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Abstract: Here we explore and review some of the latest ideas and applications of Raman spectroscopy
to the volcanological sciences. Firstly, we provide a brief overview of how Raman spectral analysis
works and how spectra from silicate glasses are interpreted. We then look at specific applications
of Raman spectral analysis to the volcanological sciences based on measurements on and studies
of natural materials in the laboratory. We conclude by examining the potential for Raman spectral
analysis to be used as a field based aid to volcano monitoring via in situ studies of proximal deposits
and; perhaps; in remote sensing campaigns
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1. Introduction

One of the central goals of modern volcanology is to understand the physics and chemistry of
processes that operate during transport, storage and eruption of magmas. These endeavors include
both forensic reconstructions of pre-historic volcanic eruptions and real-time analysis of active volcanic
systems. From the microscopic to the macroscopic scale, magmatic and volcanic processes are primarily
governed by the physical and chemical properties of the melt. These properties of the melt are,
themselves, highly transient because of cooling, differentiation, assimilation, mixing, and volatile
exsolution that commonly attend transport and eruption.

Volcanic glasses are particularly informative in that they represent the quenched melt fractions of
magmas at the time of eruption. These natural glasses can be investigated in the laboratory to track the
transient evolution of volcanic systems. Lab-based tools and techniques, for example, can be used to
estimate the compositions and thermochemical properties of volcanic glasses and, thus, can inform on
pre- and syn-eruptive magma conditions. Such data can contribute to long and short-term hazard
planning at active volcanic centers.

Raman spectroscopy is a lab-based tool that is ideal for laboratory and field analysis of natural
volcanic glasses. In volcanology, Raman spectroscopic analysis of natural glasses is emerging as a
powerful and critical tool for recovering the physical and chemical properties of the melts during
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volcanic eruptions or in ancient preserved deposits. Specifically, Raman spectra collected from silicate
glasses are sensitive recorders of melt structure and inform on mechanisms of polymerization. However,
these same spectra can be used to estimate the chemical composition of the melt and to constrain
the melt physical properties, including viscosity, melt fragility, and the heat capacity near the glass
transition (Tg) as well as to monitor the “time - Temperature (t - T)” windows for processes such
as the onset of crystallization or volatile-exsolution. Mapping these t-T windows for different melt
compositions is critical for understanding and predicting lava flow behaviour and, in particular,
the stoppage of lava advances [1–4].

The relative ease and micrometer-scale spatial resolution of Raman spectroscopic analysis allow
for both in-situ and ex-situ lab and proximal field-based measurements and even, potentially, remote
analysis. These attributes suggest many diverse applications in the earth, planetary and material
sciences [5,6].

2. Raman Basics

There are a number of excellent reviews and research papers that discuss the general use of
vibrational spectroscopy on silicate glasses and melts and the reader is referred to these for a more
complete description of the physico-chemical principles behind these spectroscopic techniques as
applied to those systems [7–12]. Briefly, atoms bonded in molecular systems vibrate at frequencies
between 1012 and 1014 Hz. The interatomic forces between bonded atoms control the exact frequency
of the vibrations, in much the same way as a spring connecting two vibrating masses. Atoms,
molecules or more complex structures (e.g., rings of tetrahedra or polymers) commonly vibrate through
pure stretching and bending modes or composition of them. Figure A1 (Appendix A) represents,
schematically, a summary of the main types of vibrational modes. Pairs of atoms or molecular
groupings will have a number of fundamental vibrational frequencies.

Raman scattering relies on inelastic scattering of photons, in which incident photons loose (Stokes)
or gain (Anti-Stokes) energy in the scattering process. In Raman spectroscopy, a sample is illuminated
with monochromatic light, and given that Raman scattering is a weak effect, this requires an intense
source like a laser. Part of the incident beam is absorbed by transitions equivalent to the incident
frequency, but most of the light (107 events over 1) is transmitted or scattered by the Rayleigh effect,
i.e., without loss of energy. A small fraction of the incident light during the scattering process interacts
with vibrational modes turning on or off one of them (Raman effect). The Raman scattered light may
lose (Stokes effect) or gain (anti-Stokes effect) a small amount of energy corresponding to the energy of
the vibrational modes. The Stokes effect is the most probable and it is the one commonly analysed.
The Raman scattered light is collected and analyzed by a spectrometer and the spectrum is plotted
as intensity vs the energy shift (cm−1). The position of the Raman peaks is then proportional to the
vibrational frequencies of the analyzed material.

3. Raman Spectral Analysis of Natural Glasses

The versatile, non-destructive character of Raman spectroscopy allows for effective and rapid (from
a few seconds to few minutes) characterization of a wide variety of geologic materials, including organic
materials, minerals, silicate melts and glasses [13–16]. Raman spectroscopy can be performed on samples
with little to no preparation, and small volumes of material. Confocal Raman spectroscopy imaging can
work with a horizontal resolution down to 1–2 µm2 which allows for detailed (micro-scale) mapping of
compositional or structural variations in glassy samples [10,17,18]. Relative to infrared (IR) spectroscopy,
Raman spectroscopy allows for a better selection of peaks that are narrower thereby allowing
discrimination of different species within a single spectrum (i.e., less or no overlapping bands). Raman
can also detect IR-inactive vibrational modes as well as FTIR can detect Raman-inactive vibrations.
Compared with electron microscopy (EM) and X-ray diffraction (XRD), sample preparation and
measuring environment do not need particular care and do not need vacuum, heating/cooling/relative
humidity controlled stages. A Raman workbench is much more compact than those of XRD or EM
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techniques. Compared to EM, Raman allows to measure multi-layer materials and compared to XRD,
Raman permits the measurement of both crystalline and amorphous materials.

For anhydrous glasses and melts, Raman spectra are correlated to their structural properties,
themselves a reflection of chemical composition (Figure 1). Differences in the Raman spectra collected
in the range of 180–1300 cm−1 on silicate glasses depend on both structural and compositional
aspects of the glasses. These differences reflect the variable contribution of network forming
cations and network modifying cations, which eventually determine the arrangement of bridging
oxygens (BO) and non-bridging oxygens (NBO) of the silicate network. Above the so-called boson
region (10–250 cm−1) [11], iron-bearing alumino-silicate glasses typically exhibit two main broad and
asymmetric bands (referred to as Low-Wavenumber (LW) and High-Wavenumber (HW), respectively),
the first between 200 and 700 cm−1, centered at about 490 cm−1, and the second between 800 and
1300 cm−1 with center at about 960 cm−1. The LW band is correlated mainly to bending vibrations of
Si-O-Si bonds, and in consequence, to the tetrahedral chains, while the HW bands depends on the
stretching vibrations of Si-O units. A third, weaker band is observed, at intermediate wavenumbers
(650–850 cm−1; here following reported as medium wavenumber [MW]), with a center, that, as a
function of composition varies from ca 680 to about 810 cm−1 (Figure 1 [2], where the lowest peak
wavenumber values are associated to the most depolymerized melts. Several others secondary peaks
are observed as a function of the investigated glass compositions and the presence of mineral phases.
A short summary of the main characteristics of the LW, MW and HW vibrational bands, their position
and the relationships with the main kinds of vibration modes associated to them for silicate melts is
presented in the Appendix A.2 (Table A1).
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Figure 1. Raman spectra of four natural multicomponent glasses representative of volcanic rock
compositions in the Earth: a basalt from Etna (ETN), a andesite from Mounserrat (MST), a dacite from
Unzen (UNZ) and a rhyolite from Lipari Island (LIP). (A) Raw spectra with their main characteristic
bands (low wavenumber, LW; medium wavenumber, MW and high wavenumber, HW). Dashed lines
are cubic baselines, as commonly used in spectra processing. (B) Baselined and smoothed spectra
highlighting how the LW, MW and HW bands change in shape and peak position with evolving glass
composition from basalt to rhyolite. Figure modified from [2].

Importantly to the Earth Sciences, Raman spectroscopic analysis can also be used to estimate the
species and abundances of volatile components dissolved and preserved in natural and experimental
glasses or in exsolved fluids preserved as fluid inclusions within glasses and crystals. Raman detection
limits for volatile components are in the order of a few ppm allowing for very low volatile contents to be
measured even in in nominally anhydrous minerals. For volatile bearing glasses and melts, stretching
(translational) vibrations are observed at higher frequencies such as 2331 for N2 [19]; 4125 for H2 [20],
990 cm−1 for SO4

2− [21,22]), 1062–1092 cm−1 for CO2 and CO3
2− [23,24]). Stretching vibrations of water
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in both the molecular and hydroxyl form can be observed between 3000 and 4000 cm−1 approximately
centered at 3550 cm−1 for hydrous glasses [8,14,16,25–29].

4. Volcanological Applications

Over the last decade, Raman spectroscopy has had a rapidly expanding number of applications
in the Earth Sciences [30,31]. The ability of Raman spectroscopy to differentiate phases (e.g., glass
or liquid versus crystalline material), to estimate compositions of silicate glasses and to characterize
structural properties of glasses has tremendous import for the volcanological sciences.

Here, we introduce three state-of-the-art applications of Raman spectroscopic analysis to the
volcanological sciences. These include: (a) estimation of melt composition, including the Fe-redox state,
directly from Raman spectra of glasses, (b) estimation of volatile contents in experimental and natural
(e.g., volcanic products; glass inclusions) silicate glasses, and (c) prediction of chemical proxies of melt
structure (e.g., Non-Bridging Oxygens over Tetrahedra, NBO/T; and Structural Modifiers parameter,
SM) from Raman spectra as a means to connect to melt transport properties (e.g., viscosity). Raman
spectroscopy is also an excellent tool for detection of crystalline phases at the nano-scale, which are
invisible with standard techniques (EPMA, SEM, XRD). Below we explain each of these applications
and explore their implications and consequences for volcanological research.

4.1. Estimating Composition and Redox State of Silicate Glasses and Melts

Raman spectra of glasses show few characteristic large bands whose shape depends on several
contributors. Separating the effects of each factor can be a complicated process requiring the use of
different models (e.g., baseline corrections) and techniques. This is in sharp contrast to crystalline
materials, whose spectra show many distinctive peaks making for a relatively straight interpretation.
Raman spectra for glasses, on the other hand, are generally devoid of well-defined and well-separated
spectral bands, except in the case of those glass compositions with dissolved volatiles (e.g., CO2,
SO2, H2O).

Methods for estimating qualitatively or quantitatively the composition of silicate glasses and melt
commonly rely on calibration strategies based on: (a) the estimation of the intensity of the heights of
peaks and bands; (b) the integrated area of specific band envelopes or (c) the position of peaks bands
or their normalized counterparts [2,14,15,32–34]. The various models adopt different protocols for
spectral correction (e.g., [35]), baseline subtraction, or analysis of vibrational features. These models
provide a rapid and inexpensive means of reliably estimating the elemental or oxide composition of
natural glasses in the laboratory, in the field, and, potentially on other terrestrial planets and moons.

Previous authors [16,29,33,36–38], investigating the effect of iron on the vibrational response of
glasses, demonstrated that both iron content and its redox state strongly influence the Raman spectra.
These authors showed that the ratio Fe3+/Fetot could be calculated by using different treatments of
the spectra involving baseline fitting and/or deconvolution in Gaussian components associated to
Qn-species (Qn distinguishes silicon atoms according to the number n of coordinated bridging oxygens
(BO), i.e., Q4 stands for silicon coordinated by four BO, Q3 corresponds to three BO and one nonbridging
oxygen (NBO), etc.) [9].

Di Muro and coauthors [33] demonstrated that several calibrations can be obtained for the
determination of the Fe3+/Fetot ratio in glasses by exploiting the sensitivity of the HW envelope
(at ca 1000 cm−1) to iron redox state. The spectral analysis of Di Muro and coauthors [33] was
performed on glasses of peralkaline rhyolite (i.e., SiO2-rich, iron-rich rhyolite) and basaltic (SiO2-poor,
iron-rich) compositions. Their analyses were performed by measuring the ratios of the band heights;
the integrated areas of specific lines as well as the position of HW bands (e.g., band IV for rhyolites
and band III for basalts, Figure A2) obtained on fully characterized reference glasses. They observed
that the Fe3+/Fetot ratio is highly dependent on composition and composition has shown to control the
direction of redox change [39]. Peralkaline glasses are excellent systems to accurately characterize the
redox state of iron, as consequence of the high sensitivity of Raman spectra to network former cations
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(Si, Al and Fe3+). The sensitivity decreases significantly for basaltic compositions, such as Stromboli
and Etna trachybasalts but continued work may overcome this challenge.

More recently, Di Genova and coauthors [39,40] carried out similar investigations on peralkaline
rhyolites from Pantelleria Island (i.e., Pantellerites) and synthetic basaltic glasses having compositions
resembling some Martian rocks. They provided a refined quantitative method for estimating Fe3+/Fetot

ratios based on the main peaks composing the HW band (at 970–1040 cm−1 for pantellerites;
950–970 cm−1 for Martian basalts). The method uses an empirical formula [40] to parametrize
the spectra as function of a Raman parameter (Rp). A Raman spectrum of a glass of any unknown
composition can be approximated by combining spectra from two end-members, one for the most
oxidized (IOX) material and the other, the most reduced (IRED) sample, according to the equation:

IN = IOX ∗Rp + IRED ∗
(
1−Rp

)
(1)

Their model allows calculation of Fe3+/Fetot ratios from Raman spectra based on the following
equation:

Fe3+

Fetot
=

√
a + cRp

1 + bRp
(2)

where a, b and c are fit parameters that are particular to each family of glass compositions (e.g., basalt,
rhyolite) [39].

The same method proposed by [39] can be used to approximate, on a weight percent basis (wt%),
the composition (y) of each oxide concentration in wt. %. After calculation of Rp for a given spectrum
by combination of two known endmembers (i.e., using an ideal mixing equation), oxide concentrations
can be calculated through a simple 2nd or 4th order polynomial equations such as:

y = aR2
p + bRp + c (3)

y = aR4
p + bR3

p + cR2
p + dRp + e (4)

where a, b and c are adjustable parameters.
The broad shape of the main bands of the Raman spectra of glasses presents a challenge for using

Raman spectroscopy to estimate the composition of multicomponent glasses. These broad bands are
more or less sensitive to chemical variability and, thus, it is a complicated process to attribute individual
vibrational modes to specific cations or molecules within the silicate glass/melt network. At present,
there are no models for predicting the glass composition of natural multi-components silicates from
the corresponding Raman spectra more accurately than those proposed by Di Genova et al. [34,35].
Furthermore, their approach was optimized to predict compositions falling between two end-members
which, themselves were aligned along a linear mixing trend. Recent work by González-García and
co-authors [41], however, represents a new approach to constructing a general model for retrieval of
bulk chemical composition of glasses from their Raman spectra.

4.2. Predicting Dissolved Volatile Contents in Silicate Glasses and Melts

Volatile contents in natural melts and glasses can reach levels of several wt.%. Establishing the
concentration of the main dissolved and exsolved volatile phases in a magmatic system and in the
erupted volcanic products is of critical importance to define the pre-eruptive conditions and the eruption
dynamics and validate existing models used to simulate eruptive events. Raman, commonly used in
association with FTIR (Fourier Transform Infrared), is an ideal tool for measuring residual water contents
in glassy volcanic materials, including crystal-hosted melt and fluid inclusions. The Raman spectra of
hydrous glasses contain two spectral regions of interest between 200 and 1700 cm−1 corresponding
to Si-O stretching vibration and H-O-H bending vibrations. The peak between 2800 and 3800 cm−1,
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centered near 3500–3650 cm−1, correspond to OH vibrations [42] (Table A1). The band 2800–3800 cm−1

is complex to interpret due to the individual contribution of different H2O vibrational modes.
Previous authors have used Raman to quantify the H2O in silicate glasses of wide compositional

ranges [13–16,26–29,43–45], and CO2 [24,46,47]. Two main strategies are commonly employed to
retrieve the H2O contents of glasses: (1) the internal normalization of the H2OT band (i.e., the H2O-OH
stretching band) whereby the integrated intensity of the 2800–3800 cm−1 region is ratioed with the 490
cm−1 (the T-O-T stretching band, [13,25,42]) or the 850 and 1250 cm−1 (T-O stretching band, [26,27,45])
regions in spectra of silicate glasses [14,15] and (2) the external calibration procedure which directly
consider the water bands and compare with well characterized glass standards [13,43]. In this second
case H2O concentrations are calculated on the basis that the integral of the H2O-OH stretching band
between 2800 and 3800 cm−1 which shows a linear dependence on the total dissolved water and is
independent on glass composition [11,44].

The recent models of Mercier et al. [14,15], Le Losq et al. [44]) and Schiavi et al. [29] are amongst
the most promising methods for predicting the H2O content dissolved in glasses. The model of Di
Genova et al. [16] is adequate but is based only on a small dataset of hydrous glass compositions.
Nonetheless, defining which model is more promising is complex as, so far, there is still a lack of a
standardization in the procedures which would allow to compare the results obtained by different
studies. In most cases, in fact, comparison with other studies may not be possible, however, as the
protocols to estimate H2O content are substantially different and commonly the data are not easily
available. Given the considerable amount of new data so far available, we believe that standardization
procedures could be easily attainable by the construction of database sharing facilities together with
the establishment of the best specific protocols and the comparison of the results obtained. In addition,
samples produced by different laboratories should be shared in order to optimize interlaboratory
calibration as done by Giordano et al. [2] and create networks of laboratories devoted to face and solve
specific scientific issues.

4.3. Toward a Structural Viscosity Model for Silicate Melts

More recently, Le Losq and Neuville [48], Giordano and Russell [34]) and Giordano et al. [2]
showed that the viscosity of simple and multicomponent anhydrous silicate melts over a temperature
interval of ~700 to 1600 ◦C, can be predicted from the Raman spectra obtained from the corresponding
glasses (i.e., fast quenched melts) in the range between 100 and 1500 cm−1. These methods proved
to be very promising for in situ rheological investigations and may find substantial application in
planetary sciences studies [34,48]. In particular, Le Losq and Neuville [48] developed a model to
predict viscosity of the simple SiO2-Na2O-K2O system through the comparison of viscosity data and
the Qn-species abundance retrieved from analysis of Raman spectra of the glasses. Giordano and
Russell [34] and Giordano et al. [2], following the intuition of Mercier et al. [14,15]), presented a first
order model predicting the viscosity of multicomponent natural melts on the basis of the dependence
of the characteristic viscosity descriptive parameters (BVFT, CVFT) on the Raman spectral data collected
from the corresponding glasses (Figure 2).

The authors defined a Raman ratio (R) as the ratio between the low frequency band (LW) and the
high frequency band (HW) which they normalized (Rn) to the Raman ratio obtained on a reference
glass, one amongst those with high R values. They showed that strong relationships exist between
constitutive parameters used to describe the viscosity and the normalized Raman ratios which allows
the viscosity of anhydrous multicomponent natural melts to be predicted with a great accuracy.
Although the model requires expansion to use of the structural information of volatile-bearing melts,
it allows accurate description of the viscosity of anhydrous melts by the employment of a simple
equation with 6 adjustable parameters and the measured R (details in [2,34]). Also, the SM and NBO/T
parameters, calculated from compositions, are shown to be strongly correlated with R.
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and VFT constitutive parameters (BVFT, CVFT) as a function of the Raman ratio (R) (b,c) (R514.5 in the
figure). Model VFT parameters BVFT (R) and CVFT (R) as defined by [34] and relationships between
pseudo-structural parameters According to [34]: BVFT (R) = b1Rb2 and CVFT (R) = c1Rc2+c3 where b1,
b2, c1, c2, c3 are adjustable parameters.

4.4. Raman in the Field: Proximal and Remote Sensing Campaigns

At present most laboratories can acquire spectra from a wide interval of locations within its close
environment, but the possibility to perform Raman spectroscopy measurements at certain distances
will enable to collect data of great relevance in the field and for planetary explorations. For terrestrial
applications stand-off Raman instruments are commonly used in field geology and field mineralogy
and recently several efforts have been adopted to adapt and miniaturize the instrumentation for the
more ambitious task of planetary exploration [49–55].

The use of an optimized optical system made it possible to acquire Raman spectra over larger
target distances. More than 20 years ago, Angel et al. [8] were able to identify organic and inorganic
compounds on targets up to 20 m away. The coupling of the Raman system with a telescope in
Cassegrain configuration is at present the most sensible configuration to reach big distances, up to
hundreds of meters [56]. The coupling can be made by means of fiber optics or directly. In the case of
direct coupling, the excitation laser can be focused using an external path (oblique configuration) or in
a coaxial configuration. A coaxial configuration is preferred as it provides greater stability, but with a
cost of lesser brightness.

The main improvement has been the use of a pulsed laser as the excitation source, coupled to a
time-gated charge coupled device (CCD) or, better, intensified CCD (iCCD), as detector [56]. The time
resolution allows to acquire the signals only during the short time where the excitation is concentrated,
reducing the interference of environmental light (allowing measurements in full daylight). A second,
very important, advantage is the removal of the fluorescence due its slower answer respect to the
Raman scattering. The combination of the high power peaks during the laser pulses, the enhanced
signal to noise ratio due to time gating, and the use of telescopic systems allowed to obtain spectra
at very large distances: the group operating at the University of Hawai’i realized different compact
and large systems operating between 1.5 m and 430 m ([57] and references therein) including a
scanning system able to realize Raman maps with 2 mm of space resolution at a distance of 100 m [58];
Wu et al. [59] realized a mobile standoff UV Raman system able to obtain measurements up to 500 m
and Johansson et al. [60] tested their standoff visible Raman in rainy conditions obtaining spectra from
50 m of distance.

5. The Future for Field-Based Raman Spectroscopy in Volcanological Science

There are two main frontiers and challenges to expanding the use of Raman spectroscopy in the
Earth Sciences. These are to collect and analyze data from complex dynamic systems in real time and
to collect data remotely. Volcanic materials are complex to analyze in a real-time sense because they are
highly transient. The volcanic products evolve during cooling, degassing and flow (i.e., deformation)
as they control the onset, sequence, and amount of crystallization. It is here that Raman spectroscopy
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will require the development of new protocols capable of accounting for the real-time variation of the
mineralogical assemblage. This will require extensive new information and experiments to provide
a template for interpreting Raman spectroscopy in terms of mineral phases and glasses pertinent to
magmatic and volcanic materials. Currently such data are compiled and being continuously updated
in at least a few well-known open access downloadable databases including these web-based examples:

• The RRUFF Project website (http://rruff.info/about/about_general.php).
• The Handbook of Raman Spectra for geology (http://www.geologie-lyon.fr/Raman/index.php).

However, these future field-based applications lead to the second great challenge, namely,
the ability to collect data remotely. Clearly, Collecting Raman spectra at distances larger than the typical
working distance of a microscope objective is in principle relatively simple. The only fundamental
requirement is to focus the laser beam at the desired distance and to collect the light from the same
point with a suitable optical system. In order to collect enough Raman signal, the most important
parameter is the solid angle at which the focused spot is seen by the optical entrance of our system.
That means that a large lens or mirror should be used as objective to maximize the signal at large
distances. For example, it would be possible to setup a crude but functional instrument for collecting
Raman spectra at a distance of few meters in the field using a handled Raman spectrometer and a
focussing lens. The most important parameter is the width of the lens, because it determines the solid
angle of collection of the scattered light

Here, we performed our measurements using an inexpensive EnSpectr RaPort portable Raman,
equipped with a 532 nm green laser coupled with a lens with 6 cm diameter (and 25 cm focal distance)
(see Figure 3). Using that lens it was possible to collect Raman spectra from a set of target minerals,
including quarts, sulfur, aragonite and a piece of shell (pink coloured) at a distance of 7 m. The pink
shell is included because the strong resonant Raman signal of carotenoids is one of the motivations
of the use of Raman instruments in the search for life on Mars. Figure 3b shows the spectra of some
minerals obtained at different distances in full environmental light: in front of a sunny windows or in
presence of fluorescent bulbs using the standard background removal procedure of the instrument.
The analyzed spot is in the order of a millimeter of diameter; the spectra of a sub-millimetric crystal of
anatase on gneiss matrix is included in Figure 3b.

A functional Scanning Standoff Raman Spectrometers (SSTRS) system has already been developed
for mapping the spatial distribution of some minerals (e.g., feldspar, quartz, gypsum) and glasses at
long distances [6]. The pan-tilt scanner and laser beam pointing onto the distant samples are computer
controlled, and spectra are obtained in an x-y grid on the area of interest. Then, spectra are gathered at
each point in the grid and processed to determine the distribution of minerals from their respective
Raman fingerprints. The new SSTRS system has been successfully tested, offering the capability to
produce spatial distribution maps of mineral species from their remote Raman fingerprints. Remote
Raman spectral analysis will contribute greatly to planetary exploration programs [55]. Remote data
collection would have immediate applications to volcano monitoring activities. As smaller, more
robust Raman spectrometers that collect data from greater distances are developed further, their use in
volcanology will intensify. Miniaturized Raman spectrometers used in combination with drones are a
means to collect new types of real-time data on volcanoes before, during and after eruptions without
putting scientists at risk. For example, the volcanological sciences could benefit immensely by using
Raman to monitor lava flows wherein Raman spectra can be analysed for temperature, melt composition,
and mineralogy. Raman spectra could be collected with time at the vent to track the evolution of the
erupting magma or could be collected from lava as it moves downstream from the vent to its distal
edge marking the rheological death of the lava [43,61]. In a similar manner, Raman-based monitoring
could be applied to the products of explosive eruptions (i.e., tephra). Technically, the employment in
the field under sun light exposure as well as the exposure to toxic gases and the high temperature
of lava flows, for instance, would also require to consider the temperature-frequency dependence of
the relative Raman scattering efficiencies due to the temperature-dependent population density of

http://rruff.info/about/about_general.php
http://www.geologie-lyon.fr/Raman/index.php
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the vibrational energy levels [6,49]. The black-body radiation generated by high temperature bodies
provide an increased noise-signal background which have to be reduced. Such complication can be
reduced through the employment of high energy lasers and the employment of fast-gated pulsed
spectroscopy and CCD (Charge-Coupled Device) detection [49,62].

Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 17 

 

• The Handbook of Raman Spectra for geology (http://www.geologie-lyon.fr/Raman/index.php). 

However, these future field-based applications lead to the second great challenge, namely, the 
ability to collect data remotely. Clearly, Collecting Raman spectra at distances larger than the typical 
working distance of a microscope objective is in principle relatively simple. The only fundamental 
requirement is to focus the laser beam at the desired distance and to collect the light from the same 
point with a suitable optical system. In order to collect enough Raman signal, the most important 
parameter is the solid angle at which the focused spot is seen by the optical entrance of our system. 
That means that a large lens or mirror should be used as objective to maximize the signal at large 
distances. For example, it would be possible to setup a crude but functional instrument for collecting 
Raman spectra at a distance of few meters in the field using a handled Raman spectrometer and a 
focussing lens. The most important parameter is the width of the lens, because it determines the solid 
angle of collection of the scattered light 

 

 
(a) 

 
(c) 

 
(b) 

Figure 3. Raman spectra taken at different distances (from 1.5 to 7 meters) using an handheld Raman 
spectrometer and a 25 cm focal lens, in a dark room (a) or in presence of external illumination (b). The 
setup during measurements at 7 meters is shown in (c) 

Here, we performed our measurements using an inexpensive EnSpectr RaPort portable Raman, 
equipped with a 532 nm green laser coupled with a lens with 6 cm diameter (and 25 cm focal distance) 
(see Figure 3). Using that lens it was possible to collect Raman spectra from a set of target minerals, 
including quarts, sulfur, aragonite and a piece of shell (pink coloured) at a distance of 7 m. The pink 
shell is included because the strong resonant Raman signal of carotenoids is one of the motivations 
of the use of Raman instruments in the search for life on Mars. Figure 3b shows the spectra of some 
minerals obtained at different distances in full environmental light: in front of a sunny windows or 
in presence of fluorescent bulbs using the standard background removal procedure of the instrument. 
The analyzed spot is in the order of a millimeter of diameter; the spectra of a sub-millimetric crystal 
of anatase on gneiss matrix is included in Figure 3b. 

Figure 3. Raman spectra taken at different distances (from 1.5 to 7 m) using an handheld Raman
spectrometer and a 25 cm focal lens, in a dark room (a) or in presence of external illumination (b).
The setup during measurements at 7 m is shown in (c)

Author Contributions: Conceptualization of the work has been developed by D.G. and later implemented by
all coauthors (D.G., J.K.R., D.B., D.G.-G., D.B.D. and C.D.N.). Bibliographic research and writing of the original
draft preparation: D.G.; writing—review and editing, J.K.R., D.B. and D.G.-G. D.B. developed the instrumental
apparatus and all the measurements that are presented in Figure 3. All authors have read and agreed to the
published version of the manuscript.

Funding: Local research funds of the University of Turin.

Acknowledgments: The micro-Raman equipment at UniTO belongs the Interdepartmental Center “G. Scansetti”
for Studies on Asbestos and Other Toxic Particulates and was acquired with support from the Compagnia
di San Paolo, Torino. D. Giordano is grateful to the Center for Advanced Studies (CAS) at the
Ludwig-Maximilians-Universität (LMU) München (https://www.en.cas.uni-muenchen.de/index.html) for the
support of this research through the LMU CAS Research Group “Magma to tephra: ash in the earth system”
(DBD).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1 Main Vibrational Modes

The interatomic forces between bonded atoms control the exact frequency of the vibrations,
in much the same way as a spring connecting two vibrating masses. Atoms, molecules or more
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complex structures (e.g., rings of tetrahedral or polymers) commonly vibrate through pure stretching
(translational) and bending (rotational) modes or composition of them (roto-translational) (Figure A1).

For silicate melts, above the LW region the vibrations are mostly of stretching type. Bending
modes are instead the main feature of LW region. More details are provided in the following paragraph.
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Figure A1. Main vibrational modes of atoms in molecules or in complex structures (e.g., rings of
tetrahedra or polymers - skeletal type of vibrations), shown here for polyethylene. Figure modified
after [63].

Appendix A.2 LW, MW and HW Bands in Silicate Melts and Glasses

According to previous authors [2,14,15,64–67], the LW domain are dominated by a broad band
resulting from bending vibrations of T–O–T units and, to some extent, deformation vibrations of T–O–T
bridges (Figure 1). The LW envelope is usually interpreted as the combination of delocalized vibrational
modes mainly related to symmetric stretching vibrations of BO in TO4 rings; rocking motion in fully
polymerized units; vibration of T against its tetrahedral frame accompanied by slight displacement of
the oxygen; T-O-T bending of NBO bonds and the so-called “defect bands”, likely related to breathing
modes of 3-4-membered rings of TO4 tetrahedra. In this region, the characteristics generally allocated to
vibrations of 3- to 6-membered rings of tetrahedra in the aluminosilicate network [68,69]. In particular,
a strong band near 500 cm−1 (D1) and sometimes a shoulder near 600 cm−1 (D2) are present in this
domain, and can be respectively assigned to breathing vibrations of 4- and 3-membered rings of
tetrahedra; while the long tail at the LW region develops from stretching (translational movements)
of Si–O units in 5-, 6- or higher-membered rings [68,69] forming the aluminosilicate framework of
the glass [14,15,70]. The presence of alkalis or alkaline Earths these bands develop a peak centered
at 580 cm−1 and a shoulder at 600 cm−1. The peak centered at 580 cm−1 has been assigned to the
rocking motion in Si-O0 units in fully polymerized SiO2 (Q4) units, while the maximum at 600 cm−1

corresponds to Si-O-Si bending motions in depolymerized units (e.g., [12] and references therein).
In general, the shape and positions of bands will evolve with varying glass composition and structure.

Above the LW region the vibrations are mostly of stretching type. The weak band in the MW
domain (600–850 cm−1) (e.g., [2,33]) is commonly ascribed to Si–O stretching (translational) mode [71]
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involving oxygen motions in the Si-O-Si plane [64,72] with intensity correlated to silica content [73] or
to the motion of the Si atom in its oxygen cage [74]. The main characteristic in the envelope centred
at ~800 cm−1 arises from two bands resulting from deformation oscillations of T-O-T bonds within
precise domains, with a structure resembling crystalline SiO2 [67,75]. This band is more prominent in
more polymerized melts and glasses (i.e., rhyolitic).

Bands in the HW region of the spectra (~800–1300 cm−1) contains information related to the Si-O,
Al3+-O and Fe3+-O stretching (translations) in the glass structure. These are caused by oscillations of
terminal covalently bonded units in TO4 tetrahedra with a variable number of bridging oxygens (BO),
commonly referred to as Qn-units or Qn-species*. Here Q represents a TO4 tetrahedron and n is the
number of bridging oxygens (BO), varying between 0 and 4. The HW envelope is the most sensitive
to changes of redox conditions and is commonly deconvoluted in order to quantify the effect of iron
oxidation state [16,33]. The investigation of vibration in the HW region has also the advantage of
avoiding the contributions potentially provided by the presence of nanolites of oxide crystals (e.g., 16,
77) and for the same reason is frequently used for studies devoted to characterize the effect of oxidation
state of iron in basaltic to pantelleritic compositions [14,16,33,38,76,77]. Table A1 reports a summary
of the main kind of vibration frequencies for some of the most well-known alumino-silicate and
iron-bearing alumino-silicate melts.

Table A1. Summary of characteristic bands and their interpretation in Raman spectra of silicate glasses.

Wavenumber (cm−1) Features References

LW Region (200–700 cm−1)

400–650 Bending vibration of BO bonds of SiO2 [9]
440–495 Oxygen breathing in SiO4 units in Q4 [9]
550–590 Si-O-Si bending in Q3 [14]
565–595 Si-O-Si bending in Q2 [9]

605 Oxygen breathing in SiO4 in Q4 [9]
450, 500, 600 Motions of BO in T-O-T linkages

580 Si-O0 rocking motions in fully polymerized SiO2 (Q4) units
600 Si-O-Si bending vibration in depolymerized structural units

HW region (650–850 cm−1)

700 Si-O-Si bending in Q0/Q1 [9]
779 Si-O-Si network, AlO4 units with three BOs and 1 NBO
790 Si-O-Si symmetric stretching
807 Si-O-Si bending

810–820 Si-O stretching involving oxygen motions in Si-O-Si plane or
the motion of of the Si

850 Antisymmetric stretch Si-O- (NBO) in Q0/Q1 [9]
HW region

850–1300 cm−1

890
900 Antisymmetric Si-O- stretch (NBO) in Q1 [9]
935

950–960
Antisymmetric stretching vibration of Si-O tetrahedral with

two corners shared with aluminium-oxygen or
calcium-oxygen polyhedra (Q2 units)

965–980 Fe3+ band related to the Fe3+ abundance likely related to the
stretching of F3+ possibly in four-fold coordination

[36,37]

980
1035
1050 Antisymmetric Si-O- stretch (NBO) in Q2

1060−1200 (1060, 1120,
1150, 1170, 1190−1200)

Antisymmetric Si-O stretching vibrations of SiO4 tetrahedra
(Q4 units) [9]
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Table A1. Cont.

Wavenumber (cm−1) Features References

1070 C-O symmetric stretch in CO3 groups [9]
1083 SiO4 asymmetric stretching vibration [9]
1100 Antisymmetric Si-O- (NBO) in Q3 [9]

Volatile bearing compositions

900−970 Si-OH stretching mode [7,9]
1280 Molecular CO2 [9]

1600−1650 H-O-H bending of molecular H2O [9]

2350 Si-OH groups involved in intratetrahedral hydrogen bonding
across an edge of the SiO4 tetrahedron

2800−4000 O-H+H2O stretch (wide band) [9]

According to previous investigations seven to eight bands were used to fit the HW
domain [10,33,78] (Figure A2) due to the entry of several types of T cations in a given Qn unit. [33],
for instance, have subdivided the band in Band I (770–800 cm−1); II (~890 cm−1); III (~935 cm−1);
IV (~980 cm−1); V (~1035 cm−1); VI (~1090 cm−1); VII (1150 cm−1), VIII (1000 cm−1).
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Figure A2. Curve-fitted HF envelope of Raman spectra (Long-corrected), figure from [33]. Band IV
(dark colored curve) results from stretching of coupled Si–Fe tetrahedra with iron in alkali-balanced Q3

units. The abundance of Qn species is controlled mainly by the following disproportionation reactions
(A1)–(A3):

2Qn = Qn+1+Qn−1 (n = 3, 2, 1) (A1)

2Q0 = 2Q1 + O2− (A2)

where O2− is a free oxygen ion not included in the tetrahedron. The equilibrium constants of reaction
(1) are:

Kn = [Qn+1][Qn−1]/[Qn]2 (A3)

where Qn is the abundance of a particular unit.
According to the same authors bands II –VII result from to vibrations of Qn unit with the number

of bridging oxygen (n) increasing from 0 to 4 ([33] for more details). These authors have shown that
both peak intensities and areas and their ratios for the HW bands are significantly affected, other
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than by composition, also by both the Fe3+/Fetot ratio [14,16,33] and by the presence of water [14,33]
(Figure 2).

For volatile bearing glasses and melts, stretching (translational) vibrations are observed at higher
frequencies such as 2331 for N2 [19]; 4125 for H2 [20], SO4

2− (e.g., [21]), CO2 and CO3
2− [23,24].

Stretching vibrations of water in both the molecular and hydroxyl form can be observed between 3000
and 4000 cm−1 approximately centered at 3550 cm−1 for hydrous glasses (e.g., [13–16,25–29]).
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