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Abstract: Enhancing plant breeding to ensure global food security requires new technologies. For
wheat phenotyping, only limited seeds and resources are available in early selection cycles. This forces
breeders to use small plots with single or multiple row plots in order to include the maximum number
of genotypes/lines for their assessment. High-throughput phenotyping through remote sensing may
meet the requirements for the phenotyping of thousands of genotypes grown in small plots in early
selection cycles. Therefore, the aim of this study was to compare the performance of an unmanned
aerial vehicle (UAV) for assessing the grain yield of wheat genotypes in different row numbers per
plot in the early selection cycles with ground-based spectral sensing. A field experiment consisting
of 32 wheat genotypes with four plot designs (1, 2, 3, and 12 rows per plot) was conducted. Near
infrared (NIR)-based spectral indices showed significant correlations (p < 0.01) with the grain yield at
flowering to grain filling, regardless of row numbers, indicating the potential of spectral indices as
indirect selection traits for the wheat grain yield. Compared with terrestrial sensing, aerial-based
sensing from UAV showed consistently higher levels of association with the grain yield, indicating that
an increased precision may be obtained and is expected to increase the efficiency of high-throughput
phenotyping in large-scale plant breeding programs. Our results suggest that high-throughput
sensing from UAV may become a convenient and efficient tool for breeders to promote a more efficient
selection of improved genotypes in early selection cycles. Such new information may support the
calibration of genomic information by providing additional information on other complex traits,
which can be ascertained by spectral sensing.

Keywords: genotypes; high-throughput; hyper- and multi-spectral sensors; phenotyping; phenomics;
plant breeding; proximal sensing; row number; UAV

1. Introduction

As breeding crops with a high yield and superior adaptability is vital to ensuring global food
security, new technologies will enhance plant breeding to meet these challenges [1–3]. In contrast to
recent progress in DNA marker assays and sequencing technologies that enable the high-throughput
genotyping of many individual plants at a relatively low cost, phenotyping large numbers of genotypes
and mapping populations in field trials is still laborious and expensive [4]. Therefore, the current
bottleneck in plant breeding research is phenotyping.

High-throughput phenotyping through the application of remote or proximal sensing that is
currently a new frontier offers a rapid and non-destructive approach to plant phenotyping. Numerous
studies have shown that the grain yield of wheat genotypes/lines can reliably be assessed by
spectral sensing [5–8]. These studies have also demonstrated that high-throughput phenotyping
from ground-based sensing could not only contribute to savings in time and costs, but also allow for
more objective information and even re-assessments in later selection cycles because the objective
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digital data collection can be permanently stored. More importantly, the availability of unmanned aerial
vehicles (UAV) has rapidly increased in recent years [9–11]. The aerial platforms have an advantage
over ground-based sensing platforms in generating surface maps in real time and measuring plant
parameters from large numbers of plots at a time [11–13]. Using high-resolution and low-altitude UAVs
can overcome further limitations of ground-based sensing platforms, such as the non-simultaneous
measurement of different plots, trafficability, row, and plot geometries requiring specific sensor
configurations and vibrations resulting from uneven field surfaces [14]. However, there is still a lack
of data comparing ground- and aerial-based sensing employed to phenotype wheat genotypes with
high-throughput sensing.

For wheat phenotyping, limited seeds and resources in early selection cycles force breeders
to use small plots with single or multiple row plots in order to include the maximum number of
genotypes/lines for their assessment [15,16]. Additionally, due to large panels and technical obstacles,
it is still difficult to determine the grain yield; thus, generally, promising lines are scored based on
visual assessments alone. An efficient method for more objectively assessing a large number of lines
in early selection cycles for the indirect detection of yield or yield-related traits could enhance the
selection efficiency and save time and costs. Therefore, to meet the requirements for early selection
cycles of wheat breeding, it is necessary to evaluate high-throughput phenotyping methods applied to
estimate the grain yield or yield-related traits in small plots in early selection cycles. However, while
much work to date has focused on evaluations in large-size plots, few reports have addressed the
capacity for high-throughput phenotyping in improving the efficiency in selection in early generations
in smaller plots with a couple of or single rows [16]. Although some field studies on spectral sensing
employed to estimate the grain yield of wheat genotypes have been conducted in plots with different
row numbers [5–7,17], a comparison of the performance of different spectral sensing approaches as
an indirect selection tool for the grain yield of wheat genotypes in plots with single and multi-row
designs has not yet been reported. Different row numbers in plots may lead to different soil coverage,
affecting spectral sensing. Therefore, a comparison of varying row designs in plots is required to
evaluate the performance of spectral sensing in breeding nurseries with different row numbers. Our
previous study compared proximal spectral sensing in field trials with single-, two-, three-, and
four-row designs [17], but only a single wheat variety was tested. Furthermore, there is the possibility
to reduce the bare soil coverage with UAV imagery by aiming to separate soil from plant pixels,
which tends to be more important in using spectral sensing for single-row plots that may also have
greater row spacing between plots. Therefore, we hypothesized that aerial-based sensing from UAV
could be more suitable for fewer rows or small plots.

In the present study, the objectives were to compare the performance of ground-based hyperspectral
and aerial-based multispectral sensing from UAV for phenotyping the grain yield of 32 wheat
genotypes/lines in 1-, 2-, and 3-row plots simulating the trial design for early selection cycles, and to
compare the results with those of a 12-row plot design that is commonly used to evaluate the yield
performance in breeding and agronomical evaluations in Western Europe. To the best of our knowledge,
this study is the first to report on the use of both ground- and aerial-based spectral sensing (UAV)
and to compare their performance for phenotyping the wheat grain yield in single-row plots with
multi-row plots. The expected results may contribute to the further application of the spectral sensing
technique in the program of early selection cycles in breeding.

2. Materials and Methods

2.1. Plant Material, Experimental Design, and Grain Yield Determination

Field experiments were conducted at the Dürnast Research Station of the Technical University of
Munich in Germany (48◦23′60” N, 11◦41′60” E). The soil is a homogeneous Cambisol with a silty-clay
loam texture. Annual precipitation is approximately 800 mm and the average temperature is 8 ◦C.



Remote Sens. 2020, 12, 574 3 of 10

A randomized block design was used to test the phenotypic variation of 32 winter wheat cultivars
(Triticum aestivum L.), including a panel of 26 modern wheat cultivars from Germany and six from
Eastern Europe, with four plot designs that consisted of plots with 1, 2, 3, and 12 rows per plot and four
replications. The space between plots was 50 cm and the space between rows was 12.5 cm, in order to
achieve a high canopy coverage [17]. The length of the plots was increased to 10 m to further evaluate
the influence of plot length on spectral measurements by subdividing them into different plot lengths
in order to compare the effect of plot length on spectral measurements. Since there was no difference in
spectral measurements due to the plot length from 2 to 10 m, the results are not presented in this paper.
The plots were oriented from East to West.

At plant maturity, the grain yield was determined by the mechanical harvesting of 1-, 2-, 3-, and
12-row plots.

2.2. Spectral Reflectance Measurements Obtained by Ground-Based Hyperspectral Sensing and Aerial-Based
Multispectral Sensing

In order to compare ground- and aerial-based sensing, a hand-held hyperspectral sensor and an
unmanned aerial vehicle (UAV) carrying a multispectral camera were used for data acquisition at
different BBCH scale (Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie) growth
stages [18], i.e., BBCH 49 (booting; 28.05.2018), BBCH 65 (anthesis; 10.06.2018), and BBCH 85 (grain
filling; 26.06.2018). These stages were chosen due to being most indicative for the assessment of the
winter wheat yield [19].

Ground-based hyperspectral sensing of the crop canopy was conducted through measurements of
the reflected radiation. For measuring crop canopies, the primary focus was given to electromagnetic
radiation within the visible (VIS, approximately 400–700 nm) and near-infrared (NIR, approximately
700–1100 nm) spectral range. A passive hand-held reflectance sensor (tec5, Oberursel, Germany)
enabling hyperspectral readings was used. The bi-directional radiometer has a spectral detection range
of 400 to 1100 nm and a bandwidth of 3.3 nm [20]. On clear sunny days at solar noon, canopy eflectance
was measured at 0.5 m above the canopy with a 22◦ field of view (FOV) of a circular shape, resulting in
about a 0.13 m2 scanning area. The sensor was always positioned amid the row variants.

For aerial-based multispectral sensing, the wing aircraft senseFly (“eBee,” SenseFly, Lausanne,
Switzerland), equipped with a multispectral and sunshine sensor (Sequoia camera) (Parrot, Paris,
France), was used for flying in an East-West direction. Since the Sequoia and sunshine sensor are
integrated in a fixed structure, and imagery captured with the Parrot Sequoia camera is automatically
recognized by the software, they are placed very accurately and the angles will not change at any time
during the flight. The Sequoia multispectral camera takes photos in four spectral bands, i.e., green
(550 nm, ~40 nm bandwidth), red (660 nm, ~40 nm bandwidth), and 2 x NIR regions (NIR-1: 735 nm,
~10 nm bandwidth and NIR-2: 790 nm, ~40 nm bandwidth) of the electromagnetic spectrum. The focal
length is 3.98 mm; image size is 1280 x 960 pixels; and field of view is 61.9◦horizontally, 48.5◦ vertically,
and 73.7◦ diagonally. As the radiometric calibration target, a white balance card was used to enable the
Pix4D software to calibrate and correct the images’ reflectance. Flights were conducted at 50 m above
the ground level, resulting in ground sampling distances of about 5 cm/pixel. Mission planning was
done with eMotion 3 for the Sequoia camera. All flights were planned for 80% overlap along flight
corridors and concomitantly carried out for the terrestrial sensor measurements at solar noon. Global
shutters were used. The Pix4DMapper was used to process the multi-spectral UAV data. Plot-level
means of green, red, NIR-1, and NIR-2 measurements from UAVs were created in ArcGIS Desktop
version 10.5 (ESRI, Munich, Germany). To precisely extract the canopy coverage from individual
plots, the shape files containing annotated single polygons with an optimized width to cover the most
indicative sections of the row variants were segmented by hand. The width of the polygons was 15,
30, 40, and 110 cm for the 1-, 2-, 3-, and 12-row plots, respectively, to maximize the canopy coverage
while minimizing bare-soil cover. For all flights, the GeoTIFFs with the green, red, NIR-1, and NIR-2



Remote Sens. 2020, 12, 574 4 of 10

orthomosaics from Pix4D were combined with the plot polygon and shape file. Green, red, NIR-1, and
NIR-2 means from each plot were generated using the zonal-statistics function in ArcGIS.

2.3. Calculation of Spectral Indices

Canopy spectral reflectance acquired from ground- and aerial-based spectral sensing was used
to calculate vegetation indices, i.e., NIR-based indices of the water band index (WBI) and NIR:NIR,
and visible- and NIR-based indices of the red normalized difference vegetation index (NDVI), NIR:Red,
and NIR:Green (Table 1), which are reportedly highly correlated with the plant biomass and grain
yield [19,21–23].

Table 1. Spectral reflectance indices used in this study.

Index Name
Formula

References

Ground-Based Hyperspectral Sensing
Aerial-Based
Multispectral

Sensing

WBI (Water band
index) R900/R970 [21,22]

NDVI (Red
Normalized
difference

vegetation index)

(R800−R680)/(R800+R680) (R790−R660)/(R790+R660) [20–23]

Simple ratios
NIR:NIR R780/R740 R790/R735 [24]

NIR:Green R780/R550 R790/R550 [20]
NIR:Red R760/R670 R790/R660 [23]

2.4. Statistical Analysis

Lme4 and Sommer packages from the R-program (www.R-project.org) were used for the analysis
of variance (ANOVA) to differentiate among row treatments. Phenotypic and genetic correlation
coefficients were estimated to reveal the association between spectral indices and the grain yield.

The genetic correlation coefficients between spectral indices and the grain yield were calculated
by the following formula [25]:

rg = (CovXY)/
√

(VarX · VarY), (1)

where Var and Cov refer to the components of variance and covariance, respectively, and X and Y are
the two variables.

Broad-sense heritabilities (h2) were calculated on a mean basis according to Holland et al. [26].
Broad-sense heritability is the proportion of the phenotypic variance, which is explained by the genetic
variance, and was estimated as follows:

h2 = σ2
g/(σ2

g + σ2
e/n), (2)

where σg and σe are the genotypic and residual variance components, respectively, and n is the number
of replicate blocks.

3. Results

3.1. Genotypic Variation in Plots with 1, 2, 3, and 12 Rows

Significant genotypic variation in the grain yield among the 32 wheat genotypes was found in
all row variants (Table 2). The highest mean grain yield per row was obtained from single-row plots,
and the lowest yield was obtained from 12-row plots. The results showed that there was a significant
effect of row variants on the grain yield. Heritability of the grain yield increased with an increasing

www.R-project.org
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number of rows per plot and ranged from 0.82 to 0.92. The results also demonstrated that plots with
fewer rows showed higher standard deviations (SD).

Table 2. Minimum, maximum, mean ± SD, and heritability (h2) of the grain yield in plots with 1,
2, 3 and 12 rows. Mean comparison of plot treatments from Tukey’s HSD test indicated significant
differences at p < 0.001.

Grain Yield
(g/row)

Row Number Variants

1 2 3 12

Min 1364 965 839 757
Max 2369 1662 1286 1055

Mean±SD 1836a ± 257 1281b ± 179 1035c ± 122 891d ± 99
h2 0.82 0.87 0.9 0.92

3.2. Phenotypic and Genetic Correlations Between Spectral Indices and the Grain Yield in Different Row
Variants

The NIR-based indices NIR:NIR and WBI showed strong and significant phenotypic correlations
with the grain yield, regardless of the number of rows and growth stage (Table 3). At grain filling,
significant correlations of NIR:Red, NIR:Green, and NDVI with the grain yield were found almost for
all row variants.

Table 3. Phenotypic correlation between the grain yield and spectral indices from ground- and
aerial-based sensing in different row variants at BBCH scale stages 49, 65, and 85.

Row Number
Variants

Spectral Indices

NIR:Red NIR:Green NDVI NIR:NIR WBI

Ground-based hyperspectral sensing
BBCH 49

1 0.21 ns 0.30 ns 0.20 ns 0.50 ** 0.42 *
2 0.26 ns 0.29 ns 0.29 ns 0.58 ** 0.51 **
3 0.41 * 0.36 * 0.45 ** 0.49 ** 0.51 **

12 0.31 ns 0.28 ns 0.24 ns 0.37 * 0.44 *
BBCH 65

1 0.24 ns 0.38 * 0.28 ns 0.55 ** 0.16 ns
2 0.30 ns 0.37 * 0.30 ns 0.66 ** 0.42 *
3 0.22 ns 0.24 ns 0.26 ns 0.56 ** 0.60 **

12 −0.02 ns 0.06 ns −0.04 ns 0.44 * 0.47 **
BBCH 85

1 0.43 * 0.31 ns 0.37 * 0.36 * 0.47 **
2 0.66 ** 0.55 ** 0.63 ** 0.65 ** 0.72 **
3 0.55 ** 0.36 * 0.54 ** 0.47 ** 0.60 **

12 0.45 * 0.25 ns 0.51 ** 0.38 * 0.64 **
Aerial-based multispectral sensing

BBCH 49
1 0.42 * 0.48 ** 0.35 * 0.54 ** -
2 0.55 ** 0.61 ** 0.52 ** 0.71 ** -
3 0.59 ** 0.63 ** 0.60 ** 0.61 ** -

12 0.37 * 0.35 ns 0.33 ns 0.51 ** -
BBCH 65

1 0.33 ns 0.38 * 0.31 ns 0.58 ** -
2 0.40 * 0.54 ** 0.41 * 0.67 ** -
3 0.36 * 0.53 ** 0.38 * 0.72 ** -

12 0.27 ns 0.35 ns 0.27 ns 0.58 ** -
BBCH 85

1 0.44 * 0.40 * 0.44 * 0.40 * -
2 0.68 ** 0.60 ** 0.68 ** 0.64 ** -
3 0.62 ** 0.44 * 0.63 ** 0.57 ** -

12 0.55 ** 0.49 ** 0.59 ** 0.45 * -

ns = not significant; * = p < 0.05; ** = p < 0.01.
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Compared with ground-based sensing, spectral indices derived from aerial-based sensing
consistently showed higher levels of phenotypic association with the grain yield.

Genetic relationships between spectral indices and the grain yield were similar to phenotypic
relationships; however, the coefficients of genetic correlation were sometimes higher than those of the
phenotypic correlations (Table 4).

Table 4. Genetic correlation between the grain yield and spectral indices from ground- and aerial-based
sensing in different row variants at BBCH scale stages 49, 65, and 85.

Row Number
Variants

Spectral Indices

NIR:Red NIR:Green NDVI NIR:NIR WBI

Ground-based hyperspectral sensing
BBCH 49

1 0.44 ns 0.56 ns 0.37 ns 0.68 * 0.66 *
2 0.44 ns 0.50 ns 0.49 ns 0.80 * 0.56 *
3 0.54 * 0.53 ns 0.65 * 0.54 * 0.58 *

12 0.41 ns 0.37 ns 0.37 ns 0.40 ns 0.44 *
BBCH 65

1 0.65 ns 0.86 * 0.70 ns 0.75 ** 0.33 ns
2 0.48 ns 0.65 * 0.57 ns 0.81 ** 0.53 *
3 0.37 ns 0.39 ns 0.48 ns 0.71 ** 0.80 **

12 0.01 ns 0.10 ns 0.02 ns 0.46 * 0.51 *
BBCH 85

1 0.51 * 0.41 ns 0.46 ns 0.40 ns 0.49 *
2 0.74 ** 0.67 * 0.70 ** 0.71 ** 0.75 **
3 0.64 ** 0.50 * 0.64 ** 0.56 * 0.45 ns

12 0.48 * 0.28 ns 0.55 * 0.42 * 0.65 **
Aerial-based multispectral sensing

BBCH 49
1 0.79 * 0.94 ** 0.57 * 1.00 ** -
2 0.75 ** 0.92 ** 0.74 ** 1.00 ** -
3 0.92 * 0.85 ** 0.77 ** 0.79 ** -

12 0.39 ns 0.36 ns 0.36 ns 0.55 * -
BBCH 65

1 0.71 * 0.64 * 0.59 * 0.87 * -
2 0.71 * 0.80 ** 0.67 * 0.79 ** -
3 0.53 * 0.69 ** 0.56 * 0.85 ** -

12 0.22 ns 0.37 ns 0.31 ns 0.61 ** -
BBCH 85

1 0.57 * 0.53 * 0.55 * 0.53 * -
2 0.74 ** 0.67 ** 0.74 ** 0.71 ** -
3 0.68 ** 0.51 * 0.70 ** 0.64 ** -

12 0.58 ** 0.53 * 0.63 ** 0.46 * -

ns = not significant; * = p < 0.05; ** = p < 0.01.

3.3. Heritability of Spectral Indices in Different Row Variants

A moderate to high level of broad-sense heritability was observed for most spectral indices. The
heritability of spectral reflectance indices generally increased with the growth stage for a given row
variant and with an increasing number of rows at any given growth stage (Table 5). The highest
heritability for a given index was found at grain filling (BBCH 85) in 12-row plots.

For example, at grain filling, the heritability of indices in 12-row plots ranged from 0.65 to 0.96 for
ground-based sensing, and from 0.79 to 0.96 for aerial-based sensing.

Compared with ground-based sensing, the values of heritability for the same index from
aerial-based sensing were higher in most cases (Table 5).
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Table 5. Heritability of spectral indices from ground- and aerial-based sensing in plots with different
row variants at BBCH scale stages 49, 65, and 85.

Row Number
Variants

Spectral Indices

NIR:Red NIR:Green NDVI NIR:NIR WBI

Ground-based hyperspectral sensing
BBCH 49

1 0.51 0.52 0.52 0.64 0.65
2 0.49 0.44 0.39 0.49 0.57
3 0.57 0.50 0.54 0.72 0.76

12 0.58 0.55 0.52 0.86 0.88
BBCH 65

1 0.36 0.37 0.33 0.67 0.80
2 0.63 0.47 0.48 0.72 0.82
3 0.55 0.56 0.41 0.70 0.81

12 0.50 0.52 0.55 0.89 0.92
BBCH 85

1 0.80 0.65 0.77 0.76 0.81
2 0.85 0.69 0.84 0.78 0.79
3 0.84 0.66 0.84 0.81 0.80

12 0.96 0.88 0.95 0.96 0.95
Aerial-based multispectral sensing

BBCH 49
1 0.45 0.48 0.64 0.13 -
2 0.58 0.52 0.63 0.46 -
3 0.33 0.55 0.62 0.56 -

12 0.73 0.93 0.84 0.89 -
BBCH 65

1 0.51 0.65 0.57 0.44 -
2 0.55 0.65 0.61 0.76 -
3 0.60 0.72 0.59 0.70 -

12 0.79 0.89 0.87 0.93 -
BBCH 85

1 0.83 0.79 0.86 0.73 -
2 0.91 0.91 0.94 0.90 -
3 0.85 0.85 0.90 0.86 -

12 0.95 0.95 0.96 0.96 -

4. Discussion

4.1. Phenotypic and Genetic Correlations Between the Grain Yield and Spectral Indices, as Obtained from
Ground-Based Hyperspectral and Aerial-Based Multi-Spectral Sensing

The evaluation and selection of moderate- and high-yielding wheat genotypes using spectral
indices derived from ground-based sensing have been successfully applied under different
environmental conditions in previous studies in plots with increased row numbers [5,6,8,27]. In the
present study, the best performing spectral indices from ground-based hyperspectral sensing for
predicting the grain yield at phenotypic and genetic levels were the NIR-based indices NIR:NIR and
WBI for all variants with different numbers of rows per plot (Tables 3 and 4). Although the indices
NIR:Red, NIR:Green, and NDVI could not distinguish among genotypes at BBCH 49 and BBCH 65, they
significantly correlated with the grain yield at BBCH 85. Overall, these results agree with the findings
presented by other authors studying wheat under well-watered and drought stress conditions [5–8,19].

This is the first report on a comparison of correlations between spectral indices and the wheat
grain yield for plots with different numbers of rows. As single- or two-row plots share a higher
fraction of soil coverage than plots with higher row numbers (3 or 12), this study aimed to assess
whether differences in canopy/soil coverage representing mixed-pixel situations interfere with spectral
sensing. A previous study [17] showed that the one-row design only covered approximately 34% of the
field of view of a hand-held spectrometer, whereas two-row plots covered 80%, when the sensor was
positioned at 100 cm above the plant canopy. To reduce the effect of bare soil between plots with one or
two rows per plot, Barmeier and Schmidhalter [17] suggested optimizing spectral sensing by reducing
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the sensor–canopy distance, with the sensor always being positioned amid rows. Therefore, the
sensor–canopy distance was reduced from 100 to 50 cm in this study. By decreasing the sensor–canopy
distance for a hand-held spectral proximal sensor, the results of this study showed that differences
in grain yield among genotypes could not only be distinguished in multi-row plot designs, but in
single-row plots as well, especially by NIR-based indices (Tables 3 and 4), thus suggesting that it is
possible to use spectral sensing for the high-throughput phenotyping of wheat genotypes in early
selection cycles. Reliable evaluation in smaller plots for the drivers of yield, especially those novel
and rare alleles commonly lost when targeting the grain yield alone in breeder’s nurseries, will enable
novel phenotypes to be recycled through subsequent crossing and population development [16]. The
new information may strongly support genomic selection efficiency, as well as the calibration of
genomic information, by providing additional information on other complex traits, such as drought
tolerance [8,28], salinity tolerance [29,30], and nitrogen use efficiency [19], which can be ascertained by
spectral sensing.

In aerial-based multispectral sensing, significant correlations between spectral indices and the
yield were generally higher than those obtained from ground-based sensing, especially at booting and
anthesis (Tables 3 and 4), suggesting that increased precision may be obtained from UAV imagery. This
is in agreement with recent reports [12,31,32]. The relatively higher precision of measurements by UAVs
can be associated with several major factors: (i) Non-vegetation pixels can be better removed from
imagery obtained by UAV. This could be more pronounced in plots with fewer rows. Recent studies
have demonstrated the possibility to improve the segmentation of plant-soil pixels, e.g., using Support
Vector Machine (SVM) classification or Convolutional Neural Networks [27,33,34]; (ii) aerial-based
sensing has an advantage over ground-based sensing platforms in generating surface maps in real time
and measuring plant parameters from a large number of plots at a time, typically associated with the
time required to make ground-based measurements in large trials [12,13]; (iii) using high-resolution
and low-altitude UAVs can overcome further limitations of ground-based sensing platforms, such as
the non-simultaneous measurement of different plots, trafficability, row, and plot geometries requiring
specific sensor configurations, and vibrations resulting from uneven field surfaces [12,28]. Given that
the operation of UAV image acquisition is less labor-intensive, and owing to improved segmentation
procedures and a higher precision than non-imaging proximal sensing, aerial-based multispectral
sensing via UAV is expected to increase the efficiency of high-throughput phenotyping in large-scale
plant breeding programs [10,12].

4.2. Heritability of Spectral Indices from Ground- and Aerial-Based Sensing

High heritability and strong phenotypic and genetic correlations between indirect traits and the
grain yield are desirable [25]. However, in previous studies on wheat genotypes, heritability values of
spectral indices have been inconsistent [5–8]. Falconer [25] proposed that using an alternative indirect
selection trait for the grain yield is only appropriate if the heritability of the indirect trait is higher
than that of the grain yield itself. Therefore, the authors [5–7] concluded that, even with low h2 values,
spectral indices can still be valuable as indirect selection traits to breeders because such values were
still higher than those of the grain yield in most cases. The results of this study showed that compared
with h2 values of the grain yield, higher h2 values of spectral indices were obtained, particularly from
aerial-based sensing at grain filling in plots with 1, 2, and 12 rows (Tables 2 and 5), thus confirming
that aerial-based sensing delivers a higher precision for high-throughput phenotyping.

5. Conclusions

Our study demonstrated that NIR-based spectral indices indicated strong and significant
phenotypic and genetic correlations with the grain yield, regardless of the row variants per plot
and growth stage, indicating a high potential of NIR-based indices as indirect selection traits for the
wheat grain yield. Compared with ground-based sensing, spectral indices from aerial-based sensing
by UAV consistently showed a higher association with the grain yield, indicating that an increased
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precision may be obtained and is expected to increase the efficiency of high-throughput phenotyping
in large-scale plant breeding programs and allow breeders a more objective selection of improved
genotypes in early selection cycles, thereby reducing costs by performing fewer directed samplings.
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