± 0.14 (6.24–6.73) 3.12 ± 0.05 (3.04–3.24) 14.3 ± 0.38 (13.7–14.9)
Indian 48 × 106 3.82 ± 0.18 (3.55–4.10) 4.42 ± 0.12 (4.17–4.62) 8.24 ± 0.30 (7.72–8.70)
Pacific 155 × 106 4.76 ± 0.22 (4.34–5.03) 0.91 ± 0.06 (0.80–1.02) 9.21 ± 0.31 (8.57–9.62) 7.39 ± 0.16 (7.09–7.60) 22.3 ± 0.63 (21.2–23.1)
Total 376 × 106 11.7 ± 0.53 (10.9–12.4) 3.51 ± 0.20 (3.12–3.85) 20.2 ± 0.50 (19.1–20.7) 15.3 ± 0.30 (15.0–15.9) 50.7 ± 1.38 (48.7–52.5)

Mean P-I -1 standard deviation

Coastal Polar Trades Westerlies Total
47 × 106 57 × 106 141 × 106 131 × 106 376 × 106

Antarctic 79 × 106 0.56 ± 0.04 (0.48–0.64) 2.82 ± 0.09 (2.72–3.02) 3.39 ± 0.11 (3.22–3.59)
Atlantic 94 × 106 1.64 ± 0.08 (1.51–1.76) 0.81 ± 0.05 (0.73–0.90) 2.52 ± 0.06 (2.39–2.61) 1.51 ± 0.03 (1.47–1.56) 6.48 ± 0.19 (6.16–6.75)
Indian 48 × 106 2.27 ± 0.10 (2.11–2.42) 2.70 ± 0.08 (2.54–2.82) 4.96 ± 0.17 (4.65–5.24)
Pacific 155 × 106 2.35 ± 0.11 (2.12–2.49) 0.52 ± 0.03 (0.45–0.58) 5.13 ± 0.18 (4.75–5.34) 4.00 ± 0.09 (3.85–4.12) 12.0 ± 0.34 (11.4–12.5)

Total 376 × 106 6.26 ± 0.28 (5.79–6.64) 1.89 ± 0.10 (1.70–2.06) 10.3 ± 0.27 (9.75–10.6) 8.34 ± 0.17 (8.13–8.66) 26.8 ± 0.74 (25.7–27.8)

Mean P-I +1 standard deviation

Coastal Polar Trades Westerlies Total
47 × 106 57 × 106 141 × 106 131 × 106 376 × 106

Antarctic 79 × 106 1.49 ± 0.14 (1.24–1.71) 6.71 ± 0.19 (6.48–7.14) 8.20 ± 0.26 (7.78–8.63)
Atlantic 94 × 106 4.57 ± 0.23 (4.21–4.86) 2.27 ± 0.14 (2.05–2.61) 10.4 ± 0.22 (9.95–10.7) 4.70 ± 0.08 (4.58–4.87) 21.9 ± 0.58 (20.9–22.8)
Indian 48 × 106 5.34 ± 0.26 (4.96–5.72) 6.07 ± 0.17 (5.71–6.34) 11.4 ± 0.42 (10.7–12.0)
Pacific 155 × 106 7.08 ± 0.32 (6.47–7.49) 1.30 ± 0.08 (1.13–1.46) 13.2 ± 0.44 (12.3–13.8) 10.6 ± 0.23 (10.2–10.9) 32.1 ± 0.92 (30.6–33.4)

Total 376 × 106 17.0 ± 0.77 (15.8–18.0) 5.07 ± 0.30 (4.48–5.56) 29.6 ± 0.73 (28.1–30.4) 22.0 ± 0.43 (21.5–22.8) 73.7 ± 2.00 (70.8–76.2)

Trends in seasonal global primary production were highest in late spring to mid-summer, with the
lowest rates observed in December for the Northern Hemisphere and in June for the Southern
Hemisphere (Figure 4B). Most regions showed similar seasonal trends in primary production, with
the peak occurring either earlier (Pacific Ocean and Westerlies and Coastal biomes) or later (Antarctic
and Atlantic oceans and Polar biome) in summer (r2 = 0.790–0.958, p < 0.001) (Figure 4D,F). Monthly
primary production in the Trades biome was more variable from spring to autumn compared with the
global trend (r2 = 0.758, p < 0.001) (Figure 4D). Trends in seasonal primary production in the Indian
Ocean deviated most from the global trend, with two peaks in monthly primary production observed
in spring and autumn and the lowest rates observed in summer (Figure 4F).

Inter-annual and seasonal trends in global primary production were closely related to
chlorophyll-a biomass (Spearman’s rank correlation coefficient rs = 0.661–0.939, p < 0.01) (Figure 3C).
In the Pacific Ocean and Westerlies biome, annual primary production was also related to
Photosynthetic Active Radiation (PAR) (rs = 0.438–0.436, p < 0.05) (Figure 3E). The variations in
global primary production were associated with trends in the El Niño-Southern Oscillation (ENSO)
(Multi-variate ENSO Index (MEI), r = −0.309; ENSO Eastern Pacific (EP) index, r = −0.469) and the
Atlantic Multi-decadal Oscillation (AMO) (r = 0.419). The initial increase in global annual primary
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production between 1998 and 2003 was related to ENSO (EP index, r = −0.956), AMO (r = 0.971) and
the Indian Ocean Dipole (IOD) (r = 0.563), while the decrease in global annual primary production
after 2011 was related to ENSO (MEI, r = −0.664; ENSO Central Pacific (CP) index, r = −0.883) and the
Pacific Decadal Oscillation (PDO) (r = −0.832).
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2.2. Corrections Have Been Made to Figure 3

Figure 1. Maps of global annual primary production (PP) and associated parameters for the period of 1998–2018: (A)
global annual primary production based on mean photosynthesis versus irradiance (P-I) parameters; (B) linear trends
in global annual primary production between 1998 and 2018 given as percentage change per year (dark grey colour
represents non-significant trends); (C) remote-sensing-derived mean surface chlorophyll-a (Chl-a); (D) difference in primary
production between mean P-I parameters and –1 standard deviation (–1 SD)-based estimations; (E) remote-sensing-derived
Photosynthetic Active Radiation (PAR, 400–700 nm); and (F) difference in primary production between mean P-I parameters
and +1 standard deviation (+1 SD)-based estimations.

Figure 3. Maps of global annual primary production (PP) and associated parameters for the
period of 1998–2018: (A) global annual primary production based on mean photosynthesis
versus irradiance (P-I) parameters; (B) linear trends in global annual primary production between
1998 and 2018 given as percentage change per year (dark grey colour represents non-significant
trends); (C) remote-sensing-derived mean surface chlorophyll-a (Chl-a); (D) difference in primary
production between mean P-I parameters and –1 standard deviation (−1 SD)-based estimations;
(E) remote-sensing-derived Photosynthetic Active Radiation (PAR, 400–700 nm); and (F) difference
in primary production between mean P-I parameters and +1 standard deviation (+1 SD)-based
estimations.
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2.3. Corrections Have Been Made to Figure 4

Figure 2. Trends in primary production (PP) with (A) annual global primary production for each year in the period between
1998 and 2018, (B) mean monthly primary production, (C) relative annual and (D) monthly primary production for each
oceanic basin and (E) relative annual and (F) monthly primary production for each biome as defined by Longhurst (2007).
The dotted lines illustrate the relative global primary production per year (C,E) and month (D,F). Estimates of monthly
primary production for the Southern Hemisphere were shifted to depict the summer season (December–February) along
with that of the Northern Hemisphere (June–August) in months 6–8. Relative trends for each basin and biome were
calculated by subtracting the minimum primary production from the annual (C,E) or monthly (D,F) primary production
and dividing this by the difference between the minimum and maximum primary production between 1998 and 2018 or
between January and December.

Figure 4. Trends in primary production (PP) with (A) annual global primary production for each year in
the period between 1998 and 2018, (B) mean monthly primary production, (C) relative annual and (D)
monthly primary production for each oceanic basin and (E) relative annual and (F) monthly primary
production for each biome as defined by Longhurst (2007). The dotted lines illustrate the relative global
primary production per year (C,E) and month (D,F). Estimates of monthly primary production for the
Southern Hemisphere were shifted to depict the summer season (December–February) along with that
of the Northern Hemisphere (June–August) in months 6–8. Relative trends for each basin and biome
were calculated by subtracting the minimum primary production from the annual (C,E) or monthly
(D,F) primary production and dividing this by the difference between the minimum and maximum
primary production between 1998 and 2018 or between January and December.

3.3. Sensitivity of Primary Primary Production to Changes in Photosynthetic Parameters

Global annual primary production varied from 25.7 to 27.8 Gt C y−1 between 1998 and 2018 when
both P-I parameters were reduced simultaneously by one standard deviation (−1 SD), whereas the
values ranged from 70.8 to 76.2 Gt C y−1 when the P-I parameters were increased by one standard
deviation (+1 SD) (−46.4% and +44.8% compared with the results using the mean P-I estimates)
(Table 2; Figures 3D,F and 5). The magnitude of the decrease in primary production when the P-I
parameters were adjusted by−1 standard deviation was always greater than the increase in production
when the P-I parameters were adjusted by +1 standard deviation (Figure 5). The sensitivity of primary
production to changes in P-I parameters was highest in the Atlantic Ocean, followed by the Pacific,
Antarctic and Indian oceans (Figures 3D,F and 5; Table 2). The sensitivity was highest in the Trades
biome and lowest in the Westerlies biome (Figures 3D,F and 5; Table 2). Trends in global and regional
annual primary production for the sensitivity analyses (data not shown) were similar to those observed
for the main model run with mean P-I parameters (Table 2; Figures 3B and 4) (r2 = 0.983–0.999,
p < 0.001).

On a seasonal basis, global primary production changed between −50.1 to −43.9% and +42.2
to +48.5% when the photosynthetic parameters were adjusted by −1 and +1 standard deviation,
respectively (Figure 5). The highest deviation from the mean P-I-based primary production estimates
was observed during summer in the Atlantic Ocean and during spring in the Trades biome, whereas
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the lowest deviation was observed during autumn in the Antarctic Ocean and during winter in the
Westerlies biome. Trends in seasonal primary production were similar to those observed for the mean
photosynthetic parameters estimates (Figure 4) when the photosynthetic parameters were adjusted by
+1 standard deviation (data not shown). When the photosynthetic parameters were adjusted by −1
standard deviation, seasonal trends changed in the Indian Ocean and the Coastal and Trades biomes.
Primary production in these regions became relatively lower in spring and summer compared with
other seasons (data not shown). No changes in seasonal primary production trends were observed in
the Antarctic, Atlantic and Pacific Oceans and the Polar and Westerlies biomes when photosynthetic
parameters were adjusted by −1 standard deviation.
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2.4. Corrections Have Been Made to Figure 5

Figure 3. Percentage change in primary production (PP) for estimates based on mean photosynthesis
versus irradiance (P-I) parameters ±1 standard deviation compared with estimates based on mean
P-I parameters. Mean percentage differences in annual and seasonal primary production for each
ocean basin and biome are given. Data were obtained from model computations in which both P-I
parameters were adjusted simultaneously and the light adaptation parameter (Ik) was unchanged.

Figure 5. Percentage change in primary production (PP) for estimates based on mean photosynthesis
versus irradiance (P-I) parameters ±1 standard deviation compared with estimates based on mean P-I
parameters. Mean percentage differences in annual and seasonal primary production for each ocean
basin and biome are given. Data were obtained from model computations in which both P-I parameters
were adjusted simultaneously and the light adaptation parameter (Ik) was unchanged.

3.4. Relationship between Photosynthetic Parameters and Primary Production

It was expected that the changes in the magnitude of global and regional primary production were
driven by variations in photosynthetic parameters, as all other input variables remained unchanged
between the different model computations. When the relative change in primary production was
compared with that of the P-I parameters for −1 SD and +1 SD estimates, variations were shown to be
closely coupled (the light adaptation parameter Ik was unchanged) (Figure 6). Both the initial slope of
the P-I curve (αB) (r2 = 0.536 for −1 SD and r2 = 0.571 for +1 SD estimates) and the assimilation number
(PB

m) (r2 = 0.711 for −1 SD and r2 = 0.670 for +1 SD estimates) showed positive linear relationships
with primary production for each season and biogeographical province. The weaker sensitivity of
daily water-column primary production to change in αB, relative to that of PB

m, could be explained
by the importance of αB under light-limited conditions, as opposed to PB

m, whose effect is dominant
in light-saturating conditions. It is important to note that the ratio of PB

m to αB (i.e., Ik) remained
unchanged between these different estimates of primary production. Independent variations in αB

and PB
m that modify Ik could lead to higher sensitivity of primary production to the change [100–103].

The sensitivity analysis in which αB and PB
m were independently adjusted by ±1 standard deviation

(variable Ik) showed that changes in PB
m caused greater variation in global annual primary production
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than changes in αB (Figure 7). Significant relationships between P-I parameters and primary production
were also observed when αB and PB

m were varied independently (−1 SD αB: y = 0.617 x, r2 = 0.862;
+1 SD αB: y = 0.369 x, r2 = 0.534; −1 SD PB

m: y = 0.704 x, r2 = 0.893; +1 SD PB
m: y = 0.444 x, r2 = 0.723).

When Ik increased (−1 SD αB and +1 SD PB
m), primary production became more sensitive to changes in

PB
m compared with those in αB (see slope of relationships above).
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2.5. Corrections Have Been Made to Figure 6

Figure 4. Relationship between photosynthesis versus irradiance (P-I) parameters and primary
production (PP) expressed as percentage difference in (A,B) the initial slope (αB) and (C,D) the
assimilation number (PB

m) of the P-I curve and primary production for –1 standard deviation (–1 SD)
(A,C) and +1 standard deviation (+1 SD) (B,D) compared with mean P-I parameters estimates. Each
point represents a biogeographical province and season for the period between 1998 and 2018.

Figure 6. Relationship between photosynthesis versus irradiance (P-I) parameters and primary
production (PP) expressed as percentage difference in (A,B) the initial slope (αB) and (C,D) the
assimilation number (PB

m) of the P-I curve and primary production for –1 standard deviation (−1
SD) (A,C) and +1 standard deviation (+1 SD) (B,D) compared with mean P-I parameters estimates.
Each point represents a biogeographical province and season for the period between 1998 and 2018.
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2.6. Corrections Have Been Made to Figure 7

Figure 5. Percentage change in global annual primary production (PP) compared with estimates
based on mean photosynthesis versus irradiance (P-I) parameters. Results from three different
sensitivity analyses are given: (1) both the initial slope (αB) and assimilation number (PB

m) of the
P-I curve were adjusted by ±1 standard deviation (SD) [PB

m, αB]; (2) only PB
m was adjusted by ±1

standard deviation [PB
m]; and (3) only αB was adjusted by ±1 standard deviation [αB].
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Figure 7. Percentage change in global annual primary production (PP) compared with estimates based
on mean photosynthesis versus irradiance (P-I) parameters. Results from three different sensitivity
analyses are given: (1) both the initial slope (αB) and assimilation number (PB

m) of the P-I curve were
adjusted by ±1 standard deviation (SD) [PB

m, αB]; (2) only PB
m was adjusted by ±1 standard deviation

[PB
m]; and (3) only αB was adjusted by ±1 standard deviation [αB].



Remote Sens. 2020, 12, 826 14 of 26

3.5. Variation in Photosynthetic Parameters

In the global P-I parameter database αB ranged between 0.002–0.085 mg C mg Chl-a−1 h−1

(µmol photons m−2 s−1)−1 and PB
m between 0.20–8.00 mg C mg Chl-a−1 h−1. Mean values for each

biogeographic province ranged between 0.005 and 0.054 mg C mg Chl-a−1 h−1 (µmol photons m−2

s−1)−1 for αB and between 1.01 and 6.25 mg C mg Chl-a−1 h−1 for PB
m (Table 1). Lowest mean

values of αB and PB
m were observed in the Mediterranean (MEDI, summer) and Antarctic (ANTA,

spring) provinces, whereas the highest values were observed in the Gulf Stream (GFST, winter) and
Caribbean (CARB, summer) provinces, respectively (Table 1). Standard deviations varied between
0.2 and 99.1% (average of 43.8%) for αB and between 8.6 and 111.6% (average of 47.1%) for PB

m
(Table 1). Similar to observations reported in Bouman et al. [33], spatial and temporal variations in
photosynthetic parameters could be related to local environmental conditions. Relationships between
αB and environmental conditions were variable between ocean basins and biomes resulting in relative
weak relationships on a global scale (Figure 8). The initial slope αB increased with daily PAR in the
Atlantic and Indian Oceans and with nitrate concentrations in the Antarctic, Atlantic and Pacific Oceans
(Figure 8). Positive relationships between αB and chlorophyll-a were observed at mid latitudes (Trades
biome), but a negative relationship was observed in the Coastal biome. The standard deviation of αB

increased at lower levels of PAR, at lower nitrate and silicate concentrations and at higher chlorophyll-a
concentrations, but no other significant relationships with environmental parameters were observed
(Figure 8). The assimilation number PB

m showed overall stronger relationships with environmental
conditions compared with αB (Figure 8). Notably, PB

m increased with temperature and PAR, possibly
coinciding with latitudinal differences (Figure 8). The Pacific Ocean deviated from these results with an
opposite trend observed between PB

m and temperature at higher latitudes (data not shown). A negative
relationship was observed between PB

m and depth in all ocean basins and biomes, consistent with the
known decline in PB

m with decreasing temperature and light. PB
m was generally lower at low phosphate

concentrations, with the strongest relationships observed in the Antarctic, Atlantic and Indian Oceans
at higher latitudes in the Polar and Coastal biomes. Variation in PB

m as expressed by the standard
deviation increased at higher temperatures and lower latitudes (Figure 8). The standard deviation of
PB

m also showed a positive relationship with depth and negative relationships with nutrient conditions.
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Figure 8. Spearman’s rank correlation coefficients (rs) for relationships between the mean and standard
deviation (SD) of the initial slope (αB) and the assimilation number (PB

m) of the photosynthesis versus
irradiance (P-I) curve and environmental variables available in the P-I database, including absolute
latitude (Lat), depth, chlorophyll-a (Chl-a), daily Photosynthetic Active Radiation (PAR), temperature
(T), nitrate (NO3), phosphate (PO4) and silicate (Si). Significant relationships (p < 0.05) are given in bold.
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4. Discussion

In the present study, a global database of photosynthesis versus irradiance (P-I) parameters,
together with a 20-year time series of remote-sensing-based chlorophyll-a concentrations, was used to
study the magnitude and variability in marine primary production on a global scale. The estimate
for global annual primary production of 48.7–52.5 Gt C y−1 between 1998 and 2018 in this study
was within the range reported before (32.0–70.7 Gt C y−1) [5,104] and close to earlier reported
values for depth- and wavelength-resolved primary production models (45–56 Gt C y−1) [2,4,5,7,22].
According to the model used in this study, primary production depends on phytoplankton biomass
(in chlorophyll units), Photosynthetic Active Radiation (PAR, 400–700 nm; total value and its spectral
and angular distribution) and on the assigned values of the photosynthetic and chlorophyll-a profile
parameters. Although the model does not explicitly include the effects of environmental variables
such as temperature and nutrients, or mixed-layer dynamics, these were implicitly accounted for
through the photosynthetic and chlorophyll-a profile parameters, which were assigned by season
and biogeographical province [2,16]. Based on an inter-comparison of various primary production
models, it has been reported that primary production generally increases at higher chlorophyll-a
concentrations, higher PAR and shallower mixed-layer depths, whereas variability in temperature
could either increase or decrease primary production [4]. In the present study, trends in global and
regional annual primary production were best explained by variations in chlorophyll-a concentration,
which in turn may vary with seasonal, inter-annual and multi-decadal variations in physico-chemical
conditions of the water column [17–19]. This study confirmed that global annual primary production
varied with the ENSO and AMO [17–19,26], but not all variation in global annual primary production
could be explained by large-scale ocean-atmospheric oscillations. The previously reported negative
(linear) trend in global annual primary production [25,27,28] was not observed in the present study.
Instead, a more dynamic pattern of inter-annual trends in primary production was revealed at global
and regional scales (also see [26,29]).

The assignment of photosynthetic parameters remains one of the major challenges in the
assessment of global annual primary production using numerical models based on remote-sensing
observations [31–34]. In this study, we have tackled this problem by assembling a database of around
ten thousand observations that covered the majority of the biogeographical provinces of Longhurst [16].
The sensitivity of primary production to variations in the photosynthetic parameters was further
studied by investigating the effect on primary production of changing P-I parameters from their
mean values. P-I parameters may vary 2–10 fold among different biogeographical provinces (this
study; [33,86,105]). This variation may reflect natural variability but might also be affected to some
extent by small differences in measurement protocols from author to author [33,86]. In the database
used here, we tried to minimise the latter source of variability, for example by correcting values
of the initial slope of the P-I curve (αB) for the spectral quality of the light source used in the P-I
experiment (also see [33]). A sensitivity analysis in which P-I parameters were adjusted by ±1
standard deviation revealed that the variation in photosynthetic rates may lead to a decrease or an
increase in the magnitude of global annual primary production by 45–47%. Global annual primary
production remained close to the range of earlier observations (32.0–70.7 Gt C y−1) [2,4,5,22] when both
P-I parameters were adjusted by +1 standard deviation (+1 SD) (70.8–76.2 Gt C y−1), but adjustments
by −1 standard deviation (−1 SD) resulted in considerably lower global annual primary production
rates (25.7–27.8 Gt C y−1). Seasonal trends in global primary production were little affected, as the
magnitude of change in P-I parameters was similar among seasons. The sensitivity analysis illustrated
the importance of the parameters that describe the relationship between phytoplankton biomass and
PAR in the calculations of primary production, but adjusting the P-I parameters by ±1 standard
deviation would represent the lower and upper limits of change in the photosynthetic response
of phytoplankton cells. It would therefore be important to better understand the variability in P-I
parameters and subsequent estimates of primary production under natural variations in environmental
conditions and under global climate change.
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Over the past three decades, considerable efforts have been made to establish a global database
of P-I parameters ([2,31,33,86]; this study) and to decipher their empirical relationships with
physico-chemical and optical properties to enable prediction of photosynthetic parameters on regional
and global scales [38,40,41,105–108]. The observed relationships between physico-chemical conditions
and P-I parameters in the present study confirmed earlier observations that temperature may be a
good predictor of the assimilation number (PB

m), especially in coastal regions and temperate oceanic
regions where temperature and associated water column stability dictates seasonal changes in the
taxonomic and size structure of phytoplankton communities [40,86,109]. We note however, that the
correlation coefficient between PB

m and temperature is nowhere higher than 0.42, indicating that the
importance of other factors (such as light and nutrient availability) in determining the variability
in the assimilation number cannot be ruled out. The temperature dependence of PB

m is of particular
interest for assigning photosynthetic rates on regional and global scales, as Sea Surface Temperature
(SST) can be obtained from remote-sensing observations on similar spatial and temporal scales to
chlorophyll-a concentrations. Moreover, SST is a strong predictor of global climate change [24].
However, in regions with different underlying physical forcing that experience a smaller range in
temperature, such as the Arabian Sea and open ocean gyres, the relationship between temperature
and PB

m is less obvious (this study; [40,41,105,107,110]). In such regions, chlorophyll-a concentration
and the taxonomic and size structure of the phytoplankton community may be better indicators
of variability in PB

m [38,41,86,107,108]. The initial slope of the P-I curve seems to be more difficult
to predict based on empirical relationships with physico-chemical conditions (this study, [41,86]),
and it has been suggested that the simplest approach to estimate αB would be to relate αB to the
assimilation number [33,110,111]. This approach may be supported by the strong dependence of IK
(PB

m/αB) on latitude and depth, two spatial indicators that can be seen as general proxies of water
column conditions [16,33,105].

The relationship between photosynthetic parameters and temperature is of particular interest
in understanding the scope of change in primary production under global climate change. Over the
past few decades, SST has increased by 0.5 ◦C and is projected to increase a further 1.5–4.0 ◦C under
different CO2 emission scenarios [24]. The rise in SST and subsequent changes in stratification and
nutrient loading into the euphotic zone are expected to affect phytoplankton growth and primary
production [23,24]. One estimate of a potential change in annual primary production arising from
variations in photosynthetic parameters under global climate change can be arrived at by using SST as
the main driver of change in PB

m. Assuming a simplified linear relationship between PB
m and temperature

in the Coastal biome (where temperature dependence of PB
m was highest; PB

m = 0.13 ∗ T + 1.82, r2 =
0.872 for T < 20 ◦C), PB

m might be expected to increase by 8.3% under a rise of SST of +2 ◦C. Based on the
relationships between PB

m and primary production estimates presented in this study (Figure 7; assuming
Ik is unchanged), annual primary production in the Coastal biome could increase by +0.92 Gt C y−1.
Depending on the specific relationship with temperature, variations in P-I parameters and subsequent
estimates of global primary production may vary on regional scales (for example, +13.4% in PB

m in the
Polar biome). The actual variation in P-I parameters and primary production under global climate
change would be more complex and the interplay between different physico-chemical conditions will
have a major effect on the direction of change.

5. Conclusions

It is the first time that highly quality-controlled, multisensor, inter-sensor-bias-corrected,
ocean-colour observations extending over two decades have been combined with the increased spatial
and temporal coverage of in situ observations of the photosynthetic parameters of phytoplankton
to compute the magnitude and variability of primary production on a global scale. This has led
to a more accurate assessment of global annual primary production and its trends over the past
20 years. Variability in global annual primary production could be related to inter-annual and
multi-decadal oscillations, such that the present record of ocean-colour observations is not of sufficient
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length to detect trends associated with climate change [112]. Here, we report an inter-annual
variability (standard deviation) of ±2.7% around a mean of 50.7 Gt C y−1 within the two decades
studied. The importance of accurately assigning photosynthetic parameters in global and regional
calculations of primary production has been illustrated by a sensitivity analysis. With the recent
development of a global database of in situ measurements of P-I parameters [33] and the subsequent
enhancement of the database (this study), photosynthetic parameters could be assigned to almost
all biogeographical provinces (defined by Longhurst [16]). This has considerably improved the
confidence with which regional primary production can be estimated, especially in those regions
that were previously known to be different from others, such as the Arabian Sea and the Antarctic
Ocean [110]. Yet, the need to improve P-I data coverage in large areas of the global ocean remains
(this study, Figure 1; [33,49,86]). In particular, large areas of the Pacific and Indian Oceans remain
poorly sampled. Methods designed to assign photosynthetic parameters based on their relationships
to other variables amenable to remote sensing [106,110] could, in the future, lead to a more dynamic
assignment of these parameters. Sea-surface temperature and phytoplankton community-size structure
(this study; [33,38,40,41,86,105,107,108]) could be suitable variables for further development of such
methods for different ocean basins and biomes.
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Appendix A. Model of Daily Water-Column Primary Production

Appendix A.1. Phytoplankton Biomass

In the model of Platt and Sathyendranath [31] and Sathyendranath et al. [49], ocean-colour
remote-sensing products and a standard Gaussian function are used to calculate the distribution of
phytoplankton biomass (B(z) in mg m−3) at depth. Depth profiles of chlorophyll-a were computed as
shifted Gaussian functions:

B(z) = B0 +
h

σ
√

2π
exp−

(
(z− zm)2

2σ2

)
(A1)
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ρ′ =
(

h
σ
√

2π

)
/
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σ
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2π

)
+ B0

)
(A2)
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using the background biomass (B0 in mg m−3), the total peak biomass (h in mg m−2), the depth of the
chlorophyll maximum (zm in m), the standard deviation around the peak value (σ in mg m−3) and the
ratio of the chlorophyll peak height to the total peak biomass at zm (ρ′, dimensionless) [52]. Each profile
parameter can vary independently, resulting in a versatile expression that can describe the biomass
profile in a wide variety of oceanographic regimes. Profile parameters (h, σ and ρ′) were obtained for
57 biogeographic provinces [16] and four seasons from an archived global database of 26,232 in situ
chlorophyll-a measurements [2,101]. At each pixel, the profile parameters were scaled such that the
surface biomass matched the satellite chlorophyll-a value. Phytoplankton biomass profiles were then
used for calculating the underwater light field and for estimating primary production (see below).

Appendix A.2. Irradiance Field

Spectrally resolved irradiance at the sea surface was computed using a clear-sky model and
expressed as the sum of a direct sunlight component and a diffuse skylight component. The surface
direct and diffuse components were then scaled to match the daily Photosynthetic Active Radiation
(PAR, 400–700 nm) products from the National Aeronautics and Space Administration (NASA) (https:
//oceancolor.gsfc.nasa.gov/, accessed on 20 August 2020) and corrected for reflection and refraction
at the sea surface assuming a flat ocean. To limit inter-sensor biases, a merged PAR product was
generated by referencing PAR from SeaWiFS to MODIS by linear regression on a pixel-by-pixel basis for
overlapping years (2003–2010). The PAR time series consisted of SeaWiFS-shifted-to-MODIS products
for 1998–2002, an average of SeaWiFS and MODIS products for 2003–2010 and MODIS products for
2011–2018. The spectrally resolved irradiance just below the surface was then used to construct the
underwater light field (I(z, λ, θ) in µmol photons m−2 s−1), as the sum of a direct (d) and a diffuse (s)
component of solar irradiance [113]:

I(z, λ, θ) = Id(z− ∆z, λ, θd) e−Kd(z,λ)∆z + Id(z− ∆z, λ, θs) e−Ks(z,λ)∆z (A3)

with
Kd(z, λ) = [a(z, λ) + bb(z, λ)] (cos θd)

−1 (A4)

Ks(z, λ) = [a(z, λ) + bb(z, λ)] 〈cos θs〉−1 (A5)

where z is the depth (in m), λ is the wavelength (in nm), θd is the zenith angle of sun in water (in
degrees), Kd is the light attenuation coefficient (in m−1) for direct sunlight, Ks is the light attenuation
coefficient (in m−1) for diffuse skylight, a(z, λ) is the volume absorption coefficient (in m−1), bb(z, λ)

is the backscattering coefficient (in m−1) and 〈cos θs〉 is the mean cosine for the angular distribution
of diffuse skylight after refraction at the sea surface [31,102]. The calculations make use of the
chlorophyll-a profile to account for the influence of depth-dependent biomass on the light attenuation
coefficient at each depth. The value of a(z, λ) is expressed as the sum of the contributions to absorption
from pure seawater, phytoplankton, coloured dissolved organic matter and detritus. Absorption by
phytoplankton depends on the concentration of chlorophyll-a (B(z)):

aB(z, λ) = a∗B(λ) B(z) (A6)

where a∗B(λ) is the chlorophyll-a specific absorption coefficient (in m2 mg Chl-a−1) at wavelength
λ. Concentrations of B(z) were obtained from ocean-colour remote-sensing observations (see main
text) and expressed as the sum of chlorophyll-a concentrations contained in three size classes: pico-
(p), nano- (n) and microphytoplankton (m). Phytoplankton absorption aB(z, λ) was estimated as the

https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/
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sum of the contributions of pico-, nano- and microphytoplankon to total phytoplankton absorption
following Brewin et al. [96,97]:

aB(z, λ) = a∗p(λ) Bm
p [1− exp(−Sp B(z))]

+ a∗n(λ) {Bm
p,n [1− exp(−Sp,n B(z))]− Bm

p [1− exp(−Sp B(z))]}
+ a∗m(λ) {B(z)− Bm

p,n [1− exp(−Sp,n B(z))]} .

(A7)

Here, the size-specific absorption coefficients a∗p(λ), a∗n(λ) and a∗m(λ) (in m2 mg Chl-a−1) are the
values reported by Brewin et al. [96], and the fitted parameters Bm

p (0.13 mg Chl-a m−3) and Bm
p,n

(0.77 mg Chl-a m−3) are the maximum concentrations attainable by picophytoplankton and combined
pico- and nanophytoplankton, respectively. The parameters Sp (6.15 m3 mg Chl-a−1) and Sp,n

(1.26 m3 mg Chl-a−1) determine the rate of change in the chlorophyll-a concentrations associated with
picophytoplankton and the combined concentration of pico- and nanophytoplankton with changes in
total chlorophyll-a concentration (model parameters are from Brewin et al. [97]).

Similar to absorption, the total backscattering coefficient bb used in Equations (A4) and (A5)
depends on back-scattering by pure seawater and by chlorophyll-a concentration, as in
Sathyendranath et al. [114]:

bb(z, λ) = bbw(λ) + bbB(z, λ) (A8)

with bbw(z, λ) being the backscattering coefficient of water according to Morel [115] and bbB(z)
the particle backscattering coefficient modelled as a function of chlorophyll-a concentration as in
Sathyendranath et al. [114], following Ulloa et al. [116] and Loisel and Morel [117].

Appendix A.3. Daily Primary Production over the Water Column

The model of Platt and Sathyendranath [31], with the updates as in Sathyendranath et al. [49],
uses a local algorithm based on surface biomass fields from ocean-colour remote-sensing, chlorophyll-a
profile parameters, irradiance resolved with wavelength, angular distribution and depth, and
photosynthesis versus irradiance (P-I) parameters to estimate water column primary production.
Here, by the word “local”, we imply that the model is implemented with parameters that are specific
to the location and time. Primary production at depth z and time t (PB(z, t) in mg C mg Chl-a−1 h−1)
is given by:

PB(z, t) = PB
m(z, t)

(
1− exp

[−ΠB(z, t)
PB

m(z, t)

])
(A9)

where

ΠB(z, t) =
∫ 700

400
αB(z, t, λ) [Id(z, t, λ, θd) sec θd + 1.20 Is(z, t, λ)] dλ (A10)

where αB(z, t, λ) is the photosynthetic action spectrum (in mg C mg Chl-a−1 h−1 (µmol photons
m−2 s−1)−1) and integrals are taken over the range of PAR (400-700 nm) [31,37]. In Equation (A10),
the shape of αB(z, t, λ) is scaled such that the mean value is equal to the non-spectral value of αB for
flat, white light [118] and the spectral shape of αB is taken to be the same as that of the phytoplankton
absorption spectrum. Note that the P-I parameters do not change with depth in the present primary
production model.

Model calculations were performed at 9 km spatial resolution using a wavelength resolution
of 5 nm, a depth interval of 0.5 m from the surface to the euphotic depth (depth at which light is
reduced to 1% of its value at the surface) and at 12 time steps from dawn till local noon. The computed
production at each depth and at each time step was summed over depth and time, and then multiplied
by two to obtain daily water column primary production. In the event of any missing data in monthly
OC-CCI chlorophyll-a fields, the computed primary production in each biogeographic province and
in each month was scaled to full coverage using the mean primary production and the area of that
province, with a weighting function accounting for variability in PAR in the specific biogeographic
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province. Mean monthly production (in mg C m−2 d−1) in each biogeographic province was then
summed to obtain global annual primary production (in Gt C y−1) for each year between 1998 and
2018.

Appendix B. Biogeographic Provinces

Table A1. List of biogeographic provinces according to Longhurst (2007).

Number Basin Biome Acronym Province

1 Atlantic Polar BPLR Boreal Polar Province
2 Atlantic Polar ARCT Atlantic Arctic Province
3 Atlantic Polar SARC Atlantic Subarctic Province
4 Atlantic Westerlies NADR North Atlantic Drift Province
5 Atlantic Westerlies GFST Gulf Stream Province
6 Atlantic Westerlies NASW North Atlantic Subtropical Gyral Province (West)
7 Atlantic Trades NATR North Atlantic Tropical Gyral Province
8 Atlantic Trades WTRA Western Tropical Atlantic Province
9 Atlantic Trades ETRA Eastern Tropical Atlantic Province
10 Atlantic Trades SATL South Atlantic Gyral Province
11 Atlantic Coastal NECS Northeast Atlantic Shelves Province
12 Atlantic Coastal CNRY Canary Current Coastal Province
13 Atlantic Coastal GUIN Guinea Current Coastal Province
14 Atlantic Coastal GUIA Guianas Coastal Province
15 Atlantic Coastal NWCS Northwest Atlantic Shelves Province
16 Atlantic Westerlies MEDI Mediterranean Sea, Black Sea Province
17 Atlantic Trades CARB Caribbean Province
18 Atlantic Westerlies NASE North Atlantic Subtropical Gyral Province (East)
19 Atlantic Coastal CHSB Cheasapeake Bay Province
20 Atlantic Coastal BRAZ Brazil Current Coastal Province
21 Atlantic Coastal FKLD Southwest Atlantic Shelves Province
22 Atlantic Coastal BENG Benguela Current Coastal Province
30 Indian Trades MONS Indian Monsoon Gyres Province
31 Indian Trades ISSG Indian South Subtropical Gyre Province
32 Indian Coastal EAFR Eastern Africa Coastal Province
33 Indian Coastal REDS Red Sea, Arabian Gulf Province
34 Indian Coastal ARAB Northwest Arabian Sea Upwelling Province
35 Indian Coastal INDE Eastern India Coastal Province
36 Indian Coastal INDW Western India Coastal Province
37 Indian Coastal AUSW Australia-Indonesia Coastal Province
50 Pacific Polar BERS North Epicontinental Sea Province
51 Pacific Westerlies PSAE Pacific Subarctic Gyres Province (East)
52 Pacific Westerlies PSAW Pacific Subarctic Gyres Province (West)
53 Pacific Westerlies KURO Kuroshio Current Province
54 Pacific Westerlies NPPF North Pacific Polar Front Province
55 Pacific Westerlies NPSE North Pacific Subtropical Province (East)
56 Pacific Westerlies NPSW North Pacific Subtropical Province (West)
57 Pacific Westerlies OCAL Offshore California Current Province
58 Pacific Westerlies TASM Tasman Sea Province
59 Pacific Westerlies SPSG South Pacific Subtropical Gyre Province
60 Pacific Trades NPTG North Pacific Tropical Gyre Province
61 Pacific Trades PNEC North Pacific Equatorial Countercurrent Province
62 Pacific Trades PEQD Pacific Equatorial Divergence Province
63 Pacific Trades WARM Western Pacific Warm Pool Province
64 Pacific Trades ARCH Archipelagic Deep Basin Province
65 Pacific Coastal ALSK Alaska Coastal Downwelling Province
66 Pacific Coastal CCAL California Upwelling Coastal Province
67 Pacific Coastal CAMR Central American Coastal Province
68 Pacific Coastal CHIL Chile–Peru Current Coastal Province
69 Pacific Coastal CHIN China Sea Coastal Province
70 Pacific Coastal SUND Sunda-Arafura Shelves Province
71 Pacific Coastal AUSE Eastern Australian Coastal Province
72 Pacific Coastal NEWZ New Zealand Coastal Province
80 Antarctic Westerlies SSTC South Subtropical Convergence Province
81 Antarctic Westerlies SANT Subantarctic Water Ring Province
82 Antarctic Polar ANTA Antarctic Province
83 Antarctic Polar APLR Austral Polar Province
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