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Supplementary Materials: Extending Landsat 8:
Retrieval of an orange contra-band for inland water
quality applications

Alexandre Castagna1* , Stefan Simis2 , Heidi Dierssen3 , Quinten Vanhellemont4 , Koen
Sabbe1 and Wim Vyverman1

S1. Analytical composite contra-band retrieval

The analytical contra-band possible with OLI band set is a composite band including signals from the
turquoise and orange spectral regions. While it is not suitable for applications due to the mixing of the
spectral information from those two regions, it serves as a demonstration of the performance of the
retrieval when an analytical solution can be used. As noted in the Appendix A of the companion study,
analytical retrievals should be performed in radiance space and then converted to reflectance. To apply
that approach to the OWT, the OWT cluster average normalized reflectances were first converted
to equivalent radiance by using the average simulated clear sky Ed(λ, 0+), and after retrieval of the
composite contra-band, converted back to reflectance space. Uncertainty as described by the Mean
Absolute Percentage Error (MAPE) is 0.4 % for the in situ data. In the presence of expected sensor noise,
the MAPE increases to 3.88 %, comparable with the mission goal of 3 % maximum error in reflectance.
AC error propagate linearly to have about the same magnitude as the red MS band error (slope of
0.994) with a secondary effect of the spectral shape (green to red AC error difference). When AC error
is higher in the green than in the red band, AC error in the composite contra-band will also be higher
than in the red band, by ≈ 35 % of the green to red AC error difference. Those retrieval results of the
composite band are shown in Fig. S1.

S2. Application of the current OLI orange contra-band algorithm to clear waters

As presented in the discussion section of the main study, only turbid waters were included in the
calibration of the algorithm to improve performance for those optical conditions where information
of cyanobacteria presence is of particular interest. Addition of clear water spectra in the calibration
dataset only reduced performance of the algorithm for turbid waters, while not providing improved
performance for clear waters without the addition of the blue MS band (described in the next section).
Here we further evaluate the performance of the current algorithm when applied to blue-enhanced
waters with a variety of conditions from oligotrophic open ocean to optically complex estuaries and
fjords in a total of 81 Rrs spectra. Those spectra were measured in the Southern Ocean (Kerguelen
Islands; October 2016), Santa Barbara Channel (U.S.; October 2015), Monterey Bay and estuarine waters
of Elkhorn Slough (U.S.; July 2012) and fjord waters of Svalbard (Norway; May 2013). Southern Ocean
data was collected with a bow-mounted spectrometer system (Satlantic, Halifax, Canada) following
[1]. Field radiometric data for the other regions was collected with an handheld spectrometer (ASD)
with the plaque method for estimation of irradiance [2]. Skyglint was removed with the approach of
[3]. The evaluation of algorithm performance shows a general overestimation of the R orange

rs (bias of
138 %) across these diverse water types, with non-linearity in the lower signal range (Fig. S2). Despite
the poor performance, the coefficient of determination is high since statistics are calculated on a linear
scale and most overestimations occur over relatively small reflectance values. The evaluation also
shows appropriate performance of the proposed algorithm flag (R blue

rs /R red
rs > 2 and R red

rs < 0.002
sr−1) to exclude spectra for which large errors are expected (red symbols in Fig. S2B). The spectra for
Elkhorn Slough included both turbid waters and optically shallow water over seagrass beds [4], both
passing the algorithm flag. For those spectra, the R orange

rs was retrieved with a MAPE of 10.5 % (N =
11, data range from 0.0022 to 0.011 sr−1; black symbols in Fig. S2B). Operational methods for filtering
shallow water conditions from multispectral data are not yet available.
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Figure S1. Performance of retrieval of the analytical composite band. (A) The retrieval evaluated with
the in situ data. (B) Effect of spectrally independent random sensor noise. (C) Spectrally structured AC
error propagation compared against red MS band AC error. (D) Retrieval for the OWT cluster averages.

Figure S2. Performance of retrieval of the current OLI orange contra-band with clear waters. (A) Clear
water spectra sampled in marine and transitional waters. (B) OLI R orange

rs retrieval for the clear water
spectra. In (B), spectra that would not be processed due to algorithm flag (R blue

rs /R red
rs > 2 and R red

rs
< 0.002 sr−1) is presented in red. Axis in (B) are presented in log10 spacing.
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S3. Addition of the blue MS band in the contra-band retrieval

The other MS bands can be added to the retrieval algorithm, either explicitly or implicitly. The
justification to add more bands is the possibility to accommodate blue-enhanced water spectral shapes
together with those of turbid waters, by allowing one or two additional parameters tied to the OLI
blue bands. Here the retrievals with the addition of the blue MS band (483 nm) are presented (Fig. S3).
Since the blue-enhanced spectra represent a fraction of the total spectra, the fitting allowed for equal
weights in both datasets. The MAPE of the retrievals with in situ data was 3.87 %, similar to the original
dataset. While this suggest no gain in performance compared to the turbid dataset, the extended
dataset includes very low values of R orange

rs that could negatively impact the performance statistics.
Indeed the observed an performance is a significant improvement to including blue-enhanced spectra
but not the blue MS band (not shown). This gain in performance, however, is overcompensated for in
the presence of noise and AC error. In the presence of noise, uncertainty increases to 14.78 % and AC
error propagation from the blue band result in increased variability with the AC errors in the adjacent
green and red bands, potentially impacting baseline (e.g., OLH) or ratio algorithms for phycocyanin.
As can be seen in Fig. S3D, the only OWT cluster not retrieved is the very clear C-2, likely because
spectra representative of this cluster were not present in the calibration dataset. To make clear the
impact of AC error propagation into the orange contra-band when the blue band is included, the lake
Erie retrieval is also presented (Fig. S4). Note that the underestimation of the orange signal due to
overestimation of turquoise signal from higher undercompensation of atmospheric effects on the blue
band when compared with those for the green and red bands result in an increased magnitude of
the OLH (and the color scale is changed accordingly). This underestimation of the orange reflectance
further intensifies the PC signal in the regions where it is present. However, the Detroit River plume
has already enhanced blue reflectance, with the additional AC error propagation, the resulting orange
reflectance distance to the green-red baseline is even larger than where PC is present.

S4. OLI to OLCI R orange
rs comparison per lake

The OLI to OLCI R orange
rs comparison and performance statistics is shown per lake in Fig. S5. Details

on the matchup conditions are presented in Table S1.
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Figure S3. Performance of retrieval of the orange contra-band when the blue MS band is also included
in the retrieval algorithm. (A) The retrieval evaluated with the in situ data. (B) Effect of spectrally
independent random sensor noise. (C) Spectrally structured AC error propagation. (D) Retrieval for
the OWT cluster averages.

Figure S4. Application of the orange contra-band, retrieved with the algorithm including the blue MS
band, to calculate the OLH in west Lake Erie. Sampling transect starts in the Detroit River plume
at point A and ends at point B in the Maumee Bay, passing through two transition points T1 and
T2 [5]. (A) Spatial gradient along the transect line for PC fluorescence and OLH calculated with the
contra-band algorithm including the blue MS band. (B) OLH calculated with the contra-band algorithm
that includes the blue MS band.
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Figure S5. Performance of R orange
rs retrieval of the orange contra-band against the OLCI orange band

per lake.
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Figure S5. Continued.
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Table S1. Details on OLI and OLCI scenes matchup. OLI acquisition time is provided in Coordinated
Universal Time (UTC) and time difference to OLCI acquisition is provided in minutes. Also provided
are the Sun zenith angle (θs) and the aerosol optical thickness at 550 nm (τa(550)) estimated with
ACOLITE for OLI. Only matchups that passed quality control are numbered in the first column.

Matchup Lake Date UTC Time Time Diff. θs τa(550)
1 Kremenchuk Reservoir 2016-07-15 08:37:10 12.5 31.31 0.099
2 Kremenchuk Reservoir 2016-07-31 08:37:14 27.6 34.38 0.045
3 Kremenchuk Reservoir 2016-08-07 08:43:26 15.0 36.05 0.087

Kremenchuk Reservoir 2016-08-23 08:43:32 30.1 40.50 0.383
Kremenchuk Reservoir 2016-09-08 08:43:37 45.2 45.67 0.113

4 Kremenchuk Reservoir 2016-09-24 08:43:38 60.1 51.29 0.013
Kremenchuk Reservoir 2017-05-06 08:42:43 66.6 35.00 0.042

5 Kremenchuk Reservoir 2017-06-07 08:43:03 -4.1 29.44 0.118
6 Kremenchuk Reservoir 2017-06-16 08:36:56 23.5 29.07 0.057
7 Kremenchuk Reservoir 2017-07-02 08:37:00 38.5 29.70 0.130
8 Kremenchuk Reservoir 2017-07-18 08:37:04 53.5 31.76 0.107
9 Kremenchuk Reservoir 2017-07-25 08:43:19 41.1 33.06 0.052

10 Kremenchuk Reservoir 2017-08-10 08:43:25 56.1 36.76 0.102
11 Kremenchuk Reservoir 2017-09-04 08:37:20 -2.3 44.25 0.177
12 Kremenchuk Reservoir 2018-05-02 08:36:23 19.2 36.22 0.121
13 Kremenchuk Reservoir 2018-05-25 08:42:17 21.3 31.02 0.093

Kremenchuk Reservoir 2018-06-10 08:42:14 36.2 29.34 0.109
14 Kremenchuk Reservoir 2018-06-26 08:42:25 51.4 29.34 0.108

Kremenchuk Reservoir 2018-07-12 08:42:33 66.5 30.87 0.049
15 Kremenchuk Reservoir 2018-08-06 08:36:34 8.1 35.74 0.067
16 Kremenchuk Reservoir 2018-08-13 08:42:49 -4.3 37.54 0.026
17 Kremenchuk Reservoir 2018-08-22 08:36:42 23.2 40.10 0.056
18 Kremenchuk Reservoir 2018-08-29 08:42:56 10.7 42.26 0.264
19 Kremenchuk Reservoir 2018-09-14 08:43:01 25.7 47.60 0.068
20 Rybinsk Reservoir 2016-05-05 08:27:52 66.1 43.29 0.105
21 Rybinsk Reservoir 2016-08-09 08:28:17 55.3 44.35 0.051
22 Rybinsk Reservoir 2017-06-09 08:27:55 36.1 36.95 0.001
23 Rybinsk Reservoir 2017-07-11 08:28:03 66.2 38.12 0.008
24 Rybinsk Reservoir 2017-08-12 08:28:17 -4.6 45.14 0.005
25 Rybinsk Reservoir 2018-07-30 08:27:32 20.8 41.68 0.028

Rybinsk Reservoir 2018-10-18 08:28:06 -4.9 68.78 0.016
26 Tsimlyansk Reservoir 2016-10-25 08:00:29 20.7 62.28 0.026

Tsimlyansk Reservoir 2017-05-05 07:59:26 -2.8 35.28 0.104
27 Tsimlyansk Reservoir 2017-05-30 07:53:57 40.3 29.20 0.110

Tsimlyansk Reservoir 2017-06-06 07:59:47 27.5 29.51 0.058
28 Tsimlyansk Reservoir 2017-08-02 07:54:20 -0.5 33.78 0.064
29 Tsimlyansk Reservoir 2017-08-18 07:54:25 14.6 37.88 0.109

Tsimlyansk Reservoir 2017-09-10 08:00:15 16.7 46.26 0.242
30 Tsimlyansk Reservoir 2017-09-19 07:54:30 44.6 48.21 0.083

Tsimlyansk Reservoir 2018-04-06 07:59:32 8.5 45.11 0.053
31 Tsimlyansk Reservoir 2018-04-15 07:53:40 36.3 40.66 0.032
32 Tsimlyansk Reservoir 2018-05-01 07:53:31 51.1 35.43 0.023

Tsimlyansk Reservoir 2018-06-18 07:53:17 -5.2 28.18 0.051
Tsimlyansk Reservoir 2018-08-05 07:53:42 40.1 34.47 0.074
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Table S1 – Continued.
Matchup Lake Date OLI Time Time Diff. θs τa(550)

Tsimlyansk Reservoir 2018-08-12 07:59:33 27.2 37.27 0.069
Tsimlyansk Reservoir 2018-08-21 07:53:50 55.1 38.72 0.071

33 Tsimlyansk Reservoir 2018-08-28 07:59:40 42.3 41.93 0.103
Tsimlyansk Reservoir 2018-09-13 07:59:45 57.3 47.25 0.090

Somasila Reservoir 2016-08-20 05:04:23 26.4 24.96 0.390
34 Somasila Reservoir 2016-11-24 05:04:38 15.4 40.89 0.206

Somasila Reservoir 2016-12-26 05:04:31 45.2 44.96 0.245
Somasila Reservoir 2017-03-16 05:04:00 18.5 31.23 0.298
Somasila Reservoir 2017-04-01 05:03:52 33.3 27.30 0.525
Somasila Reservoir 2018-03-03 05:03:58 44.6 34.87 0.119
Somasila Reservoir 2018-05-06 05:03:24 2.9 23.37 0.371

35 Somasila Reservoir 2019-01-01 05:04:09 26.0 45.09 0.153
Somasila Reservoir 2019-01-17 05:04:07 40.9 44.28 0.309

36 Somasila Reservoir 2019-02-18 05:04:01 9.2 38.39 0.231
37 Lake Dianchi 2016-10-05 03:35:15 33.7 35.36 0.159
38 Lake Dianchi 2017-01-09 03:35:10 22.4 52.52 0.018
39 Lake Dianchi 2017-05-01 03:34:15 25.2 23.19 0.140
40 Lake Dianchi 2018-03-01 03:34:41 6.9 41.15 0.061

Lake Dianchi 2018-04-02 03:34:25 36.6 30.46 0.270
41 Lake Dianchi 2019-01-31 03:34:45 18.1 49.34 0.117
42 Lake Dianchi 2019-02-16 03:34:43 33.0 45.27 0.079

Lake Burrumbeet 2016-11-17 00:16:09 -59.8 31.55 0.071
Lake Burrumbeet 2017-01-29 00:09:42 -45.8 37.37 0.029

43 Lake Burrumbeet 2017-02-21 00:15:43 -48.1 42.46 0.045
Lake Burrumbeet 2017-03-09 00:15:36 -62.9 46.47 0.145
Lake Burrumbeet 2017-09-17 00:15:56 -40.8 49.47 0.144
Lake Burrumbeet 2017-10-03 00:16:03 -55.9 43.57 0.072
Lake Burrumbeet 2017-11-29 00:09:47 -27.2 30.58 0.126
Lake Burrumbeet 2017-12-15 00:09:48 -42.1 30.78 0.053
Lake Burrumbeet 2017-12-31 00:09:47 -57.1 32.37 0.105

44 Lake Burrumbeet 2018-01-23 00:15:47 -59.3 36.16 0.099
45 Lake Burrumbeet 2018-11-16 00:09:34 -52.9 31.82 0.047
46 Lake Burrumbeet 2019-01-19 00:09:27 -52.8 35.40 0.156
47 Lake Burrumbeet 2019-02-27 00:15:30 -30.9 43.83 0.178

Bloemhof Dam 2017-01-15 08:09:03 34.4 31.09 0.086
Bloemhof Dam 2017-01-31 08:08:57 49.3 33.35 0.049

48 Bloemhof Dam 2017-04-05 08:08:27 7.6 45.64 0.155
Bloemhof Dam 2017-04-21 08:08:17 22.4 49.54 0.039
Bloemhof Dam 2017-08-18 08:15:08 14.3 51.03 0.119

49 Bloemhof Dam 2017-08-27 08:09:00 41.9 48.27 0.037
Bloemhof Dam 2017-09-03 08:15:11 29.3 45.97 0.064
Bloemhof Dam 2017-09-19 08:15:14 44.3 40.46 0.040
Bloemhof Dam 2017-10-30 08:09:12 0.9 28.59 0.046

50 Bloemhof Dam 2017-12-01 08:09:03 30.7 26.33 0.173
Bloemhof Dam 2017-12-24 08:15:16 33.2 28.24 0.056
Bloemhof Dam 2018-01-09 08:15:11 48.0 30.26 0.036
Bloemhof Dam 2018-04-15 08:14:23 36.0 48.03 0.079
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Table S1 – Continued.
Matchup Lake Date OLI Time Time Diff. θs τa(550)

Bloemhof Dam 2018-09-15 08:08:31 -3.6 42.02 0.057
Bloemhof Dam 2018-10-24 08:14:58 13.9 29.96 0.043
Bloemhof Dam 2018-11-02 08:08:49 41.5 28.18 0.016
Bloemhof Dam 2018-11-09 08:15:01 29.0 27.19 0.071
Bloemhof Dam 2018-11-25 08:15:00 43.9 26.28 0.096
Bloemhof Dam 2018-12-27 08:14:57 12.4 28.61 0.013
Bloemhof Dam 2019-01-05 08:08:46 0.4 29.74 0.078
Bloemhof Dam 2019-01-12 08:14:56 27.3 30.67 0.066

51 Laguna Mar Chiquita 2016-08-07 14:02:00 9.7 56.38 0.007
52 Laguna Mar Chiquita 2016-08-23 14:02:06 24.7 51.81 0.020
53 Laguna Mar Chiquita 2016-09-08 14:02:11 39.8 46.43 0.015
54 Laguna Mar Chiquita 2017-03-19 14:01:38 16.7 43.83 0.022
55 Laguna Mar Chiquita 2017-04-20 14:01:22 46.4 51.83 0.004
56 Laguna Mar Chiquita 2017-11-14 14:02:13 39.7 27.87 0.176
57 Laguna Mar Chiquita 2017-11-30 14:02:07 54.6 27.22 0.067
58 Laguna Mar Chiquita 2018-02-02 14:01:50 13.2 34.78 0.054
59 Laguna Mar Chiquita 2018-03-06 14:01:37 42.9 40.86 0.088
60 Laguna Mar Chiquita 2018-10-16 14:01:49 50.4 33.82 0.025
61 Laguna Mar Chiquita 2019-02-05 14:01:44 54.1 35.27 0.104

Lake Ilopango 2016-07-14 16:17:53 34.1 25.93 0.181
62 Lake Ilopango 2016-10-02 16:18:11 8.2 28.51 0.076
63 Lake Ilopango 2017-02-07 16:17:55 26.6 40.71 0.055

Lake Ilopango 2017-02-23 16:17:50 41.5 36.82 0.495
Lake Ilopango 2017-08-18 16:18:00 4.3 25.01 0.170

64 Lake Ilopango 2017-12-08 16:18:05 8.1 43.39 0.113
65 Lake Ilopango 2017-12-24 16:18:07 23.1 44.90 0.037
66 Lake Ilopango 2018-01-09 16:18:02 37.9 44.83 0.054
67 Lake Ilopango 2018-03-30 16:17:24 11.1 27.71 0.181
68 Lake Ilopango 2018-07-20 16:17:08 14.6 26.02 0.162
69 Lake Ilopango 2018-08-05 16:17:17 29.7 25.54 0.069
70 Lake Ilopango 2018-10-24 16:17:49 3.9 33.49 0.045
71 Lake Ilopango 2018-11-09 16:17:52 18.9 37.52 0.049
72 Lake Ilopango 2018-12-11 16:17:49 48.9 43.78 0.040
73 Lake Ilopango 2018-12-27 16:17:49 2.3 45.03 0.042
74 Lake Ilopango 2019-01-12 16:17:47 17.3 44.68 0.101
75 Lake Ilopango 2019-02-13 16:17:41 47.1 39.49 0.126
76 Lake Ilopango 2019-03-17 16:17:31 37.3 30.99 0.136
77 Lake Erie 2017-09-26 16:16:45 23.2 46.00 0.021
78 Lake Erie 2018-05-08 16:15:38 29.6 29.42 0.039
79 Lake Erie 2018-05-24 16:15:26 41.3 26.38 0.154

Lake Erie 2018-09-29 16:16:16 60.8 46.98 0.005
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