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Abstract: In recent years, building change detection has made remarkable progress through using deep
learning. The core problems of this technique are the need for additional data (e.g., Lidar or semantic
labels) and the difficulty in extracting sufficient features. In this paper, we propose an end-to-end
network, called the pyramid feature-based attention-guided Siamese network (PGA-SiamNet), to
solve these problems. The network is trained to capture possible changes using a convolutional neural
network in a pyramid. It emphasizes the importance of correlation among the input feature pairs by
introducing a global co-attention mechanism. Furthermore, we effectively improved the long-range
dependencies of the features by utilizing various attention mechanisms and then aggregating the
features of the low-level and co-attention level; this helps to obtain richer object information. Finally,
we evaluated our method with a publicly available dataset (WHU) building dataset and a new dataset
(EV-CD) building dataset. The experiments demonstrate that the proposed method is effective for
building change detection and outperforms the existing state-of-the-art methods on high-resolution
remote sensing orthoimages in various metrics.

Keywords: building change detection; remote sensing orthoimagery; attention mechanism; Siamese
convolutional neural network

1. Introduction

1.1. Background

Remote sensing imagery has found a wide range of applications because it can obtain change
information occurring around the world, both in densely populated cities and in hard-to-reach areas.
Meanwhile, change detection (CD), as a hot topic in the field of remote sensing analysis, has been
studied for several decades. Because of its unique characteristics, many CD studies have been dedicated
to solving large-scale and complicated problems using remote sensing images, for example, for the
monitoring of forests and urban sprawl, and earthquake assessment over long periods. A lot of
research institutions have made many intensive studies on CD, such as the seasonal and annual
change monitoring (SATChMo) project [1] of Poland, earth watching [2] of European space agency
(ESA) and Onera satellite change detection [3] of the IEEE geosciences and remote sensing association
(IEEE GRSS).

Recently, the high-resolution (HR) or very-high-resolution (VHR) images have received a lot of
attention because they can reveal more detailed information about the land surface, thereby increasing
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the possibility of monitoring small but important objects such as buildings. Driven by this, building
change detection (BCD) has attracted substantial attention in applications such as urbanization
monitoring, illegal or unauthorized building identification, and disaster evaluation. In addition,
automatic building change detection for remote sensing images has become a topical issue because
carrying out the task manually is time consuming and tedious [4]. Therefore, there is a crucial need to
investigate efficient building change detection algorithms for remote sensing images.

In general, the traditional change detection process consists of three major steps: preprocessing,
change detection technique selection, and accuracy assessment. Moreover, these methods typically
follow one of two approaches [5]: pixel-based or object-based methods [6–10]. Pixel-based methods
are mainly used in large-scale change detection with low or medium resolution images (e.g., MODIS),
while object-based methods are more popular for HR or VHR images (e.g., QuickBird, GeoEye-1,
WorldView-1/2, Aerial imagery), because the high-frequency components in the VR/VHR images
cannot be fully represented by pixel-based methods. These methods have been fully developed in
various scenarios in the past years; however, the features used by change detection algorithms are
almost hand crafted and so are weak in image representation [11]. The features are also susceptible to
the process in the preprocessing stage, such as those involved in radiometric correction, geometric
correction, and image registration. Besides this, the effects of changes in the appearance of objects
caused by different photographic angles can be alleviated by orthorectification, but this also brings
new problems affecting accurate detection. In high-resolution orthorectified images, the displacement
of buildings (especially high-rise buildings) mainly caused by rectifications with a digital elevation
model (DEM) and the poor alignment caused by the displacement can lead to many false positive
changes. In addition, as the spatial resolution of satellite images increases, the accuracy of image
registration tends to worsen [5,8]. Generally, the overall framework of the change detection technique
can be summarized as feature extractions and change decisions, which is depicted in Figure 1.
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Figure 1. The basic framework for change detection.

Considering the facts described above, it is not sufficient to obtain the building changes with
the 2D information delivered by satellite images, in which many irrelevant changes are mixed with
the desired changes. Recently, a lot of research has focused on improving the precision of building
change detection. For example, when taking the features extended into 3D space, i.e., the height
information, which is free of illumination variations and perspective distortions [12], building extraction
and change detection accuracy is improved [13,14]. Moreover, with the Lidar system expansion,
some approaches using laser scanning data have been making headway [15]. However, when it comes
to large and remote areas, the data is either low frequency, or hard or even impossible to acquire.
In addition, owing to breakthroughs in dense image matching (DIM) techniques, the availability of
image-based 3D information [16] has greatly increased; this field being known as DSM (digital surface
model)-assisted building change detection [17]. However, the relatively low quality of the DSMs from
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satellite data, which is strongly dependent on image matching technology, is still a major obstacle for
detection accuracy.

Recently, the excitement around deep convolutional neural networks (CNN) has been tremendous,
with successful applications in many real-world vision tasks, such as object detection [18], image
classification [19], semantic segmentation [20], as well as change detection [21]. However, remote
sensing applications present some new challenges for deep learning regarding multimodal and
multisource data [22]. Thanks to learned feature representations, which are more robust to appearance
and shape variations, significant performance improvements have been achieved. The researches in
the field of building change detection can be divided into two: (1) post-classification-based methods;
and (2) direct-detection-based methods. The first methods involve first extracting the buildings
from the images at a different time in the same area, and then obtaining the changed buildings
by comparing the extracted building maps. Furthermore, if applying the post-classification-based
methods, the displacement of the objects becomes less important, and changes are found by verifying
whether the two images contain the same object or not [23]. However, a high accuracy of building
extraction is required, which is a hard task in itself and can lead to accumulated errors. The second
set of methods are based on an end-to-end framework and have been successfully used to identify
building changes. They avoid some of the weaknesses of classic methods, especially in dense urban
areas. Rodrigo has trained an end-to-end Siamese architecture from scratch using a fully convolutional
network, and the result surpassed the state-of-the-art methods in change detection, both in accuracy
and in inference speed without any post-processing [24]. As mentioned above, the displacement of
the buildings in the orthorectified images is a major challenge for most end-to-end building change
detection methods. However, most current methods do not take the building displacement into
account and ignore the correlation between the image pairs. Lebedev proposed a specially modified
generative adversarial network (GAN) architecture based on pix2pix for automatic change detection in
season-varying remote sensing images. In this research, object shift was considered, which is crucial
for the buildings in orthorectified images [25].

Despite the wide availability of CNN, it lacks large amounts of available corresponding change
annotations to provide training data, which is necessary to train a reliable change detector in a
supervised approach. Focusing on this issue, many recent researches explore alternatives, such as
training a weak supervised network [26–28], applying an unsupervised approach [29–31], or even
focusing on noisy data [28]. However, studies on building change detection mainly concentrate
on either two-stage detection accompanied with building detection or one-stage without taking the
displacement of the buildings into account.

Recently, weakly supervised approaches have been proposed in an attempt to compensate for
the dependence on the large annotated data, such as training with synthetic data obtained by a given
geometric transformation [32–34]. However, detecting building changes with these methods has some
restrictions: either an accurate position of the change cannot be given, or information of an independent
building is required.

1.2. Related Work

1.2.1. Attention Mechanism

The so-called attention is a way to observe the world and imitate the mechanism of humans [35].
Recently, it has been demonstrated to be a simple but effective tool for improving the representation
ability of CNN through reweighting of the feature maps; this is achieved using spatial attention and
channel attention to scale the features which are meaningful or useless [36–43].

Channelwise attention. In order to improve the discriminant of the abstract feature, the channels
of high-level features may number in the thousands (in which there inevitably exists redundant
information), and each of them can be regarded as a class-specific response [37]. To exploit the
interdependencies between these maps, channelwise attention was created to emphasize the channels
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that are relatively informative and focus on the meaningful input. Through obtaining the channel
relationship matrix, the self-attention channel weight of the original feature map can be further
calculated, helping to boost feature discriminability [36,41,44,45].

Spatialwise attention. In view of the fact that the low-level features usually contain a large
number of details and the receptive field of the convolution layer in traditional FCN (full convolutional
network) is limited, if the network only establishes a pixel relationship in the local neighborhood,
it can easily lead to unsatisfactory results. In addition, the studies on how effectively obtained
long-range dependencies without using deeply stacking convolution layers are more attractive. Instead
of considering all positions, spatial attention is introduced to find the relationships of the position
and highlight the meaningful region. To take full advantage of the information of the features,
more and more researchers are preferring to combine the spatialwise attention and channelwise
attention [36–38,45].

Co-Attention mechanism. More recently, in order to understand the fine-grained relationship
and mine the underlying correlations between different modalities, co-attention mechanisms have been
widely studied in vision-and-language tasks, such as in visual question answering (VQA) [46–49]. In the
computer vision area, Lu was inspired by the above-mentioned works and built the co-attention module
to capture the coherence between video frames and effectively suppress the current alternatives [40].

1.2.2. Semantic Correspondence Mechanism

In general, the issue of change detection can be attributed to finding and matching pairs of
images [50–52]. The rule of the method is based on the idea that by determining whether a similar
semantic object in the second image exists or not to express unchanged and changed. Therefore,
finding the correspondence of the point has long been one of the fundamental problems in the field of
computer vision and photogrammetry. Traditional methods have been quite successful; they usually
employed hand-crafted descriptors (e.g., Scale Invariant Feature Transform (SIFT) [53], Histogram
of Oriented Gradients (HOG) [54], Oriented FAST and Rotated BRIEF (ORB) [55]) to find the key
point correspondences based on minimizing an empirical matching strategy and then rejecting the
outliers with a geometric match model. Afterwards, several studies began to consider trainable
descriptors [56,57] with CNN. However, these methods heavily depended on predefined features of
sparse points and none of the models could be directly used for semantic alignment [32,58]. Given the
recent success of using end-to-end CNN in various tasks, many approaches for semantic matching
have been proposed with promising results [56,59]. However, these methods also suffer from the same
limitations as many other machine learning tasks. Therefore, to achieve satisfactory results, large-scale
and diverse training data are required, which is labor intensive and time consuming.

In this paper, we propose a novel framework for building change detection, using satellite
orthorectified images to model the complex change relationships of the buildings with displacement in
the scene. The main contributions of this paper can be summarized as follows:

(1) We introduce a co-attention module which can deal with the displacement of buildings in
orthoimages to enhance the feature representations and further mine the correlations therein.
Meanwhile, we fuse the semantic and context information of the feature using a context
fusion strategy;

(2) We provide a new satellite dataset for building change detection frameworks covering various
sensors, and verify its effectiveness by conducting extensive experiments;

(3) We propose an effective Siamese building change detection framework and make some
improvements. Moreover, we train our model using two different datasets. The proposed
method shows superior performance: it can directly obtain pixel-level predictions without any
other post-processing techniques.

The structure of this paper is organized as follows: Section 2 describes the datasets and the
proposed method of this paper. The experimental results and accuracy assessments are presented in
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Section 3. Section 4 presents the discussion. Finally, the conclusion of this paper is summarized in
Section 5.

2. Materials and Methods

In this section, we provide the formulation of our method to detect building changes. Firstly,
we introduce the datasets used in our study in Section 2.1. The description of our network, pyramid
feature-based attention-guided Siamese network (PGA-SiamNet), is presented in Section 2.2. Finally,
in Section 2.3, the implementation of the experiment is described in detail.

2.1. Datasets

In this paper, in order to train the proposed network and evaluate its performance, we adopted
two different building change detection datasets, namely dataset I (DI) and dataset II (DII). The first
dataset (DI) is the Wuhan University (WHU) building change detection dataset [60] which covers
Christchurch, New Zealand, and contains two scenes acquired at the same location in 2012 and 2016,
with the semantic labels of the buildings and the change detection labels. The dataset is made up of
aerial imagery data with a 0.075 m spatial resolution.

We named the DII dataset the earth vision-change detection (EV-CD building) dataset. The dataset
was labeled by us and is extremely challenging. Moreover, soon it will be available to the public.
The dataset is much more complex than the DI dataset and is made up of satellite imagery data instead
of aerial imagery data. The dataset consists of data from a variety of sensors with different spatial
resolution ranges from 0.2 to 2 m and contains several cities in the south of China. In addition, there
are many high-rise buildings with large displacements. Figure 2 shows part of the DI and DII datasets
with the building changes labeled by vectorized polygons. Figure 2a is the DI dataset, Figure 2b,c
belong to the DII dataset. The zoomed-in images in the right of Figure 2 show that the buildings
in dataset DII are more diverse than those in dataset DI. In addition, dataset DII has more high-rise
buildings with unavoidable displacement, which is what we were focusing on all along.
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Figure 2. The images in dataset DI and dataset DII. In (a), the first two rows show the two scenes in the
same area. In (b,c), the first two columns show the two scenes in the same area. The changed buildings
are marked with a red polygon in the right images. The last column is the zoomed-in view of area
selected by the white box.

For the two datasets, we divided all the images into tiles of 512 × 512 pixels, with both the overlay
of the width and height being 200 pixels, and finally split each of the two datasets into training sets,
validation sets, and test sets randomly in a ratio of 7:1:2. Table 1 shows the general information of the
two datasets used in our experiments, including the ground sample distance (GSD), source, pixel size
of the tile, and the image number to training, validation, and test sets.

Table 1. Information of our datasets for experiments.

Datasets GSD (Meters) Source Size (Pixels) Number (Tiles)
(Training/Validation/Test)

DI(WHU) 0.075 Aerial 512 × 512 691/97/199
DII(EV-CD) 0.2–2 Satellite 512 × 512 1225/175/350
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2.2. Methods

2.2.1. Problem Description

PGA-SiamNet was constructed as a Siamese network, with an encoder–decoder structure.
The co-attention module setting at the end of the encoder learns the correlation between the deep
features of the input image pair; this enables the PGA-SiamNet to find the objects with displacement
in other images, which is vital to building change detection. The pyramid change module helps the
network to discover the object changes of various sizes and so give better results. Specifically, context
information is important for the object in complex scenes, thus aggregating long-range contextual
information is useful to improve the feature representation for building change detection.

2.2.2. Architecture Overview

The proposed building change detection network is a Siamese network, following the
encoder–decoder architecture as shown in Figure 3. In particular, we employed the well-known VGG16
as the backbone to encode the features of the image pairs to be detected, with each branch sharing
the weight. We built a network with the change residual (CR) module for the two-input feature but
without any attention mechanism as the baseline; this can be seen in the blue dashed box; the yellow
box is the change residual (CR) module.
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Figure 3. Overview of pyramid feature-based attention-guided Siamese network (PGA-SiamNet
Network). CoA indicates the co-attention module.

Thereafter, we introduced attention modules to enrich the CR module. For example, by increasing
the receptive field to extract a different scale of feature information, we applied an atrous spatial
pyramid pooling (ASPP) module for the deepest level feature of the encoder. We conducted ablation
studies for comparison by modifying our network with proposed modules, as is discussed in Section 3.1.
To emphasize the useful information of the deep features with 512 channels, the channelwise attention
is used for layer 4, 5, and 6. Similarly, the shallow features with rich position information are optimized
with spatialwise attention. Finally, a co-layer aggregation (CLA) module was used to aggregate the
low-level and high-level features, thus fusing the semantic and the context information.

2.2.3. Co-Attention Module

The first module of PGA-SiamNet is a co-attention block with an elegant differentiable attention
based on a correlation network, which takes in deep feature representations from an image pair as
inputs and outputs for a correlation map. If the image pairs contain common objects and therefore
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belong to the unchanged category, the features at the locations of the shared objects exhibit similar
characteristics. Therefore, inspired by the co-attention mechanism, which discriminates objects from
video, the co-attention block was added to the proposed network to identify the changes.

The neighborhood consensus module [61] is used to obtain correlations of the two given features fa
and fb, because it has already been applied and achieved superior performance in previous research [59].
COSNet [62] proposed another method which uses an affinity matrix to denote co-attention, and so to
mine the correlations through adding a weight matrix and verifying the proposed three matrix styles
by experiments. In the paper, the co-attention style is exploited to obtain the correlation map like
COSNet, which is showed in Figure 4 with the blue dashed box. The correlation map, referred to as
affinity matrix SεR(h×w)×(h×w) between fa and fb, is derived from

S = f T
b W fa (1)

W = P−1DP (2)

where faεRC × (h × w) and fbεRC × (h × w) are the features of the input image pair, the two features are
obtained by the encoder of the network, WεRC × C is a weight matrix, P is an invertible matrix, and D
is a diagonal matrix, and h and w indicate the height and width of the input features, respectively.
Then, a softmax function was used to normalize S by column-wise and row-wise.
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Sc = so f tmax(S), Sr = so f tmax
(
ST

)
(3)

so f tmax
(
Si

)
=

eSi∑h×w
i eSi

(4)

where so f tmax(·) is to normalize the correlation map S; ScεRh×w and SrεRh×w are the normalization of
S by column-wise and row-wise, respectively. Sc represents the relevance of each feature in fa to the
feature in fb; Similarly, Sr is the relevance of each feature in fb to the feature in fa. Si is the i-th feature
of the S.

Then the input feature fa and fb can be computed as follows:

f ′a = fa ⊗ Sc =
[

f 1
a , f 2

a , . . . f i
a, f h × w

a

]
∈ Rc × (h × w) (5)

f ′b = fb ⊗ Sr =
[

f 1
b , f 2

b , . . . f i
b, f h × w

b

]
∈ Rc × (h × w) (6)

where f i
a, f ′b denote the i-th column of f ′a and f ′b , and the operator ⊗ represents

elementwise multiplication.
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Furthermore, an attention gate was followed to weight the information of the pair features.
The gate is composed of one convolution layer with the kernel size being 1.

In the end, the features are concatenated and fed to a multi-layer perceptron (MLP) to obtain a
new representation about the correlation map. To avoid parameter excessive, the MLP is composed of
three convolution layers, and the kernel size of each layer is 1, 3, and 1, respectively. After obtaining
the common object from the two inputs of the correlation map by MLP, a linear transformation is used
to compute the change information. In short, the changed feature f ′d is calculated as follows:

f = concat
(

f ′a , f ′b
)

(7)

A( f ) = σ(MLP( f )) = σ(W2(W1(W0( f )))) (8)

f ′d = (1 + A( f )) × fd (9)

σ(x) =
1

1 + e−x (10)

where σ denotes the sigmoid function, W0εR1 × 1 × C × C/r, W1εR3 × 3 × C/r × C/r, and
W2εR1 × 1 × C/r × C/r, r is the reduction ratio of the channel and equals two in the paper, fd represents
the output of the change residual (CR) module. Note that, before input to the MLP, the feature f
should be normalized to [0,1] by a sigmoid function. Figure 4 depicts the computation process of the
changed feature with co-attention module and the module is showed in the blue dashed box. Detailed
experiments were conducted to compare the effects of the module during the ablation studies.

2.2.4. Co-Layer Aggregation Module

Recent studies have shown that the high-level layers encode abundant contextual and global
information but lost fine spatial information, while the low-level layers are the opposite. Therefore,
by adopting layer aggregation to merge the different level features with various details, a good
performance may be obtained [36,63,64]. In this paper, we added a co-layer aggregation (CLA) module
to the proposed network to weight the low-level features in order to enhance the change information.

The encoder of our model contains six layers, we chose the first three layers: flε
{
f1, f2, f3

}
as the

low-level features, and the last layer weighted by co-attention: fh ε
{
f6
}

as the high-level feature to
perform the operation. As show in Figure 5, to merge both spatial and channelwise information, the
SE block [38] was firstly applied to both the shallow and the deep features. After being given the
transformed features, we forwarded the transformed high-level feature to a global pooling and two
convolutions to get a global attention, which can be used to enhance the context representation of the
low-level feature.
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Finally, the origin low feature was added into the enhanced one as a residual block. In this way,
the shallow features are refined by correlation if they merge with the changed feature produced by
co-attention module.

2.2.5. Pyramid Change Module

To make full use of the effective receptive field at each level, the decoder consists of a pyramid of
features

{
f 1
c , f 2

c , . . . f N
c

}
, as show in Figure 6, which is designed to find the building changes at different

scales in the images. At each scale, the feature from the previous scale is unsampled and added to
the changed feature fd generated from change residual (CR) module. Then, the result is fed into a
convolution layer, with the kernel size being 1. After performing the same steps for all the scales, the
results from each scale were concatenated together, and then fed into a convolution layer; the output is
the change map. Referring to the classic feature pyramid method, FPN (feature pyramid network) [65]
iteratively merges features with a top-down mechanism until the resolution of the last layer recover to
the original input. We fused the changed feature in a top-down pathway in order to catch the change
information with different sizes.
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Figure 6. Pyramid change feature decoder.

The CR module is shown in Figure 7. The objective of the module is to obtain the distinctive
and discriminative features for the two inputs. As shown in Figure 7c, the generation starts with the
input of the two image features fa and fb, and learns to produce a difference map for the input features.
The module merges with two kinds of fusion strategy: elementwise difference and elementwise
addition. The elementwise difference is to get the absolute value of their difference (see Figure 7a)
while the elementwise addition is to add the two input features (see Figure 7b). The CR module learns
the addition features (see Figure 7b) as the residual counterparts, which are added by the difference
feature (see Figure 7a), making the information refinement task easier.
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Figure 7. Single scale changed feature generation.

2.3. Implementation Details

The proposed PGA-SiamNet was implemented using Pytorch; the training procedure used a
single NVIDIA RTX 2080 Ti GPU with 11 GB memory. We used a mini-batch of two and the initial
learning rate was 10−4 for the two datasets and decreased linearly according to the number of iteration
times. The optimization algorithm to train the network was the adaptive moment estimation (Adam)
algorithm [66]. We regarded the task as a binary segmentation for the final output of the network, which
is change or no-change. To measure the performance of the proposed network, the metrics intersection
over union (IoU), F1 score, precision, recall, and overall accuracy (OA) were used. Generally, the most
meaningful metric was IoU in our research. The imbalance in the two classes, changed and un-changed,
resulted in a large value of OA. A large number of unchanged pixels have severely made the calculated
results obviously too high. Just as OA shows in Section 3, the value is too high when regarding the
unchanged pixels, so it is not a good metric to reflect the accuracy of the results. Taking our focus into
consideration, the precision, recall, and F1 were only calculated on the changed pixels. The metrics are
defined as follows:

IoU =
TP

TP + FP + FN
(11)

OA =
TP + TN

TP + FP + TN + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 =
2× P×R

P + R
(15)
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Kappa =
p0 − pc

1− pc
(16)

p0 = OA (17)

pC =
(TP + FP)(TP + FN) + (FN + TN)(FP + TN)

(TP + FP + TN + FN)2 (18)

where true positive (TP) indicates the number of pixels correctly classified as changed buildings, true
negative (TN) denotes the number of pixels correctly classified as unchanged buildings, false positive
(FP) represents the number of pixels misclassified as changed buildings, and false negative (FN) is the
number of pixels misclassified as unchanged buildings. In Equation (15), P and R denotes precision
and recall, respectively. During the training period, Z-score standardization was firstly used for the
multitemporal image pairs. In addition, we trained a convolution neural network to obtain better
results by multiple iterations. The binary cross-entropy loss function is a popular and effective solution,
so we minimized it to optimize the network. The loss function is calculated as follows:

l = −ylogy′ − (1− y) log(1− y′) =
{

−logy′, y = 1
− log(1− y′), y = 0

(19)

where y refers to the ground truth and y′ refers to the predicted result.

3. Results

In this section, some ablation studies are provided in Section 3.1. Then, we compared the results of
the proposed method with other methods in Section 3.2. Furthermore, the robustness of the proposed
algorithm is proved in Section 3.3.

3.1. Ablation Study

In this part, we focus on exploration studies to assess the different components of the network with
the two datasets, DI and DII. We trained the proposed baseline network and obtained a satisfactory
result, which confirms that our proposed base network is effective. Furthermore, we introduced some
attention modules to improve the performance. However, it is difficult to balance the performance
on two datasets because of the completely different sensors involved. After a lot of experiments, we
verified that the described modules can improve the performance of the network; the results of the
metrics are showed in Table 2.

Table 2. Ablation experiments of the methods with different modules (the shadow represents the best
results of the basic network with all the proposed modules).

Network
IoU (%) OA (%) Recall (%) Precision (%) F1(%) Kappa (%)

DI DII DI DII DI DII DI DII DI DII DI DII

Baseline 96.52 92.02 99.75 99.63 96.24 90.23 96.89 92.65 96.25 90.67 96.12 90.48
+CS+CLA 97.15 92.13 99.77 99.65 96.62 89.42 97.79 93.55 97.09 90.83 96.97 90.65
+ASPP 97.11 92.52 99.78 99.66 96.91 90.25 97.38 93.83 97.0 91.38 96.88 91.21
+CoA 97.38 92.73 99.79 99.68 97.01 90.59 97.84 94.01 97.29 91.74 97.17 91.57

Line 2 of Table 2 shows that, by adding channelwise and spatialwise attention (CS) and a co-layer
aggregation (CLA) module to the base network, we obtained a slight increase in accuracy for the two
datasets. After adding the ASPP module to the network, there was a slight decline regarding dataset
DI, but a great improvement regarding dataset DII in all areas. The reason for this is that dataset DII
consists of results from various sensors and more variable information with multi-scales, while dataset
DI is relatively unvaried as regards scales information. Finally, we introduced a co-attention (CoA)
module, which is important for the performance when using orthoimages with building displacement.
In addition, Line 4 in Table 2 further demonstrates the efficacy.
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3.2. Comparisons with Other Methods

To evaluate the performance of the proposed architecture, we further compared our method with
other recent change detection methods: a deep architecture for detecting changes (ChangeNet) [67],
a correlated Siamese change detection network (CSCDNet) [68], multiple side-output fusion (MSOF) [69],
dual task constrained deep Siamese convolutional network (DTCDSCN) [70], multi-scale fully
convolutional early fusion (MSFC-EF) [31], deep Siamese multi-scale fully convolutional network
(DSMS-FCN) [31], fully convolutional early fusion (FC-EF) [24], fully convolutional Siamese-difference
(FC-Siam-Diff) [24], and fully convolutional Siamese-concatenation (FC-Siam-Conc) [24]. CSCDNet
was proposed to train a semantic change detection network with a Streetview dataset; by inserting
correlation layers into the network, it can overcome the limitation caused by camera viewpoints, which
is a major problem to the end-to-end building change detection task. In this paper, to validate the effect
of the layer, we give the comparison of the network with and without the correlation layer, denoted
CSCDNet/w and CSCDNet/wo, respectively. ‘FC-’ is a series of full convolution network and the
performance is improved through extracting multiscale features in the decoder, such as MSFC-EF and
DSMS-FCN. For a fair comparison, we trained and tested our PGA-SiamNet and other methods with
the two available datasets mentioned above and the same parameter settings. The results are shown in
Table 3. One thing to be mentioned is that some of the comparison methods are completed with the
semantic task, we only took the change detection network as the comparison due to a lack of semantic
labels. The results show that PGA-SiamNet easily outperforms other approaches. Simultaneously,
the visualized results of the proposed method and the other methods were also compared, as shown in
Figure 8, which contains the first three image pairs are from the DI dataset and the last four pairs are
from DII dataset.

Table 3. Comparison with other related methods (the lighter shadow represents the best results of
other related methods; the darker shadow represents the results of our proposed method).

Network
IoU (%) OA (%) Recall (%) Precision (%) F1(%) Kappa (%)

DI DII DI DII DI DII DI DII DI DII DI DII

ChangeNet 70.80 56.19 96.88 97.44 52.97 21.39 66.99 32.48 57.48 23.46 55.79 22.41

MSOF 90.84 82.66 99.08 99.20 88.68 71.55 92.45 89.12 89.40 78.20 88.92 77.81

DTCDSCN 83.55 78.67 98.61 99.11 80.44 64.74 78.28 84.55 78.22 71.2 77.45 70.77

CSCDNet/w 95.04 87.91 99.63 99.49 94.03 83.15 95.96 90.19 94.66 85.69 94.45 85.43
CSCDNet/wo 94.68 87.53 99.63 99.45 93.74 81.38 95.63 91.19 94.09 85.13 93.89 84.85

FC-EF 78.70 67.24 97.98 98.36 71.24 47.71 74.81 57.67 71.43 50.03 70.33 49.26
FC-Siam-Diff 88.66 80.5 99.0 99.1 85.67 71.73 88.89 79.95 86.11 74.15 85.58 73.71
FC-Siam-Con 82.08 68.02 98.4 98.43 74.67 47.76 88.72 60.85 76.57 51.47 75.69 50.73

MSFC-EF 90.72 83.65 99.26 99.29 88.54 79.97 90.31 87.51 88.72 79.69 88.30 79.33
DSMS-FCN 88.61 83.37 99.12 99.25 88.29 73.01 86.32 89.35 86.09 79.18 85.62 78.81

Baseline(ours) 96.52 92.02 99.75 99.63 96.24 90.23 96.89 92.65 96.25 90.67 96.12 90.48
PGA-SiamNet 97.38 92.73 99.79 99.68 97.01 90.59 97.84 94.01 97.29 91.74 97.17 91.57



Remote Sens. 2020, 12, 484 14 of 21

Remote Sens. 2020, 12, 484 14 of 21 

  

          

       

       

       

       

       

       

(a) (b) (c) (d) (e) (f) (g) 

Figure 8. Results by our proposed method, and comparisons with others. (a) Before images; (b) after 

images; (c) ground truth; (d) PGA-SiamNet; (e) CSCDNet; (f) MSOF; (g) FC-Siam-Diff. 

3.3. Robustness of the Method 

To prove the robustness of the proposed algorithm, we tested on other orthoimages with the 

model trained on EV-CD building dataset. The image pairs are different with our training samples 

because they are located in the north of China. As shown in Figure 9, the acceptable result shows that 

the proposed method has a great potential for the high-resolution remote sensing orthoimages from 

various sensors with more training samples. 

Figure 8. Results by our proposed method, and comparisons with others. (a) Before images; (b) after
images; (c) ground truth; (d) PGA-SiamNet; (e) CSCDNet; (f) MSOF; (g) FC-Siam-Diff.

3.3. Robustness of the Method

To prove the robustness of the proposed algorithm, we tested on other orthoimages with the
model trained on EV-CD building dataset. The image pairs are different with our training samples
because they are located in the north of China. As shown in Figure 9, the acceptable result shows that
the proposed method has a great potential for the high-resolution remote sensing orthoimages from
various sensors with more training samples.



Remote Sens. 2020, 12, 484 15 of 21

Remote Sens. 2020, 12, 484 15 of 21 

  

   

   

   

(a) (b) (c) 

Figure 9. Results on other image pairs. (a) Before images; (b) after images; (c) results of the proposed 

method. 

4. Discussion 

The main goal of the study was to find changes of the buildings on high-resolution remote 

sensing orthoimages automatically. We first trained an end-to-end framework on the two available 

datasets. Then, representation of the features was enhanced by attention modules by fusing global 

context features and local semantic features. Meanwhile, the correlation of the image pairs was 

considered in the network by co-attention module and co-layer aggregation. Finally, the proposed 

method obtained better results in our studies. 

4.1. Importance of the Proposed Dataset 

Change detection, as a hot topic in the field of remote sensing, has attracted extensive attention 

and emerged many related datasets. Buildings, as an important man-made object, are often in the 

spotlight. However, only the public WHU building datasets provide changes for buildings at present. 

As for satellite imagery, there are almost no available datasets for building change detection. The 

difficulty of building change detection is the displacement of high-rise buildings. Therefore, we built 

a building change detection dataset (EV-CD building datasets) with the existing satellite images. In 

WHU building datasets, the buildings are low with little displacement. Besides this, the buildings are 

mostly independent in WHU building datasets. However, in the complex cities, the buildings are 

Figure 9. Results on other image pairs. (a) Before images; (b) after images; (c) results of the
proposed method.

4. Discussion

The main goal of the study was to find changes of the buildings on high-resolution remote sensing
orthoimages automatically. We first trained an end-to-end framework on the two available datasets.
Then, representation of the features was enhanced by attention modules by fusing global context
features and local semantic features. Meanwhile, the correlation of the image pairs was considered in
the network by co-attention module and co-layer aggregation. Finally, the proposed method obtained
better results in our studies.

4.1. Importance of the Proposed Dataset

Change detection, as a hot topic in the field of remote sensing, has attracted extensive attention
and emerged many related datasets. Buildings, as an important man-made object, are often in
the spotlight. However, only the public WHU building datasets provide changes for buildings at
present. As for satellite imagery, there are almost no available datasets for building change detection.
The difficulty of building change detection is the displacement of high-rise buildings. Therefore, we
built a building change detection dataset (EV-CD building datasets) with the existing satellite images.



Remote Sens. 2020, 12, 484 16 of 21

In WHU building datasets, the buildings are low with little displacement. Besides this, the buildings
are mostly independent in WHU building datasets. However, in the complex cities, the buildings
are often distributed densely. Since the focus of our study is on the complex cities, it is necessary to
build a relevant dataset to promote the research. The experiments show that the dataset is effective.
In addition, we will publish the dataset and enlarge it in the future.

4.2. Advantages of the Proposed Baseline

The results of the experiments show that the proposed baseline network is effective and surpasses
other methods with the two datasets. There are several advantages of the proposed baseline. We found
that adjusting the learning rate according to the number of iteration times is a better way after
performing many experiments, and the networks obtain a better performance with a pretrained weight.
Given that there are a variety of buildings with different size in the datasets, we took the pyramid
feature into consideration to discover the changes with various sizes in the proposed baseline network.
Inspired by ResNet [71], the proposed change residual (CR) module is also a key part to get a changed
feature using a residual structure. The module can fuse the features from different sources without
degradation. In the decoder, the features from each scale are concatenated together. In this way, our
network detects the building area accurately.

4.3. Experimental Results Compared with Other Methods

Some of the networks mentioned above are proposed for street view change detection, such as
ChangeNet and CSCDNet. In ChangeNet, the branch of the Siamese contains convolutional neural
networks and deconvolutional neural networks. The weights of the two branches are shared and fixed
in convolutional neural networks. In the deconvolutional neural networks, the weights of the layers
are not fixed. The ChangeNet only concatenates three changed features produced by the Siamese
feature extraction network to incorporate both coarse and finer details. However, only combining
some outputs of the decoder, the relevance of the two channels is not enough to detect changes with
remote sensing images. CSCDNet achieved a better result with a slightly lower accuracy than our
baseline, especially with the correlation layer. The correlation layer was utilized to deal with difference
in camera viewpoints like the displacement on remote sensing images, but the correlation layer is
very time consuming. The architecture of our model is somewhat similar to CSCDNet. We got more
change information by CR module and applied a co-attention module to obtain the correlation of
the two input features instead of the time-consuming correlation layer. Then a co-layer aggregation
module was used to fuse changed features extracted from co-attention module to the shallow features.
The aggregated features further improved the representation of the features in the pyramid. DTCDSCN
was proposed to complete both change detection and semantic segmentation at the same time, while
we only employed the subnetwork of change detection. The model has shallower convolution layers
than other models, and it may ignore the multi-scale change. In addition, the proposed improved
network increases the receptive field to extract a different scale changed feature using the ASPP module,
and it is helpful for building change detection in complex cities such as the EV-CD building dataset.
Overall, the models trained with pretrained weight are superior to those without pretrained weight,
such as FC-Siam-Diff and DSMS-FCN, in our studies. Finally, an addition experiment demonstrated
that the proposed method has a strong robustness by testing on other orthoimages with the model
trained on EV-CD building dataset.

5. Conclusions

In this paper, we proposed an end-to-end attention-guided Siamese network based on a pyramid
feature (PGA-SiamNet) network. It performed excellently on remote sensing orthoimagery for building
change detection and yielded better results on complex urban environments when compared with
other methods. By using a co-attention mechanism, the method learns to discriminate feature change
by capturing the correlation between image pairs. To obtain long-range dependencies effectively, we
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adopted an attention-guided method. Our experiments on the two available datasets show that our
method gives comparable results to other state-of-the-art techniques. Therefore, the modules added to
this framework are both independent and can be adopted for building change detection in a convenient
way. Meanwhile, the experimental results with the WHU datasets show a better performance than the
results with the satellite imagery EV-CD dataset; the complexity and diversity of the scenes contribute
to this result, while this type of data is more in our research. Owing to the machine-learning boom,
building extraction, which used to be the central problem of traditional building change detection, has
become unnecessary. However, the need for large and accurate sample data is still the main concern
for deep learning, thus data-independent research is increasingly important, since most data at hand is
inadequate and noisy. As regards future studies, on the one hand, we may place more attention on
noisy data and one-shot/few-shot learning; on the other hand, it is possible to imagine involving more
diverse information, such as using auxiliary DSM information as an object guide, as well as mining
more information from the current data.

6. Patents

At present, we are applying for the patent based on the research results of this paper and the
application material has been submitted to China National Intellectual Property Administration
(the patent application number is 2020100445918). Moreover, we are waiting for the examination and
grant of this patent.
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