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Abstract: Column-averaged dry air mole fraction of atmospheric CO2 (XCO2), obtained by multiple
satellite observations since 2003 such as ENVISAT/SCIAMACHY, GOSAT, and OCO-2 satellite,
is valuable for understanding the spatio-temporal variations of atmospheric CO2 concentrations
which are related to carbon uptake and emissions. In order to construct long-term spatio-temporal
continuous XCO2 from multiple satellites with different temporal and spatial periods of observations,
we developed a precision-weighted spatio-temporal kriging method for integrating and mapping
multi-satellite observed XCO2. The approach integrated XCO2 from different sensors considering
differences in vertical sensitivity, overpass time, the field of view, repeat cycle and measurement
precision. We produced globally mapped XCO2 (GM-XCO2) with spatial/temporal resolution of 1 ×
1 degree every eight days from 2003 to 2016 with corresponding data precision and interpolation
uncertainty in each grid. The predicted GM-XCO2 precision improved in most grids compared with
conventional spatio-temporal kriging results, especially during the satellites overlapping period
(0.3–0.5 ppm). The method showed good reliability with R2 of 0.97 from cross-validation. GM-XCO2

showed good accuracy with a standard deviation of bias from total carbon column observing network
(TCCON) measurements of 1.05 ppm. This method has potential applications for integrating and
mapping XCO2 or other similar datasets observed from multiple satellite sensors. The resulting
GM-XCO2 product may be also used in different carbon cycle research applications with different
precision requirements.

Keywords: XCO2; multi-satellites; precision weighting; spatio-temporal kriging; mapping

1. Introduction

Spatio-temporal variation of atmospheric CO2 concentration reflects the balance between
anthropogenic carbon emissions and terrestrial and oceanic carbon uptake or emissions [1]. Increased
fossil fuel emissions after the start of the Industrial Revolution contribute to the continuous growth
of atmospheric CO2 concentrations [2] from 277 parts per million (ppm) in 1750 [3] to 407.4 ± 0.1
ppm in 2018 [4]. The growth rate of CO2 concentrations in the atmosphere is smaller than the rate
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of CO2 emitted by human activities because nearly 45% of the emissions are absorbed by oceans
and the terrestrial biosphere each year [5]. The seasonal variations of terrestrial carbon uptake and
emission contribute most to the seasonal cycle in atmospheric CO2 [6], which varies spatially due to
non-uniform land-biosphere CO2 exchange [7]. In addition, there is spatial-temporal variability of
atmospheric CO2 concentrations that can be used to study changes in regional land biosphere net CO2

fluxes, for example, seasonal cycle amplitude increase [8,9] and regional effects of extreme weather
patterns like droughts [10,11]. Atmospheric CO2 concentrations have also been used for carbon flux
or to estimate carbon uptake/emission changes using atmospheric inversion models [12,13] and a
data-driven method [14]. The spatio-temporal variability of CO2 and related carbon sources/sinks
distribution are still not fully understood [15,16]. A long time series of comparable global CO2

concentration datasets has the potential to improve our understanding of land-biosphere interactions
and our ability to evaluate trends in regional terrestrial CO2 absorption capacity.

There are several methods to measure atmospheric CO2 concentrations, including surface
measurements and satellite observations and approaches to estimate concentrations from model
simulations. A network of surface CO2 monitoring station observations has been organized into the
popular GLOBALVIEW-CO2 product and provides in situ measurements but is limited by station
sparseness and the inherent spatial inhomogeneity of the surface atmosphere. Model simulations can
provide continuous maps of CO2 using estimated surface fluxes and atmospheric mixing transport in
addition to the previously noted sparse validation stations [17]. Satellite observations of atmospheric
CO2 have the advantage of global coverage and high measurement density and can complement the
surface network to advance our understandings of the carbon cycle and its changes [18,19]. With
the development of remote sensing technology, there are several satellites used for atmospheric CO2

concentration observations [20,21]. Leveraging all available XCO2 datasets to construct a long time
series, continuous, and comparable global CO2 concentrations would be useful.

Satellite-observed column-averaged dry air mole fraction of CO2 (XCO2) have been wildly
used for carbon cycle studies, including CO2 enhancement detection induced by anthropogenic
emissions [22,23], constraining model simulations of carbon fluxes [24,25], investigating carbon cycle
responses to weather extremes [11,26], and improving understanding of vegetation uptake [27].
Satellites measuring XCO2 are the SCanning Imaging Absorption spectroMeter for Atmospheric
CHartographY (SCIAMACHY) onboard the Environmental Satellite (ENVISAT) [28], Greenhouse
Gases Observing Satellite (GOSAT) [29], and Orbiting Carbon Observatory-2 (OCO-2) [30]. They
observe XCO2 but with different spatial/temporal resolution, prior vertical profile estimates, local
overpass time, data precision, and observing gaps. As a result, there is an opportunity to generate a
long time series of global XCO2 dataset starting from 2003 using XCO2 retrievals from these satellites
with careful integration and gap-filling.

Gap-filling satellite-observed XCO2 has been investigated in several studies from different
perspectives [31–33]. Geostatistical approaches, especially kriging, were widely used for GOSAT
observed XCO2 Level 3 product production [17,34,35]. Spatial-only geostatistical methods do not take
into account the temporal correlation structure of CO2 data [19], which may provide extra information.
In order to make full use of spatio-tempal correlation of atmospheric CO2, a new spatio-temporal
kriging method was developed for the global mapping of XCO2 [19,36]. Because these methods were
previously used for observations from a single satellite, measurement error could be assumed to
be uniform and not interfere with the kriging approach. In order to produce high spatio-temporal
resolution and a long time series of XCO2 from multiple satellite observations, the precision of different
datasets should be considered in this geostatistical method.

In this study, to create the longest possible time series of XCO2 and leverage multiple measurements
to improve precision when possible, we developed a precision-weighted spatio-temporal kriging
method for gap filling of integrated XCO2 from multiple satellite observations. Datasets used in
this study and data preprocessing are described in Section 2. XCO2 integration methods and global
mapping can be found in Section 3. Results of global mapped XCO2 and its validation are shown in
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Section 4 and data quality considerations are discussed in Section 5. Finally, conclusions are presented
in Section 6.

2. Dataset

In this study, we collected atmospheric CO2 concentration datasets from multiple
satellite-observations to produce a long time series of spatio-temporal continuous XCO2 from satellite
observations, which was then evaluated by XCO2 from surface measurements and model simulations.

2.1. XCO2 from Multi-Satellite Observations

Atmospheric CO2 concentrations used here were the released Level 2 products that contain the
full-physics retrievals of column-averaged CO2 in units of dry air mole fraction (XCO2). Satellite
observations of XCO2 used here are from ENVISAT/SCIAMACHY, GOSAT, and OCO-2, which span
from 2003 to 2016. XCO2 from SCIAMACHY onboard the European ENVISAT are obtained by the
full-physics based Bremen Optimal Estimation–DOAS (BESD) algorithm (v02.01.01) [37], which span
from January 2003 to March 2012 with a spatial/temporal resolution of 30x60 km every 35 days. XCO2

from GOSAT is produced by the algorithm of the Atmospheric CO2 Observations from Space (ACOS)
team (v7.3 lite) [38], which span from June 2009 to May 2016 with spatial/temporal resolution of a
diameter of 10.5 km every three days. XCO2 from OCO-2 is produced by the ACOS team (r9 lite) [39],
which span from September 2014 to December 2016 with spatial/temporal resolution of 2.25 × 1.25
km every 16 days. Data quality was maximized by filtering XCO2 product by screening criteria
specified by the corresponding user guides. Specifications of the three satellites that observed XCO2

are shown in Table 1. These satellites follow different orbits and have different gaps as shown in
Figure 1. XCO2 retrievals from each satellite also have different data precision for different sensors,
observation conditions, and retrieval methods. Therefore, we use different XCO2 precisions in time
and space in the XCO2 integration and mapping with the spatio-temporal kriging method.

Table 1. Specifications of multiple satellites that observed XCO2.

Attributes\Satellites ENVISAT/SCIAMACHY GOSAT OCO-2

Period of selected data January 2003–March 2012 June 2009–May 2016 September
2014–December 2016

Repeat cycle (days) 35 3 16
Field of view (km) 30 × 60 Diameter of 10.5 2.25×1.25

Overpass local time 10:00 13:00 13:36
version BESD v02.01.01 ACOS v7.3 OCO2 r9

Profile layers number 10 20 20

Criteria of data screening XCO2_quality_flag=0;

XCO2_quality_flag=0;
gain=H;

land_fraction>90;
warn_level<10

XCO2_quality_flag=0;
gain=H;

land_fraction>90

Name referred hereafter SCI-XCO2 GOS-XCO2 OCO-XCO2
Reference [37] [38] [39]

Figure 1. Example of XCO2 from SCIAMACHY, GOSAT, and OCO-2. Green and blue points represent
SCI-XCO2 and GOS-XCO2 from 1–8 June 2009. Black and red points are GOS-XCO2 and OCO-XCO2

from 1–8 September 2014. Total carbon column observing network (TCCON) sites used for validation
are shown with a pink star.
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2.2. The Total Carbon Column Observing Network

The total carbon column observing network (TCCON) are upward-looking terrestrial Fourier
transform spectrometers established for measuring atmospheric XCO2 and other trace gases from the
surface [40]. The instruments have high accuracy with approximately 0.25% error in XCO2 retrievals,
which has been extensively used for validation of satellite observations [21,40,41]. In this study, we
selected 12 TCCON sites within the mapping area as shown in Figure 1, with at least five years of
coincidental measurements in the period from January 2003 to December 2016 for validating combined
XCO2 products.

2.3. XCO2 from Model Simulation

CarbonTracker (CT) is a modeling system that assimilates global atmospheric CO2 observations
from the ground, tall tower, and aircraft, coupled with an atmospheric transport model for simulating
global distributions of atmospheric CO2 and tracking CO2 sources and sinks. Model-simulated
atmospheric CO2 from CarbonTracker 2017 [42] was used in three steps of the integration and mapping
method, primarily to normalize differences in altitude sensitivity and overpass time. First, we used
CarbonTracker CO2 profiles in a grid of 2◦ × 3◦ (latitude x longitude) in 3-hour intervals as the common
profile to align the a priori CO2 profiles and averaging kernels of multi-satellite observations. Second,
we adopted diurnal patterns of CO2 concentrations in different pressure layers from CarbonTracker to
unify the CO2 from satellite observations to 13:00 local time. XCO2 from CarbonTracker (CT-XCO2)
was calculated from the model CO2 profile data with 25 layers at the local time 13:00 by using a
pressure weighting average method [43]. Third, we used the CT-XCO2 for comparing with our new
globally mapped XCO2 product.

3. Method

In this study, we developed a method for spatio-temporal integration and mapping of multi-satellite
observed XCO2 considering variable data precision for producing globally mapped continuous XCO2

with spatial/temporal resolution of 1◦ × 1◦ every eight days from 2003 to 2016. We present the
flow chart of global mapped XCO2 production and the precision weighted spatio-temporal kriging
method in Figure 2. First, we adjusted a priori vertical CO2 profiles and averaging kernels of multiple
satellite-observed XCO2 products to a common profile. Second, we corrected to a common local
time and regularizing spatio-temporal scales of XCO2 from multiple satellites. Third, we used a
modeled continuous XCO2 spatio-temporal random field for interpolation. Fourth, we developed a
precision-weighted spatio-temporal kriging method for producing global maps of XCO2. Finally, we
validated the new global mapped XCO2. We present details on developing the precision-weighted
spatio-temporal kriging method including: (1) conventional spatio-temporal kriging method; (2)
optimization of spatio-temporal correlation structure; (3) XCO2 prediction through integrating data
precision, and; (4) uncertainty and precision of mapped XCO2.

3.1. Preprocessing

3.1.1. Adjustment of a Priori Vertical Profiles and Averaging Kernels

Each satellite has different measurement sensitivity at different altitudes through the atmospheric
column and, therefore, they use different averaging kernels based on a priori assumptions of vertical
CO2 profiles to account for senor sensitivities in XCO2 retrieval algorithms. The corrections are
based on prior vertical profile layers as shown in Table 1. The a priori profiles from different satellite
retrievals should be adjusted to a common profile when comparing XCO2 from different instruments.
Additionally, the smoothing effect of the retrievals should be considered by applying the averaging
kernels [44] to reduce the effects from different instruments on XCO2 retrievals [37,45]. In this study,
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we introduce a common a priori XCO2 profile from CT to integrate XCO2 retrievals from ENVISAT/

SCIAMACHY, GOSAT, and OCO-2 by using Equation (1).

XCO2adj,t = XCO2ret,t + hT
·(I−A)·(XM,t −Xa,t) (1)

where XCO2adj,t is the adjusted XCO2ret at observation time t, XCO2ret,t is the original XCO2 retrievals
from satellites, h is a pressure-weighting vector, A is column-averaging kernels in the XCO2 retrieval
algorithm, I is an identity matrix, XM,t is a set of common a priori CO2 profiles from CT, and Xa,t is a
set of a priori CO2 profiles used in XCO2 original satellite-specific retrieval algorithms. A priori CO2

profiles of each satellite, as shown in Table 1, were interpolated into the same 25 pressure layers of the
CT model.

Figure 2. Workflow chart of spatio-temporal integration of multi-satellite observed XCO2 using a
precision-weighted kriging method.

3.1.2. Unification of Observing Time and Spatio-Temporal Scales

The three satellites have different local overpass times: SCIAMACHY at 10:00, GOSAT at 13:00,
and OCO-2 at 13:36 (Table 1). In order to reduce the effect of atmospheric CO2 concentrations diurnal
variation [46,47], we introduce a correction coefficient to normalize the satellite observations local time
to 13:00 based on diurnal variation of CT model simulations using Equation (2).

XCO2con,rt =
hTXM,rt

hTXM,t
·XCO2adj,t (2)

where XCO2con,rt is the converted XCO2adj at the reference time (rt, 13:00 local time); XCO2adj,t is the
adjusted XCO2 derived from Equation (1) at satellite overpass time t; XM,rt and XM,t are CO2 profiles
from CT at times of rt and t, respectively; and h is the pressure-weighting vector.

Moreover, XCO2 is affected by the different fields of view and observing dates as shown in Table 1.
In order to reduce this effect, we integrate spatial and temporal scales of XCO2 retrievals using precision
weighted averaging of XCO2con,rt within 30 km by 30 km every 8 days using Equations (3-1) and (3-2).
This unification also reduces computational complexity and preserves local spatiotemporal patterns.
A temporal resolution of 8 days is also well-suited for biosphere-atmosphere interaction analysis
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with other 8-day resolution datasets like vegetation indices from the Moderate Resolution Imaging
Spectroradiometer (MODIS). An integrated XCO2 dataset at 30 km resolution every 8 days from 2003
to 2016 (integrated-XCO2) was generated.

XCO2int,rt =
n∑

i=1

pi·XCO2con,rti
(3-1)

n∑
i=1

pi =
n∑

i=1

µ2

m2
i

= 1 (3-2)

where XCO2int,rt is the integrated combination of XCO2con datasets, n is the number of observations
in one unit, XCO2con,rti

is converted satellite observed XCO2, pi is the weighting factor, which is
determined by mi (data precision of XCO2con,rti

). µ is an arbitrary constant used for normalizing the
data precision weighting factor. We adopted the data precision from these satellites observed XCO2

Level 2 product. The data precision in ACOS-GOSAT and OCO-2 is XCO2 posterior error, and that in
BESD-SCIAMACHY is 1-sigma uncertainty of the retrieved XCO2.

3.2. Modeling XCO2 Spatio-Temporal Random Field for use in Kriging

XCO2 increases from year-to-year varies by latitude and has a significant seasonal cycle in most
locations [48,49]. In order to interpret spatio-temporal geostatistics, we need to construct a second-order
stationary random field represented by the stochastic residual component after removing inter-annual,
latitudinal, and seasonal trends mentioned above, termed the deterministic mean. In this study, we
adopted a fitting method for decomposing [50] the deterministic spatiotemporal mean and stochastic
residual component of latitude-zonal XCO2. The fitting method is a combination of a linear function to
fit the long-term increase and annual periodic function as shown in Equation (4).

m(s, t) = a0(s) + at(s) +
4∑

i=1

(βi(s)· sin(iωt) + γi(s)· cos(iωt)) + R(s, t) (4)

where ω = 2·π/T and T is the period of 46 time-units, t is the time in the time-unit, s represents
the latitudinal zone, and a0, β1−4 and γ1−4 are parameters to be estimated. at is the cumulative
annual increase for each time-unit determined by the Earth System Research Laboratory (ESRL) global
annual CO2 growth rate [4]. The harmonic functions fit the annual cycle, semi-annual oscillation,
seasonal variation and monthly variation of XCO2 [19]. R(s, t) represents the spatio-temporal residual
component of satellite observed integrated XCO2, which will be used for interpretation.

3.3. Precision Weighted Spatio-Temporal Kriging

In the ordinary kriging method, a predicted value at an arbitrary target point is estimated by
considering the statistical properties of a set of observed data. As a result, the predicted value (Z(s0))
at point s0 can be expressed as a weighted sum of the observational data as shown in Equation (5).

Z(s0) =
n∑

i=1

ωi·Z(si) (5)

where ωi is the weighting factor at the observation point si, n is the total number of observational
points to be used, and Z(si) is the observed value at each point si. The following subsections describe
the precision-weighted spatio-temporal kriging method. Different kriging models were developed by
adjusting the number of points ‘n’ and the weighting factor ‘ωi’.
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3.3.1. Conventional Spatio-Temporal Kriging

In spatio-temporal geostatistical analysis of XCO2, kriging prediction of Z(s0,t0) at a point (s0,t0)
can be calculated as the linear weighted sum of the XCO2 values that minimizes the mean squared
prediction error [19]. Weights of observations used for interpolation are determined by the geometry
of observations and the spatio-temporal correlation structure of the data. Spatial and temporal
information would be used for variogram modeling of the correlation structure [19,31] as shown in
Equation (6).

γ̂ST(hs, ht) =
1

2N(hs, ht)

N(hs,ht)∑
i=1

[Z(si + hs, ti + ht) −Z(si, ti)]
2 (6)

where γ̂ST(hs, ht) is an empirical variogram value at the lag (hs, ht). Z(si, ti) is the observational data.
N(hs, ht) is the number of data pairs within a distance of (hs, ht). Once the empirical variogram has
been constructed, we need to select a spatio-temporal variogram model to fit it. As shown in Zeng et
al. [19,31], the spatio-temporal variogram model adopted here (Equation (7)) is a combination of the
product-sum model [51,52] and an extra global nugget model to capture the nugget effect [53] (last
term in Equation (7)).

γST(hs, ht; θs, θt, κ, NST) = γS(hs; θs) + γT(ht; θt) − κ·γS(hs; θs)·γT(ht; θt) + NST·γ0(hs; ht) (7)

We selected the exponential model for the marginal variogram model γS(hs) and γT(ht) as shown
in Equation (8).

γ(h; θ = [C, a]) =

 0, h = 0
C·

(
1− e−

h
a
)
, h , 0

(8)

where γS(hs; θs) and γT(ht; θt) are the marginal spatial and temporal variograms, [θs, θt, κ, NST] =

[Cs, as, Ct, at, κ, NST] are parameters to be estimated, and NST, C, and a are all greater than or equal to
zero. In the exponential model, a, C and NST represent the influence range, partial sill, and nugget
effects, respectively.

As a result, an arbitrary target point (Ẑ(s0, t0)) to be estimated by using the spatio–temporal
kriging method can be expressed as Equation (9).

Ẑ(s0, t0) =
n∑

i=1

ωi(s0, t0)·Z(si, ti) with
n∑

i=1

ωi(s0, t0) = 1 (9)

where ωi(s0, t0) is the weight assigned to a known observation Z(si, ti) so as to minimize the prediction
error variance while maintaining an unbiased prediction. The prediction error variance, which is a
measurement of prediction uncertainty, is given by

σ2 = γT
0 Γ−1Υ0 −

(
1TΓ−1γ0 − 1

)2

1TΓ−11
(10)

where Γ(i, j) = γ
(∣∣∣si − s j|, |ti − t j

∣∣∣), Υ0(i, 1)= γ(|si − s0|, |ti − t0|), and 1 is the n × 1 unit vector.

3.3.2. Optimization of Spatio-Temporal Correlation Structure

In a conventional spatio-temporal geostatistical analysis, all data pairs were used for
spatio-temporal correlation structure using equal weight. XCO2 observations from different
satellites/sensors, observing conditions and inversion methods have different data precision. So, the
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varying data precision should be considered in building the loss function for optimizing spatio-temporal
correlation structure with precision weighting factor as shown in Equation (11).

δ =
m∑

i=1

λi·(γST − γ̂ST)
2 =

m∑
i=1

λi·(γs(hs) + γT(ht) − κ ·γs(hs) ·γT(ht) + NST − γ̂(hs, ht))
2 (11-1)

n∑
i=1

λi =
n∑

i=1

µ1
2

m2
i

= 1 (11-2)

where λi represents different weighting factors for data with different precisions. γST is the
spatio-temporal variogram model shown in Equation (7). γ̂ST is the empirical variogram shown in
Equation (6). mi and µ1 represent data precision and a normalization term.

The gradient descent method was used to calculate the optimal parameters. The partial derivative
parameters (δ′C∗s

, δ′a∗s
, δ′C∗t

, δ′a∗t
, δ′

κ∗
, δ′N∗ST

) that need to be estimated are shown in Equations (12-1)–(12-6).

δ
′

C∗s
= 2·

m∑
i=1

{
λi·(γST(hs, ht) − γ̂(hs, ht))

}
·

(
1− e

−
||hs ||
a∗s

)
(12-1)

δ
′

a∗s
= 2·

m∑
i=1

{
λi·(γST(hs, ht) − γ̂(hs, ht))

}
·

(
−C∗s·e

−
||hs ||
a∗s

)
·(||hs||·a∗s

−2) (12-2)

δ
′

C∗t
= 2·

m∑
i=1

{
λi·(γST(hs, ht) − γ̂(hs, ht))

}
·

(
1− e

−
||ht ||
a∗t

)
(12-3)

δ
′

a∗t
= 2·

m∑
i=1

{
λi·(γST(hs, ht) − γ̂(hs, ht))

}
·

(
−C∗t ·e

−
||ht ||
a∗t

)
·(||ht||·a∗t

−2) (12-4)

δ
′

κ∗
= 2·

m∑
i=1

{
λi·(γST(hs, ht) − γ̂(hs, ht))

}
·(γS(hs; θ∗s)·γT(ht; θ∗t)) (12-5)

δ
′

N∗ST
= 2·

m∑
i=1

{
λi·(γST(hs, ht) − γ̂(hs, ht))

}
(12-6)

where C∗s, a∗s, C∗t , a∗t , κ
∗ and N∗ST are parameters waiting to be optimized. Parameters, λi, γST, γ and γ̂,

are the weighting factors (Equation (11-2)), exponential models (Equation (7) and Equation (8)) and
empirical variogram values (Equation (6)), respectively.

We optimized the structure through minimizing δ. Initial parameters β0 =

(Cs0, as0, Ct0, at0, κ0, NST0) were obtained by using a least-squares approximation in the conventional
spatio-temporal kriging method. Then, parameters were determined by a learning rate and partial
derivative as shown in Equation (13).

βi = βi−1 + α·δ
′

i−1 (13)

where β represents (C∗s, a∗s, C∗t , a∗t , κ
∗, N∗ST). α is the learning rate, usually in the range of (10−4

∼ 10−2).
δ′ is the partial derivative parameter. We set the operating condition as a current change of less than
1% of all the changes in this adjustment. As a result, one example of optimized spatio-temporal
semi-variogram surface is shown in Figure 3.
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Figure 3. One example of the optimized spatio-temporal semi-variogram surface (Zone 1: Latitude
center: 55◦N). Grey, black, and red points represent spatio-temporal semi-variogram that was calculated
from experimental data, fitted models of the conventional and optimized correlation structure.

3.3.3. Integrating XCO2 Using Variable Data Precision

We estimated XCO2 in unobserved points using observational data and weighting factors from
spatio-temporal correlation structure and data precision as shown in Equation (14).

Z(s0, t0) =
n∑

i=1

ω1i·ω2i·Z(si, ti) (14)

where ωi1 is the weighting factor from the spatio-temporal correlation structure and ωi2 is from data
precision. Z(si, ti) is observed XCO2 used for Z(s0, t0) estimation. These two weighting factors were
calculated by Equations (15-1) and (15-2).

s∑
i=1

ω1i·γ(h1i) + ε = γ(h10)

s∑
i=1

ω1i·γ(h2i) + ε = γ(h20)

. . . . . .
s∑

i=1

ω1i·γ(hsi) + ε = γ(hs0) (15-1)

s∑
i=1

ω1i·ω2i = 1 (15-2)

where ω1i and ω2i are weighting factors in Equation (14). Equation (15-2) was used to control unbiased
estimation. γ(h1i) . . . γ(hsi) and γ(h10) . . . γ(hs0) are spatio-temporal variograms for observations used
for estimation of Z(s0, t0). ε is the polynomial residuals. ω2i can be achieved by Equation (16).

s∑
i=1

ω2i =
s∑

i=1

µ2
2

m2
i

= s (16)

where mi, µ2 and s are data precision, arbitrary constant and the number of used observational data.
We applied this method for global mapping of XCO2 (GM-XCO2), which provides a long time

series of spatio-temporal continuous XCO2 dataset for global carbon cycle research.
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3.3.4. Uncertainty and Precision of Mapped XCO2

We calculated data uncertainty and precision of the mapped XCO2 by using precision-weighted
kriging. Uncertainty of predicted data from the spatio-temporal kriging method is shown in Equation
(17)

σ0
2 =

s∑
i=1

w1i·γ(hi0) + ε (17)

where σ0
2 presents the prediction uncertainty, w1i, γ(hi0) and ε are the estimated weighting factor,

spatio-temporal variograms, and polynomial residuals, respectively as shown in Equation (15).
In addition, the precision of GM-XCO2 integrated from the observed data is shown in Equation

(18), according to the error transfer equation.

ε0 = sqrt(
s∑

i=1

εi
2
·w1i

2
·w2i

2) (18)

As a result, these two sources of uncertainty can be used for data screening in GM-XCO2 application.

3.4. Validation of Global Mapped XCO2

We validated the mapped GM-XCO2 product using cross-validation, compared to TCCON
measurements and model simulation. Cross-validation has been used in accuracy assessments for
spatio-temporal kriging methods [19,54]. In this study, we adopted cross-validation based on the
Monte Carlo sampling method used in Zeng et al. [19]. As above, we used the satellite-observed
integrated XCO2 dataset (XCO2int ) for interpolation to GM-XCO2. The cross-validation was conducted
by repeatedly (100 times) reserving 5% of the XCO2int data for validation. Predicted GM-XCO2 was
compared with the 5% reserved XCO2int data in those corresponding spatio-temporal locations. We
selected three statistical parameters for results evaluation: (1) the coefficient of determination (r2), (2)
the root mean square error (RMSE), and (3) the percentage of estimation bias less than 1 or 2 times of
data precision.

We compared GM-XCO2 with the XCO2 measured from TCCON (TCCON-XCO2) in 12 sites
with more than 5 years of observation. TCCON-XCO2 was calculated with the pressure-averaged
method [43] and data observed at a local time of 11:00 to 15:00. In addition, we did a comparison
between GM-XCO2 and XCO2 from the CT model simulation in the spatio-temporal change over the
global area.

4. Results

4.1. Integrated-XCO2 from Three Satellites

Here we presented latitudinal and temporal variability of the integrated XCO2 (top panel) and
the difference between the integrated product and the original retrieval XCO2 values (bottom panel)
from SCIAMACHY, GOSAT, and OCO-2 (Figure 4). The top panel shows XCO2 increased more than
30 ppm from 2003 to 2016 over most latitudes. Especially high XCO2 values occurred during the
start of 2016 in the northern hemisphere (dark red). The bottom panel shows XCO2 adjustments,
integrated XCO2 (XCO2int) minus original XCO2 (XCO2ret) were mainly within −2.0 to 1.0 ppm and
include seasonality, with high adjustment values in summer and low adjustment values in winter,
except for some scattered grids in high or low latitudes. This could be caused by seasonal changes of the
XCO2 averaging kernel (Appendix A: Figure A1) that was adopted for XCO2 adjustment in Equation
(1). In addition, the adjustments decreased sharply in 2012 and 2016, with stability improvements of
the newer satellite sensors.
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Figure 4. Latitudinal-temporal change of integrated XCO2 (a) and XCO2 adjustments made during the
integration processing, integrated XCO2 (XCO2int ) minus original XCO2 (XCO2ret ) (b) from SCIAMACHY,
GOSAT, and OCO-2.

4.2. Globally-Mapped XCO2

4.2.1. Latitudinal and Temporal Variability of Globally Mapped XCO2

The latitudinal and temporal variability of globally mapped XCO2 (GM-XCO2) and its prediction
uncertainty and precision are shown in Figure 5. Comparing Figure 5a to gaps in Figure 4a show
missing observations have been reasonably filled. GM-XCO2 also shows the yearly increase and
seasonal variation from 2003 to 2016. GM-XCO2 is higher in the northern hemisphere compared to
the southern hemisphere, and the annual maximum GM-XCO2 lasts longer in mid-latitudes than
high/low latitudes.

In the middle panel, kriging standard deviations (square root of σ0
2 in Equation 17) of the

predicted GM-XCO2 represents the prediction uncertainty, which is determined by the available data
around gaps. Higher uncertainty is shown in the tropic and high latitudes because of low numbers of
robust observations in these latitudes corresponding to gaps in Figure 4a. The uncertainty also shows
seasonal variation for different latitudes. In mid-high latitudes (35–60 ◦N), the uncertainty is high in
winter for the observations affected by snow cover. In mid-low latitudes (extratropics within 35◦N/◦S),
uncertainty is high in summer likely due to cloud contamination during the monsoon season.

In the bottom panel, GM-XCO2 precision is calculated from integrated XCO2 (XCO2int ) precision.
The precision is significantly improved from the middle of 2009 and 2014. It was 1.5 to 2.5 ppm
before 2009, 0.5 to 1.5 from 2009 to 2014, and below 0.5 after 2014. That is because of the observing
precision improvement of the newer sensors. Generally, the observed GM-XCO2 precision is better
in mid-latitudes.
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Figure 5. Latitudinal and temporal variability of global mapped XCO2 (GM-XCO2, top panel), the
uncertainty of the prediction (standard deviation, middle panel), and precision (bottom panel).

4.2.2. Comparison with Conventional Spatio-Temporal Kriging Results

The latitudinal and temporal differences between the results from the precision-weighted (this
study) and conventional spatio-temporal kriging methods are shown in Figure 6. Precision (Figure 6c)
of GM-XCO2 from precision weighted spatio-temporal kriging is improved for most of the predictions,
especially for the SCIAMACHY and GOSAT overlapping periods (June 2009–March 2012) or GOSAT
and OCO-2 overlaps (September 2014–May 2016). The precision improved by 0.3–0.5 ppm over latitudes
with overlapping observations. GM-XCO2 (Figure 6a) is enhanced by 0.1–0.2 ppm for the summer of
2009 to 2011 and reduced by 0.2–0.3 for the summer of 2014 to 2016. Differences in the uncertainty
of prediction (Figure 6b) are small for both kriging results (conventional and precision-weighted)
because they are based on the same observations (XCO2int ), which results in a similar spatio-temporal
correlation structure as shown in Figure 3.
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Figure 6. Latitudinal and temporal difference between results from precision-weighted and conventional
spatio-temporal kriging methods for global mapped XCO2 (GM-XCO2, top panel), the difference in
the uncertainty of the prediction (standard deviation, middle panel) and the difference in GM-XCO2

precision (bottom panel). Positive values indicate precision-weighted results are higher and vice versa.

4.2.3. Spatial Distribution of GM-XCO2

GM-XCO2 provides important information about the mean spatial distribution and localized
anomalies which could relate to local carbon uptake and emission. We present the spatial-temporal
distribution of GM-XCO2 during different seasons in 2003, 2008, 2013, and 2015 (Figure 7). Seasonal
patterns of GM-XCO2 were similar with an annual increase of approximately around 2.0 ppm. In spring,
high GM-XCO2 appeared in northern Canada, the North China Plain, and the Arabian Peninsula. In
summer, extremely low GM-XCO2 occurred in mid-high latitudes in the northern hemisphere. In
autumn, the north-south hemispheric GM-XCO2 gradient relaxes. In winter, high XCO2 returns over
the North China Plain and Central Africa.
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Figure 7. Spatial-temporal distribution of mean seasonal globally-mapped XCO2 (GM-CO2) during spring (March, April, May), summer (June, July, August), autumn
(September, October, November) and winter (December, January, Febryary) of 2003 (top-left), 2008 (top-right), 2013 (bottom-left), and 2015 (bottom-right). Color bars
for different years assume an annual increase of 2 ppm.
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In addition, we give out the global spatial distribution of mean XCO2 in 2016 shown in Figure 8.
We can find that the main high XCO2 of 2016 is distributed in Eastern China, Southeast Asian regions,
Amazon forest regions, African forest regions, south of the United States, the Arabian Peninsula, and
India. These regions could be related to three main conditions, including (1) an industrial development
zone inhabited by human beings; (2) a large area of tropical/subtropical rainforest area; (3) large
agricultural regions.

Figure 8. Spatial-temporal distribution of mean GM-XCO2 in 2016.

4.3. GM-XCO2 Validation

4.3.1. Evaluation Using Cross-Validation

Results of cross-validation using the precision-weighted spatio-temporal kriging method are
shown in Figure 9. Predicted XCO2 (GM-XCO2) agreed well with integrated XCO2 (XCO2int) with a
high R2 of 0.97, showing the interpolation method retains much of the input signal. Total RMSE (root
mean square error) between predicted GM-XCO2 and integrated XCO2 (XCO2int) is 1.36 ppm, which
indicates good stability and the high precision of this method. Most of the predicted bias is within 1.0
ppm, except for some XCO2 data precision which is larger than 1.5 ppm (right panel). Specifically, 61%
of the prediction bias is less than 1.0 ppm. Additionally, 70% and 80% of the predicted bias is within 1
and 2 times of XCO2 precision, respectively. Results from cross-validation suggest that this mapping
method is effective and precise in gap-filling of multi-satellites observed XCO2, which could also be
affected by original data precision.

Figure 9. Results of cross-validation using the precision-weighted spatio-temporal kriging method. The
relationship between predicted XCO2 (GM-XCO2) and reserved integrated XCO2 (XCO2int ) is shown in
the left panel. The distribution of predicted bias (absolute difference between GM-XCO2 and reserved
XCO2int ) and XCO2int precision is shown in the right panel. The black and red lines in the right panel
represent the slope of 1 and 2.
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4.3.2. Validation of GM-XCO2 with TCCON Measurements

High accuracy and continuous time series of XCO2 from TCCON measurements were used for
validation of GM-XCO2 derived from satellite observations. In this study, we selected 12 sites with
measurements for more than five years from 2003 to 2016 for comparison with GM-XCO2. XCO2int

and GM-XCO2 data within 500 km of each TCCON site was used for this comparison (Figure 10).
GM-XCO2 retained information from satellite observations, which captured the annual increase and
seasonal variation of XCO2 well. The temporal variation of GM-XCO2 is consistent with TCCON XCO2.
Comparison statistics between GM-XCO2 and TCCON XCO2 are shown in Table 2. If we assume
TCCON measurements are accurate, the accuracy of GM-XCO2 performs well with the total averaged
bias of 0.01 ppm across 303 data pairs. The precision of GM-XCO2 in most TCCON sites (9/12) is within
1.0 ppm with an averaged absolute bias of 0.92 ppm. The mean value of the standard deviation of the
bias over 12 sites is 1.05 ppm.

Figure 10. Temporal variation comparison of GM-XCO2 at 12 TCCON sites. Grey, red, and blue
points represent XCO2int , GM-XCO2, and XCO2 from TCCON measurements, respectively. XCO2int was
retrieved within 500 km of TCCON sites. TCCON measurements from 11:00 to 15:00 local time were
selected for comparison.
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Table 2. Comparison statistics between GM-XCO2 and TCCON XCO2. Bias is calculated using
GM-XCO2 minus TCCON XCO2 for each coincident data pair and averaged for each site.

Sites
Location
(Latitude,

Longitude)

Coincident
Data Pairs

Averaged Bias
(ppm)

Averaged
Absolute Bias

(ppm)

Standard
Deviation

(ppm)

Bialystok (53.23◦N,
23.02◦E) 249 −0.19 0.73 0.92

Bremen (53.10◦N,
8.85◦E) 260 0.21 0.97 1.25

Karlsruhe (49.10◦N,
8.44◦E) 226 0.51 0.90 0.98

Orleans (47.97◦N,
2.11◦E) 232 0.34 0.71 0.85

Garmisch (47.48◦N,
11.06◦E) 361 0.62 1.05 1.16

Park Falls (45.94◦N,
90.27◦W) 499 0.00 0.74 0.96

Lamont (36.60◦N,
97.49◦W) 381 −0.45 0.77 0.92

Tsukuba (36.05◦N,
140.12◦E) 210 0.73 1.70 1.89

JPL/Caltech (34.20◦N,
118.18◦W) 243 −1.06 1.19 0.97

Saga (33.24◦N,
130.29◦E) 204 −0.33 0.76 0.91

Darwin (12.43◦S,
130.89◦E) 434 −0.47 0.89 1.00

Wollongong (34.41◦S,
150.88◦E) 341 0.09 0.58 0.75

Overall - 303 0.01 0.92 1.05

4.4. Comparison between GM-XCO2 and CarbonTracker Simulated XCO2

GM-XCO2, the spatial-temporal continuous XCO2 from satellite observations, can provide a
detailed distribution of XCO2 over global or regional land areas. In order to explore the advantages
and disadvantages of GM-XCO2, we present the latitudinal-temporal change comparison between
GM-XCO2 with CT-XCO2 and their local temporal change comparison in the northern hemisphere.

4.4.1. Comparison with Latitudinal and Temporal Variability of CT-XCO2

The latitudinal and temporal variability of the difference between GM-XCO2 (Figure 5) and
CT-XCO2 (Appendix A: Figure A2) and statistical summary are shown in Figure 11. The mean
difference is 1.53 ± 0.80 ppm. XCO2 difference in the mid-latitudes showed better consistency with
the mean value than that in low/high latitudes. The difference in high latitudes is smaller, especially
for data before March 2012. In low latitudes, the difference varied with time, with lower values in
summer and higher values in winter. The differences decreased with the satellite observations precision
improvement from 2009 to 2016.
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Figure 11. Latitudinal and temporal variability of the difference between GM-XCO2 and CT-XCO2 (a):
GM-XCO2 minus CT-XCO2) and a histogram of the differences (b).

XCO2 from low/high latitudes, especially for data before March 2012, shows the largest differences
between GM-XCO2 and CT-XCO2. The potential reasons for this are: (1) Sparse satellite observation in
high/low latitudes limited the accuracy of GM-XCO2; (2) Limited precision of XCO2 from SCIAMCHY
contributed to large differences compared to CT-XCO2; (3) Lacking or limited surface measurements in
low/high latitudes constrained the CT model and affected the simulation of accurate XCO2. GM-XCO2

provided spatial-temporal continuous XCO2 based on satellite observations that are different from the
model simulation.

4.4.2. Temporal Variability of GM-XCO2 and CT-XCO2 in Mid-Latitudes

GM-XCO2 may provide insights into local carbon uptake and emission. We present the temporal
variability of XCO2int , GM-XCO2, and XCO2 from CarbonTracker (CT-XCO2) from 2003 to 2016 over
mid-latitudes of North America and Eastern Asia (Figure 12). Mean GM-XCO2 kept the original XCO2

information from the satellites observation by kriging the XCO2int . However, GM-XCO2 presented
sharp changes in XCO2 during the peak and minimum of XCO2 in each year, which is not as smooth
as that of CT-XCO2. In addition, the temporal variability of GM-XCO2 was more consistent with
CT-XCO2 in Northern America than that of Eastern Asia. That could be attributed to the contribution
from more surface measurements to constrain the models. As a result, GM-XCO2 might provide more
information for areas with limited surface measurements, such as China.

Figure 12. Temporal variation of XCO2 from integrated and global mapped results (grey and red
points) and CarbonTracker (blue points) over latitude in the range of 30 to 45◦N and longitude of 60 to
125◦W and 60 to 125◦E.
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5. Discussion

There are some advantages of GM-XCO2 used in global carbon cycle studies. GM-XCO2 provided
spatial-temporal continuous XCO2 data from 2003 to 2016 which filled the gaps in observation as shown
in Figure 1. It improved the data precision compared with XCO2 from conventional spatio-temporal
kriging, especially for data in the satellites overlapping period. As a result, GM-XCO2 could help us
understand the temporal and spatial changes in the global distribution of CO2 [17]. Because GM-XCO2

is from instantaneous satellite observations, it could capture detailed and abnormal XCO2 change
which could be related to local carbon uptake and emission [10,55]. It could also be an important
dataset for biosphere-atmosphere interactions by relating its changes to local biosphere parameter
variations [7,11]. In addition, we provide XCO2 precision and interpolation uncertainty for each XCO2.
Users can select different temporal and spatial segments of GM-XCO2 data for their specific application.
As it was discussed that space-based XCO2 with precision (no bias) of 2.5 ppm could be used for
matching ground-based network and precision within 1.0 ppm, it could help reduce inferred CO2

flux uncertainties significantly [56]. For anthropogenic CO2 monitoring, a precision requirement of
GM-XCO2 must be better than 0.7 ppm [57].

However, there are also some challenges that need to be discussed. Prediction of GM-XCO2 in
regions with little observations could have low precision and high interpolation uncertainty. GM-XCO2

in the tropical rainforest area and the winter in high latitudes should be used carefully as a few
observations were limited by observing conditions [58,59]. The interpolation method might not
describe the process of atmospheric transport perfectly, especially for regions with a complex climate
like the Tibetan area. In addition, GM-XCO2 over a desert like the Sahara with an influence from
high brightness reflection and complex dust for satellite observations inversion should also be used
carefully [60].

6. Conclusions

In this study, we developed a precision-weighted spatio-temporal kriging interpolation method
of multiple satellite observed XCO2. It not only used the spatio-temporal variability of XCO2, but
also the precision of each observation for gap filling. The spatio-temporal correlation structure was
optimized and the weighting of XCO2 with high precision was improved. The precision of predictions
improved in most of the grids, especially for the satellites overlapping period (0.3 – 0.5 ppm). It would
be useful for gap-filling of increasing satellite observations not only in XCO2 but also for other data
observed by multiply satellites with different precision.

We also produced a spatial-temporal continuous XCO2 product, which provides the data precision
and interpolation uncertainty of each grid. It is spatio-temporal continuous XCO2 from satellite
observations which could capture the detailed change of XCO2. It could be an available dataset for
global carbon cycle studies like biosphere-atmosphere interaction.
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Appendix A

Figure A1. Latitudinal-temporal change of mean XCO2 averaging kernel from SCIAMACHY
(January–March 2003), GOSAT (June 2009–May 2014), and OCO-2 (September 2014.09–December 2016).

Figure A2. Latitudinal-temporal change of CT-XCO2 from 2003 to 2016

Acronyms

Acronyms Full Names

XCO2 Column-averaged dry air mole fraction of atmospheric CO2
XCO2ret Original XCO2 retrievals from satellites
XCO2adj Adjusted XCO2ret

XCO2con Converted XCO2adj

XCO2int Integrated combination of XCO2con

GM-XCO2 Global mapped XCO2
ENVISAT Environmental Satellite
SCIAMACHY SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY
GOSAT Greenhouse Gases Observing Satellite
OCO-2 Orbiting Carbon Observatory-2
BESD Bremen Optimal Estimation–DOAS
ACOS Atmospheric CO2 Observations from Space
TCCON The total carbon column observing network
CT CarbonTracker
r2 the coefficient of determination
RMSE the root mean square error
ESRL Earth System Research Laboratory
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