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Abstract: We introduce a multi-platform portable implementation of the NonLocal Means
methodology aimed at noise removal from remotely sensed images. It is particularly suited for
hyperspectral sensors for which real-time applications are not possible with only CPU based
algorithms. In the last decades computational devices have usually been a compound of cross-vendor
sets of specifications (heterogeneous system architecture) that bring together integrated central
processing (CPUs) and graphics processor (GPUs) units. However, the lack of standardization
resulted in most implementations being too specific to a given architecture, eliminating (or making
extremely difficult) code re-usability across different platforms. In order to address this issue,
we implement a multi option NonLocal Means algorithm developed using the Open Computing
Language (OpenCL) applied to Hyperion hyperspectral images. Experimental results demonstrate the
dramatic speed-up reached by the algorithm on GPU with respect to conventional serial algorithms
on CPU and portability across different platforms. This makes accurate real time denoising of
hyperspectral images feasible.

Keywords: remote sensing; image processing; multispectral; hyperspectral; denoising; NonLocal
Means; GPU; OpenCL; PRISMA, portability; Hyperion

1. Introduction

Technology for sensors onboard satellites and aircraft is undergoing a fast evolution in terms of
better spatial, spectral and time resolution. As a consequence the amount of gathered data dramatically
increases. This calls for unprecedented challenges in terms of data transmission, storing and processing.
In this respect we mention among imagers the hyperspectral ones (with a number of channels over
200), like AVIRIS [1], Hyperion [2] and PRISMA [3]. A noteworthy category is given by high spectral
resolution sounder interferometers (e.g., IASI [4] with its 8K spectral channels). The advent of new
concept imaging interferometers onboard geostationary platforms (expected with ongoing METEOSAT
Third Generation [5]) boosts the amount of data because of the combination of full hemisphere coverage
(8M pixels), hyperspectrality (2K channels) and the low repetition time (60 min). All these concepts are
the perfect ground for the big data paradigm, with its challenges in terms of storing, computing and
modeling capabilities. In many remote sensing applications methodologies are well consolidated and
storing capabilities are sufficient; however computational speed is a critical issue when computational
cost scales more than linearly with the size of data and real-time processing is necessary. In this
respect Graphical Processing Units (GPUs) are an important part of the rapid development of the
general computing architecture and they have received much attention as a hardware platform that is
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complementary to Central Processing Units (CPU) in modern computers; they became a key technology
for big data science for the abatement of computational time and also for boosting Artificial Intelligence
(IA) applications. GPUs have small volume and moderate price, providing floating point calculations
and highly intensive computation capacity. Signal and image processing for remotely sensed data are
an active area of research encompassing dimensionality reduction [6–9], features extraction [10,11] and
compression [12], all tools that are now a firm part of big data science.

Therefore it is easily understandable that during the past few years GPUs have been fast
introduced in the remote sensing community for those algorithms that show an inherent parallelization
suitable for the architecture. For a general use of GPUs in remote sensing we defer to [13–15], which,
besides showing general GPU programming designs for remote sensing, also compare Multicore
and GPU architectures. The most successful application can be considered the spectral unmixing,
where, among other things, algorithms have been developed for estimating the Pixel Purity Index [16],
endmember identification [17,18], matrix factorization [19] and unmixing [20,21]. Among other remote
sensing applications we recall orthorectification [22], image registration [23], NDVI computation [24]
and classification [25,26].

Many proprietary standards and tools have been designed that cover a closed set of architectures
and make them work in a suited way really close to the architecture features, but still one of the key
challenges in parallel computing is development of a broadly accepted programming model truly
supported by a large set of architectures. The lack of standardization results in most applications
being too specific for a given architecture, making the portability extremely difficult, that means
the possibility of reusing code across different platforms. In turn, the need to improve portability
has driven the development of an open computing language (OpenCL) [27,28], that has become a
free-standard for cross-platform modern multiprocessors.

In the present paper we consider the problem of noise removal, a preliminary step of many
algorithms that process remotely sensed images. Numerous methods have been specifically developed
for the remote sensing community, both for optical and active sensors, exploiting the GPU architecture.
They are generally sorted according to whether they work in physical space [29,30], in a transformed
space [31–33] or use variational methods [34,35].

A powerful method among the image processing community for denoising images is NonLocal
Means (NLM) [36]. This can be considered a filtering algorithm; however differently from conventional
spatial filters, it searches for the closest pixels in the signal domain rather than in the spatial one.
In addition the closeness criterion is sought in a region instead of single pixels. Therefore the method
is claimed to effectively keep the integrity of the image while removing its noise. The improvement
of denoising has a counterpart in that NLM is not local anymore but for each pixel it spans the full
image in the search of regions showing similar textures. This makes NLM computational cost in
principle quadratic with respect to the number of pixels in an image and therefore highly demanding
in terms of computational time. Nevertheless some limited approximated implementations for remote
sensing exist exploiting traditional CPU architectures, especially in the SAR community (e.g., [37–39]).
However they are not suited for real-time applications and are very time consuming even for the
preliminary step of bandwidth selection.

Since the pioneering work by NVIDIA [40], variants of the algorithm have been proposed
(e.g., [41]). Application to Magnetic Resonance Imaging (MRI) has been developed during recent
years [42,43]. The MRI framework naturally adapts to the original NVIDIA work because the T1,
T2, PD images acquired there well resemble the RGB images dealt with in [40]. Application of
GPU algorithms for NLM to Remote Sensing is limited to Interferometrics Phase Denoising [44].
This is surprising if one considers that the size of the images involved in Remote Sensing is quickly
increasing (e.g., very high spatial resolution sensors, increased temporal frequency, high spectral
resolution). In particular a high number of spectral bands (up to thousands with respect to the three
RGB considered initially by NVIDIA and T1, T2, PD in MRI applications) possibly calls for new and
portable algorithms able to better implement this framework even for embedded devices with no



Remote Sens. 2019, 12, 414 3 of 19

available GPUs. In addition the algorithm from NVIDIA of course was explicitly developed for their
CUDA programming model, and all applications known in the literature followed the same trend.

Therefore the aim of the paper is to develop a GPU based algorithm for denoising remotely
sensed images by NLM at a very high speed, and to estimate its speed-up with respect to traditional
architectures on images coming from optical sensors. In addition we intend to develop a multi-platform
implementation of NLM able to be run on most computing equipments, including GPU of different
architectures and also multi-core CPU.

2. Nonlocal Means for Image Denoising

NonLocal Means (NLM) filter [36] tries to take advantage of the high degree of redundancy of any
natural image and it is nowadays considered the state-of-art algorithm for denoising images. It belongs
to the class of filtering methodologies but uses a weight function that takes into account the intensity
values not only of pixels, but also of their neighborhoods.

Let Ω be a noisy image of size (Nx, Ny) pixels, with N = Nx Ny being the total number of pixels,
and let xi be a corresponding pixel, xi ∈ Ω. We denote by ui and ui the original and denoised intensity
at pixel xi, respectively. In the formulation [36] of the NLM filter the restored intensity at a generic
pixel xi is computed as a weighted average (also called kernel convolution) of all the pixels xj in the
image belonging to a search volume Vi ⊆ Ω, centered at the pixel xi:

ũi = ∑
xj∈Vi

w(xi, xj)uj, (1)

where w(xi, xj) is the weight assigned to uj in removing noise from pixel xi. To be more specific,
the weight is an estimate of the similarity between the intensities of two neighborhoods Di ⊆ Ω and
Dj ⊆ Ω centered at pixels xi and xj, respectively, such that

w(xi, xj) ∈ [0, 1], ∑
xj∈Vi

w(xi, xj) = 1.

The definition of the classical NLM filter does not make any assumption about the search volume,
it only requires that each pixel can be linked to the others. However for computational reasons it
is usually assumed that both neighbors Vi and Di are taken as boxes of size (2vx + 1)(2vy + 1) and
(2dx + 1)(2dy + 1), with v = (vx, vy) and d = (dx, dy) being the window radii of Vi and Di, respectively,
along each spatial direction x, y.

Efros and Leung [45] showed that the L2 distance is a reliable measure for estimating the similarity
of image windows in a texture patch. Therefore it can be estimated as the (possibly Gaussian weighted)
Euclidean distance

∥∥u(Di)− u(Dj)
∥∥2

2 between the patches u(Di) and u(Dj). The weights associated
to the quadratic distance introduced in [36] are

w(xi, xj) =
1
Zi

exp

−∥∥u(Di)− u(Dj)
∥∥2

2
h2

 ,

where Zi is a normalization constant to ensure that ∑xj∈Vi
w(xi, xj) = 1 and h is a filtering parameter

that controls the decay of the exponential function.
Indeed, for each pixel in the image, the distances between the intensity neighborhoods u(Di)

and u(Dj) are computed for all pixels xj contained in Vi. The complexity of the filter is of the
order of O(N(2vx + 1)(2vy + 1)(2dx + 1)(2dy + 1)). The NLM algorithm is proved by [36] to be
consistent for every nonnegative h, even if it is usually chosen of order of the standard deviation of
the noise, which means to assume that patches can be considered alike if they differ in such quantity.
That notwithstanding, the assumption of uniform variance over the image leads to sub-optimal results
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wherever nonstationary noise is present, so Manjón et al. [46] proposed a local adaptive estimate at the
pixel k:

(σk)
2 = min

Sk
(d(R(Sk), R(Sl))), k 6= l, R(Sl) = ul − $(ul), (2)

Sl being the patch centered at the pixel l and $(ul) the low-pass filtered intensity estimated as its
average in the patch Sl centered on pixel l. Based on experimental arguments we use:

(σ̃i)
2 = δ(σi)

2, with δ ∈ (0, 1]. (3)

This allows one to regulate the reduction of the overestimation of noise variance occurring in
similar patches.

2.1. Multi-Platform NLM OpenCL Implementation

We have developed multi-platform NLM algorithms using an OpenCL C language, a restricted
version of the C99 language with extensions appropriate for executing data-parallel code. The level
of complexity imposed by OpenCL is similar to other dedicated programming models such as
Compute Unified Device Architecture (CUDA) developed by NVIDIA. OpenCL defines an application
programming interface (API) for cross-platform modern multiprocessors by a group of manufacturers
such as Apple, Intel, AMD, or NVIDIA itself. OpenCL is managed by the no-profit technology
consortium KhronosGroup (Apple, IBM, NVIDIA, AMD, Intel, ARM, etc.).

In OpenCL, a system consists of a host (the CPU), and one or more devices, which are massively
parallel processors, allowing one to define a kernel or group of kernels that exploit multi-thread-based
parallelism and are loaded and executed on a multicore platform.

A kernel is a function which contains a block of instructions that are executed by the work-thread
group. The kernels exhibit the important property of data parallelism, allowing arithmetic operations
to be simultaneously performed on different parts of the data by means of several work-items. A group
of work-items forms a work group that runs on a single compute unit. The maximum dimension of
each work-group depends on the specifications of the device in use, usually up to 1024 work-items
in GPUs.

In practice, work-items (threads) are gathered in work-groups (threads blocks).
A work-item is distinguished from other executed work-items within the collection by its global

ID and local ID. Each work-item is identified by its global ID (gx, gy) or by the combination of
the work-group ID (wx, wy), the size of each work-group (Sx, Sy), and the local ID (sx, sy) inside
the work-group.

The memory hierarchy of GPUs is different from that of CPUs. In practice, there are private
memory, local memory, constant memory, and global memory. Global memory is the largest memory,
but with high latency; it is typically used to store input and output data structures. Constant memory
is a small read-only memory, supporting low latency and high bandwidth access when all threads
simultaneously access the same location. Local memory can be allocated to a work-group and accessed
at a very high speed in a highly parallel manner. Private memory is the region of memory private to a
work-item.

As all threads in a work-group can read and write their own local memory, it is a very efficient
way for threads to share their input data, and intermediate results can be synchronized via barriers
and memory fences.

In the initial section of the program, the system is queried, defining the appropriate operating
context, specifically the characteristics of the available OpenCL devices, such as the amount of
processing units and threads available for computation. Discovering the computational devices
available we create two different lists of available devices: One for the CPU device type and the other
one for GPU device type, allowing one to choose which kind of device to prefer. If no GPU type device
is available, then a CPU device is automatically chosen. Consequently, the OpenCL task scheduler can
conveniently split the workload and perform a balanced computation across the system’s resources.
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Each block image is processed by a corresponding thread block that executes the NLM filter on
a portion of the image and writes back the restored values to the output structure from the device
memory to the CPU structure.

Furthermore some support structures are defined as device and host buffers and I/O parameters
to regulate the algorithm call. These can be listed as follows:

Ω: Device buffers to load the data;
Ω̃: Host buffers containing the restored data.
σ2: Host/device buffer containing the estimate noise variance.
use_adp_σ: boolean host/device variable: If this is true then the adaptive noise variance is performed
according to (2)–(3).
δ: Host/device buffer with the noise variance regulation measure whenever use_adp_σ is true (we
recall that we use (3)).
d: Similarity radius, constant device buffer.
v: Window radius, constant device buffer.
Nx and Ny: Constant device buffers representing the image dimension, width and height, respectively.
use_CPU: Host/device boolean value determining which kind of platform is preferred to operate the
computation. If no GPU platform is available then CPU platform is automatically chosen.

Algorithm 1 describes the classical sequential operations of NLM, whereas Algorithm 2 presents
our portable OpenCl implementation.

Algorithm 1 NLM_SEQUENTIAL(Ω, Ω̃, σ2, use_adp_σ = false, δ, Nx, Ny, d, v)

patch_area = ((2 ∗ d + 1) ∗ (2 ∗ d + 1))
for all x ∈ N_x do

for all y ∈ N_y do

sum_wx,y = 0
clrx,y = 0
for j from −v to +v do

for i from −v to +v do

wi,j = 0
for m from −d to d do

for n from −d to d do

wi,j+ = d(Ωx+j+m,y+i+n, Ωx+m,y+n)
end for

end for
wi,j = exp

(
−
(
wi,j/h2/patch_area

))
clrx,y+ = Ωj,i ∗ wi,j
sum_wx,y+ = wi,j

end for
end for
sum_wx,y = 1/sum_wx,y
clrx,y∗ = sum_wx,y
Ω̃x,y = clrx,y

end for
end for
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Algorithm 2 NLM_OPENCL(Ω, Ω̃, σ2, use_adp_σ = false, δ, Nx, Ny, d, v, use_CPU)

G_GPU← ∅ // list GPU platforms available
G_CPU← ∅ // list CPU platforms available

// Initialization step:

numPlatforms← clGetPlatformIDs // recover the number of platforms

G_GPU← clGetDeviceIDs(. . . , CL_DEVICE_TYPE_GPU, . . .) // number of available GPUs on the
system
G_CPU← clGetDeviceIDs(. . . , CL_DEVICE_TYPE_CPU, . . .) // number of available CPUs on the
system
if G_GPU = ∅ OR use_CPU then

device← FIRST(G_CPU)
else

device← FIRST(G_GPU)
end if
// Computation of the NLM filtered signal step:
cl_context← clCreateContext(. . . , device, . . .) // used by the OpenCL runtime for

// managing objects such as command-queues, memory, program and kernel objects

cl_command_queue ← clCreateCommandQueue(cl_context, device, . . .) // creates a command

queue associate with the context

cl_program ← clCreateProgramWithSource(cl_context, . . . , kernel_source_code, . . .) // creates a

program object for a context, and loads the source code specified values {. . . , d, v, N_x, N_y}
to store into constant memory

if clBuildProgram(cl_program, . . . , device, {. . . , d, v, N_x, N_y}, . . .) = CL_SUCCESS then
// compiles and links a program executable from the program source cl_program passing the constant
parameters

cl_mem ← clCreateBuffer(context, {CL_MEM_READ_ONLY|CL_MEM_USE_HOST_PTR}, |Ω|, Ω, . . .)
// creates a kernel read only buffer object and referenced by host ptr thanks to
{CL_MEM_READ_ONLY|CL_MEM_USE_HOST_PTR} flags

cl_kernel← clCreateKernel(cl_program, kernel_name, . . .) // according to use_adp_σ creates a kernel object
with a specific name based on the cl_program to call

// recover information about the thread work group
wg_multiple← clGetKernelWorkGroupInfo(cl_kernel, device,
C_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE, . . .)
According to wg_multiple determines work-group size and number of work-groups all over the data

// set the value to kernel arguments
clSetKernelArg(kernel, . . . , |Ω|, Ω)

clSetKernelArg(kernel, . . . , |Ω̃|, Ω̃)

clSetKernelArg(kernel, . . . , |δ|, δ)

clEnqueueNDRangeKernel(cl_commandQueue, cl_kernel, . . . , number of work-groups, work-group size,
. . .) // execute all the operations into cl_commandQueue into a cl_kernel on a device

Wait until all the kernel operations have been performed

Collect the restored data to Ω̃.
else

return "Build Program Error!"

end if
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The denoising filter is computed for all the pixels considering the similarity and window
search size.

By observing the program flow in Algorithm 2 the OpenCL runtime is defined by a set of functions
that can be globally grouped in Query Platform Info, Contexts, Query Devices, and Runtime API as
shown in Figure 1.

OpenCL Program

Runtime Support 
Functions

Host

NLM KERNEL 1 OpenCL
DevicesCPU PLATFORM

NLM KERNEL 2
GPU PLATFORM

OpenCL Context

Platform 0

Platform 1

Intel(R) Core(TM)

 NVIDIA GeForce
 GTX 1650

i7-9750H CPU 

Platforms and Device Management
clGetPlatformInfo()

clGetPlatformIDs()

clGetDeviceInfo()

clGetDeviceIDs()

Context Management
clCreateContextFromType()

clGetContextInfo()

Memory Management
clCreateBuffer()

Queueing Management
clEnqueueWriteBuffer()
clEnqueueReadBuffer()

clEnqueueReclEnqueueNDRangeKernel()

Queueing Management
clCreateProgramWithSource()
clBuildProgram()
clCreateKernel()

Figure 1. Open Computing Language (OpenCL) runtime functions supporting the parallel execution
of NonLocal Means (NLM) kernel using threaded blocks.

3. Materials

3.1. Hardware Work Environment

The experiments have been carried out on a heterogeneous system based on an Intel(R) Core(TM)
i7-9750H CPU @2.60GHz processor with six cores and 16GB of DDR4 memory. The following two
types of OpenCL Platforms have been considered:

1. A CPU, Intel(R) Core(TM) i7-9750H CPU @2.60GHz and Platform Version: OpenCL 2.0 with

• CL_DEVICE_GLOBAL_MEM_SIZE: 15749 MByte,
• CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE: 64 KByte,
• CL_DEVICE_LOCAL_MEM_SIZE: 48 KByte
• CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE: 128
• CL_DEVICE_MAX_WORK_ITEM_SIZES: 8192 / 8192 / 8192
• CL_DEVICE_MAX_WORK_GROUP_SIZE: 8192

2. An NVIDIA GeForce GTX 1650 GPU with 1024 CUDA R© Cores operating at 1245 MHz and having
4GB of on-board memory, compute capability 7.5, microarchitecture Turing Generation released
on February 2019 and Platform Version: OpenCL 1.2
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• CL_DEVICE_GLOBAL_MEM_SIZE: 15749 MByte,
• CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE: 128 KByte,
• CL_DEVICE_LOCAL_MEM_SIZE: 32 KByte
• CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE: 32
• CL_DEVICE_MAX_WORK_ITEM_SIZES: 1024 / 1024 / 1024
• CL_DEVICE_MAX_WORK_GROUP_SIZE: 1024

3.2. Data Sets

We consider images obtained from the Hyperion sensor onboard EO/1 satellites. Hyperion can
be considered as a good proxy of sensor PRISMA, having similar spectral coverage, spectral resolution
and spatial resolution.

For this study, we have taken into consideration three Hyperion images with different sizes (see
Table 1 for a summary). As the computational time of the algorithms does not depend on the scene of
the image, but only on its size, the images are shown only as a reference.

Table 1. Summary of information on the Hyperion datasets used for the analysis: Identity, location,
date and size of the images.

Image Identity Location Date Size (Pixels)

Ajka EO1H1890272010282110KF_1 Ajka (Hungary) 19 October 2010 400× 256
Oil Spill EO1H0210402010195110KF_1R Gulf of Mexico 14 July 2010 1200× 256
Desert O1H1790412015255110P0_1R Egypt 15 September 2015 6981× 256

Ajka (small size). It is a resize of 400 × 256 pixels extracted from the Hyperion image (id
EO1H1890272010282110KF_1R) acquired on 19 October 2010. The image shows the impact on urban
and rural areas of the alumina sludge spill of a refinement factory occurred on 4 October 2010 in Ajka,
Hungary (Figure 2).

Oil Spill (medium size). It is a resize of 1200 × 256 pixels obtained by the Hyperion image (id
EO1H0210402010195110KF_1R) acquired on 14 July 2010 on an area of the Gulf of Mexico (center image
coordinate: 29◦19′44.55′ ′N, 89◦28′51.07′ ′W) interested by the huge oil-spill phenomenon occurred
between April and July 2010 (Figure 3).

Desert (big size). It is an image of 6981× 256 pixels (id: EO1H1790412015255110P0_1R) acquired
on 15 September 2015 on a uniform Egyptian desert area (center image coordinate: 27◦05′01.55′ ′N,
25◦34′48.29′ ′E).

Figure 2. Original (left) and NLM denoised (middlke) RGB Ajka image. Difference of the two images
(estimated noise) is shown on the right composing the differences of the same RGB bands.



Remote Sens. 2019, 12, 414 9 of 19

Figure 3. Original (left) and NLM denoised (middle) RGB Oil Spill image. Difference of the two images
(estimated noise) is shown on the right composing the differences of the same RGB bands.

4. Experiments on Hyperion Images

In this section we show the speed-up achievable with our parallel portable algorithm with respect
to conventional CPU architecture in the heterogeneous platform. In particular we consider the parallel
OpenCL code applied separately to the GPU and CPU platforms (therefore exploiting the parallel
capabilities of both) and the serial code (working on a single core) for the CPU. As a consequence we
evaluate the speed-up reachable by the parallel OpenCL code running on the GPU and the CPU with
respect to the serial code running on a single-core CPU.

First of all we observe that our multi-platform portable implementation of NLM yields the same
numerical results as its sequential implementation. Moreover, in order to strictly highlight performance
of OpenCL, the overhead of transferring the image between the main memory of the host and the
device is not included in the measured execution time.

The parallel code includes the same algorithm operations executed sequentially as shown in the
Appendix A.

We compare the computational time of the parallel OpenCL algorithm for GPU and CPU of
Section 2.1 with the sequential CPU code for different configurations of the NLM method in terms
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of search and similarity windows. Table 2 reports the running time of the the OpenCL parallell
Algorithm 2 applied to the GPU and CPU and of the serial Algorithm 1 for CPU for size of the similarity
window d = dx = dy = 1, 2 and of the search window v = vx = vy = 3, 4, 8, 16, 32, 64, 128, 256 for both
versions of the algorithm, when relevant, for any spectral band of the Ajka image. The speed-up of
the parallel algorithm on the GPU with respect to the same algorithm on the CPU and to the serial
algorithm on the CPU is also shown. Tables 3 and 4 show the same results for the Oil Spill and Desert
images, respectively.

Table 2. Performance of the NLM algorithm applied to any band of the Ajka image (size 400× 256)
for different values of the similarity (d, column 1) and search (v, column 2) windows. Computational
time of the portable OpenCL code run on GPU and CPU platforms is shown in columns 3 and 5,
respectively. Moreover, column 7 reports the computational time of the sequential algorithm for the
CPU. The speed-up of the portable parallel algorithm with respect to the sequential one run on the
GPU and on the CPU is also shown in columns 4 and 6, respectively. Cases with the highest speed-up
are highlighted in boldface.

Time Speed-up Time Speed-up Time
d v GPU GPU vs. CPU CPU (OpenCL) CPU (OpenCL) vs. CPU CPU

1 3 0.0006 326 0.0063 33 0.2076
2 3 0.0022 195 0.0205 21 0.4232
1 4 0.0009 383 0.0104 32 0.3312
2 4 0.0034 210 0.0367 20 0.7187
1 8 0.0025 487 0.0327 37 1.2017
2 8 0.0121 207 0.1266 20 2.5122
1 16 0.0106 460 0.11726 42 4.8737
2 16 0.0506 184 0.4603 21 9.2751
1 32 0.0364 460 0.4549 37 16.7179
2 32 0.1447 231 1.8073 19 33.3451
1 64 0.1320 500 2.0610 32 65.8862
2 64 0.4877 289 7.3622 20 140.6830
1 128 0.4214 714 7.9215 38 300.7080
2 128 1.6608 350 32.0784 19 580.3900
1 256 1.3367 798 34.1692 32 1065.4900
2 256 6.2209 361 111.8890 21 2243.2900

Table 3. Performance of the NLM algorithms applied to any band of the Oil Spill image (size 1200× 256)
for different values of the similarity (d, column 1) and search (v, column 2) windows. Computational
time of the portable OpenCL code run on GPU and CPU platforms is shown in columns 3 and 5,
respectively. Moreover, column 7 reports the computational time of the sequential algorithm for the
CPU. The speed-up of the portable parallel algorithm with respect to the sequential one run on the
GPU and on the CPU is also shown in columns 4 and 6, respectively. Cases with the highest speed-up
are highlighted in boldface.

Time Speed-up Time Speed-up Time
d v GPU GPU vs. CPU CPU (OpenCL) CPU (OpenCL) vs. CPU CPU

1 3 0.0014 415 0.0185 32 0.5846
2 3 0.0062 195 0.0591 20 1.2013
1 4 0.0021 486 0.0271 38 1.0325
2 4 0.0098 199 0.0977 20 1.9464
1 8 0.0070 497 0.0932 37 3.4612
2 8 0.0396 185 0.3554 21 7.2867
1 16 0.0295 448 0.3512 38 13.2074
2 16 0.1354 198 1.3244 20 26.7487
1 32 0.0987 504 1.2885 39 49.7303
2 32 0.3764 254 4.5136 21 95.2701
1 64 0.3437 593 5.694 36 203.94
2 64 1.3535 301 20.8591 19 406.6710
1 128 1.1533 666 23.2089 33 767.6080
2 128 5.0774 340 85.1840 20 1721.8400
1 256 4.2023 761 94.8635 34 3195.8500
2 256 19.3141 346 340.0810 20 6667.2400
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Table 4. Performance of the NLM algorithm applied to any band of the Desert image (size 6981× 256)
for different values of the similarity (d, column 1) and search (v, column 2) windows. Computational
time of the portable OpenCL code run on GPU and CPU platforms is shown in columns 3 and 5,
respectively. Moreover, column 7 reports the computational time of the sequential algorithm for the
CPU. The speed-up of the portable parallel algorithm with respect to the sequential one run on the
GPU and on the CPU is also shown in columns 4 and 6, respectively. Cases with the highest speed-up
are highlighted in boldface.

Time Speed-up Time Speed-up Time
d v GPU GPU vs. CPU CPU (OpenCL) CPU (OpenCL) vs. CPU CPU

1 3 0.0074 521 0.0791 49 3.8522
2 3 0.0421 205 0.3277 27 8.5877
1 4 0.0117 507 0.1198 50 5.9438
2 4 0.0626 199 0.4787 26 12.4373
1 8 0.0437 493 0.4614 47 21.5059
2 8 0.2280 197 1.8309 25 44.7047
1 16 0.1706 474 1.8451 44 80.7992
2 16 0.5700 295 7.2114 24 167.7810
1 32 0.4409 669 7.2103 41 294.6210
2 32 1.7229 332 26.7567 22 571.6640
1 64 1.5968 807 33.3146 39 1287.6400
2 64 7.3676 344 121.5250 21 2533.7700
1 128 6.2038 827 132.5330 39 5128.4500
2 128 30.8052 340 455.0150 23 10448.4000
1 256 24.8274 774 540.0070 36 19194.3000
2 256 117.0870 334 1990.5400 20 39105.3289

To analyze the behaviour with respect to the search window v, Figure 4 graphically shows the
plot computational time vs. v of the serial algorithm for CPU for the considered images (similarity
window d = 1). Plot is given on a logarithmic scale for both axes, meaning a power relationship
between computational time t and search window v as

t = avb; (4)

the estimated exponent is b ≈ 1.94 close to 2 and the corresponding fit is shown in the plot as a
dashed line.
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Figure 4. Plot of the computational time of the serial algorithm for CPU vs. search window v (similarity
window d = 1). Curves refer to the Ajka, Oil Spill and Desert images. The fit by Equation (4) is also
shown as a dashed line.
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Figure 5 shows the analogous plot for the parallel algorithm on the GPU architecture. Now the
estimated b ≈ 1.73− 1.80 < 2.
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Figure 5. Plot of the computational time of the parallel algorithm on the GPU vs. search window v
(similarity window d = 1). Curves refer to the Oil Spill, Desert and Ajka images. The fit by Equation (4)
is also shown as a dashed line.

The resulting plot of speed-up of the parallel code on the GPU architecture with respect to the
serial code on the CPU is shown in Figure 6.
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Figure 6. Plot speed-up of the parallel code on the GPU architecture with respect to the serial code on
the CPU vs. search window v (similarity window d = 1) for images Oil Spill, Desert, Ajka.
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Finally to estimate dependence of the computational time on the size of the images, Figure 7 shows
the computational time for CPU (left axis) and GPU (right axis) architecture in the NLM configuration
v = 8, d = 1.
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Figure 7. Plot computational time vs. size of the images (number of pixels) for 1 GPU unit and CPU
architectures (case v = 8, d = 1). Corresponding regression fit is shown as black dashed lines.

5. Results and Discussion

Tables 2–4 show that the computational time increases with d and v for all hardware configurations,
as expected. Similarity window d = 1 always yields higher speed-up than d = 2. Instead the
behaviour with respect to the search window v is more intricate. When we consider speed-up of
the parallel code on the GPU architecture with respect to the serial code on the CPU we observe
an irregular (often decreasing with v) behaviour up to v = 16, 32 and then a clear increase with
v. This pattern depends on the size of the image. On the contrary the speed-up of the same
parallel algorithm on the CPU with respect to the serial algorithm on the same CPU is much less
dependent on the search window and also on the size of the image and hardware work-group
size. The reason for the different behaviour is that v has better performance when is a multiple of
CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE due to the work-size. For example
for v = 128 there are necessary (128× 2+ 1)2 = 66049 threads to process the search window; this means
that considering the maximum work item size of each device, they are 1024 ad 8192 for NVIDIA GPU
and INTEL CPU, respectively. Then the number of work-groups used is 66,049/1024 ≈ 65 for NVIDIA
GPU with 511 idle threads and 66,049/8192≈ 9 for INTEL CPU with 7679 idle threads. This observation
emphasizes the importance of selecting parameters to get optimum block dimensions that are multiples
of the CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE size also called warp. As a
consequence the configurations that yield the highest speed-up (boldface in Tables 2–4) are obtained
for different values of v. In the case of speed-up of the parallel code on GPU the highest values occur
for high values of v (798 at v = 256 for the small Ajka image; 761 at v = 256 for the medium size
Oil Spill image, 827 at v = 128 for the big Desert image) and can be considered little depending on
the size. For the speed-up of the parallel code on the CPU best values are obtained for v = 16 (42),
v = 32 (39) and v = 4 (50) for the small, medium and large size images, respectively, that is for smaller
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values than the parallel code on GPU. Anyway in all configurations speed-up is never lower than
300 independently of v and size of the image for the parallel code on the GPU and 32 for the same
code on the CPU.

The Tables show that our multi-platform parallel code is able to speed-up a serial code on a same
CPU of a significant factor (up to 40–50). In addition we remark that the amplification factors reached
are beyond the ones theoretically possible with the multicore capability of our CPU architecture
(6-cores). The performance difference comes from the different architectural characteristics between
CPUs and GPUs, the number of work-items and the amount of work done by a work-item that affect
performance differently on CPUs and GPUs. Furthermore a huge number of work groups having
a few work-items hurt performance on CPUs but help performance on GPUs. On GPUs, a single
work-item is processed by a scalar processor or one single SIMD (Single Instruction Multiple Data)
lane. On the contrary GPUs are specialized for supporting a large number of concurrently running
threads. In addition, on CPUs the high thread-level parallelism is limited by the number of cores,
so using more threads to do the same amount of work does not help performance on CPUs but hurts it
due to the overhead of emulating a large number of concurrently executing work-items on a small
number of cores.

We observe that the computational time for CPU based architecture increases around 2× going
from d = 1 to d = 2 for all images and search windows. On the contrary for GPU architectures the
increase is somewhat higher (depending on v but systematically greater than 4); as a consequence
speed-up for d = 1 is always higher than d = 2.

Now we specifically analyze dependence on the search window v. For CPU architecture the
computational time of the serial code approximately scales as the square of v for all images, which is
the value theoretically expected from the two-dimensional nature of the search window (Figure 4).
The situation is different for the GPU architectures. The estimated value (b ≈ 1.7–1.8; Equation (4)) from
Figure 5 for the parallel algorithm on the GPU indicates that the computational time increases less than
quadratically with v on CPU, meaning a gain of efficiency. As a consequence the plot of speed-up of the
parallel code for GPU architecture with respect to the serial code on CPU (Figure 6) is intricate but the
general trend shows an increasing speed-up for large search windows (from v = 16–32), whereas for
small windows there is still some constant when not decrease of the speed-up with v. This behaviour
can be explained with a huge number of work groups having a few work items which do not help
performance on CPUs and GPUs.

Finally the even small departures of the power relationship computational time of the serial
algorithm for CPU and the parallel algorithm for GPU vs. the search window lead to an intricate
behaviour of the corresponding speed-up as a function of v. However the general trend of higher
speed-up when the size of the image increases is clear (Figure 7).

Even though the present paper is not aimed at choosing an optimal or automatic bandwidth,
nor to evaluate effectiveness of NLM as a denoising methodology compared to other competitors,
Figures 2 and 3 (middle) show the denoised images (Ajka and Oil Spill, respectively) obtained for
the window sizes d = 2, v = 8. The bandwidth of the method is chosen as the standard deviation
of the noise σi for each spectral channel i = 1, . . . , 242. σi is estimated starting from the available
characteristics of the Hyperion SNR [2] basing on the actual signal strength of the images. As a
rule-of-the-thumb the windows sizes (d = 2, v = 8) have been chosen for these images, as we observe
a negligible difference in the denoised images using larger windows. For images from other sensors
with a different SNR the choice of d and v could be based on different arguments. We remark again
that the computational time does not depend on bandwidth h. Finally Figure 2 (right) shows the noise
estimated by NLM composing the three difference images at the same RGB spectral bands for the
Ajka image.
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6. Conclusions

We have developed a multi-platform algorithm for denoising remotely sensed images for CPU
and GPU architectures. A major benefit of using an OpenCL algorithm is that the same kernel can be
easily executed on different platforms as shown. It is able to dramatically speed-up computational
time by a factor ranging from around 300× to 700× depending on the size of the search window and
of the image with respect to traditional serial C++ algorithms on CPU. In addition the very same
algorithm, when run on commodity CPU, is already able to boost computational performance by a
factor up to 40–50 depending on the search window and on the size of the image.

As a consequence NLM, known in the literature as a very effective yet time consuming
methodology for denoising images, becomes a viable way to denoise remotely sensed images in
real-time; furthermore it makes time consuming tuning bandwidth very fast. Moderate cost of the GPU
technology and continuous progress in its architecture are fast spreading its use within the remote
sensing community. The proposed algorithm can serve as a firm basis for ongoing and future upgrades
of portable multi-platforms algorithms.
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Abbreviations

The following abbreviations are used in this manuscript:

NLM NonLinear Means
GPU Graphical Processing Unit
CUDA Compute Unified Device Architecture
NDVI Normalized Difference Vegetation Index
EO Earth Observation
SNR Signal to Noise Ratio
AVIRIS Airborne Visible InfraRed Imaging Spectrometer

Appendix A

Source code example to show the difference between the sequential flow operations and the
portable parallel kernel OpenCL version of our NLM algorithm. For sake of clarity we denote by:

• NLM_WINDOW = v, search window radius size.
• NLM_BLOCK_RADIUS = d, patch radius size.
• WIDTH = N_x, image width.
• HEIGHT = N_y, image height.
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Listing 1: OpenCL NLM Kernel code
1
2 __kernel void fast_nlm(__global uchar* input , float h_nlm , __global uchar* output ){
3 float sumWeights= 0.0f;
4 const int x = get_global_id (0);
5 const int y = get_global_id (1);
6 if(x<WIDTH && y < HEIGHT ){
7 const int samples =(2* NLM_BLOCK_RADIUS +1)*(2* NLM_BLOCK_RADIUS +1);
8 float weightIJ =0.0f;
9 float sumWeights =0.0f;

10 float clr =0.0f;
11 float sigma11 =0.0f;
12 #pragma unroll
13 for(int j = -NLM_WINDOW; j <= NLM_WINDOW; j++){
14 for(int i = -NLM_WINDOW; i <= NLM_WINDOW; i++){
15 // Compute the Euclidean distance beetween the two patches
16 float weightIJ =0.0f;
17 #pragma unroll
18 for(int m = -NLM_BLOCK_RADIUS; m <= NLM_BLOCK_RADIUS; m++){
19 for(int n = -NLM_BLOCK_RADIUS; n <= NLM_BLOCK_RADIUS; n++){
20 int x1= (x+j + m)>=0?x+ j + m:0;
21 int y1= (y+i + n)>=0? y+i+n:0;
22 x1= x1<WIDTH? x1:WIDTH -1;
23 y1= y1<HEIGHT? y1:HEIGHT -1;
24 int x2=(x+ m)>=0? x+ m:0;
25 int y2=(y+ n)>=0 ? y+ n:0;
26 x2= x2<WIDTH? x2:WIDTH -1;
27 y2=y2 <HEIGHT? y2:HEIGHT -1;
28 int a=input[y1 *( WIDTH) +x1];
29 int b=input[y2 *( WIDTH) +x2];
30 weightIJ += vec_len_int(a,b);
31 }
32 }
33 float factor=max(( h_nlm*h_nlm ) ,0.000001f);
34 sigma11 =1/ factor;
35 int x3= (x+j)>=0? j+x :0;
36 int y3= (y+i)>=0? i +y:0;
37 x3= x3 <WIDTH? x3:WIDTH -1;
38 y3= y3 <HEIGHT? y3:HEIGHT -1;
39 int clrIJ=input[mad24(y3 ,WIDTH ,x3)];
40 weightIJ = exp( -( ( (weightIJ * sigma11 ) /samples )));
41 clr += clrIJ * weightIJ;
42 sumWeights += weightIJ;
43 }
44 }
45
46 sumWeights = 1.0f / sumWeights;
47 clr*= sumWeights;
48 output[mad24(y,WIDTH ,x)]=( uchar)clr;
49 }
50 }

Listing 2: CPU Sequential NLM code
1 int mask_NLM_WINDOW_RADIUS=NLM_WINDOW_RADIUS;
2 int mask_NLM_BLOCK_RADIUS=NLM_BLOCK_RADIUS;
3 for(int y=0; y<HEIGHT;y++)
4 for(int x=0; x<WIDTH;x++){
5 float sumWeights_0= 0.0f;
6 float weightIJ_media = 0.0f;
7 float clr_0 = 0.0f;
8 for(int j = -mask_NLM_WINDOW_RADIUS; j <= mask_NLM_WINDOW_RADIUS; j++) {
9 for(int i = -mask_NLM_WINDOW_RADIUS; i <= mask_NLM_WINDOW_RADIUS; i++){

10 //Find color distance from (x, y) to (x + j, y + i)
11 float weightIJ_0 =0.0f;
12 // Compute the Euclidean distance beetween the two patches
13 for(int m = -mask_NLM_BLOCK_RADIUS; m <= mask_NLM_BLOCK_RADIUS; m++){
14 for(int n = -mask_NLM_BLOCK_RADIUS; n <= mask_NLM_BLOCK_RADIUS; n++){
15 int x1= (x+j + m)>=0?x+ j + m:0;
16 int y1= (y+i + n)>=0? y+i+n:0;
17 x1= x1<WIDTH? x1:WIDTH -1;
18 y1= y1<HEIGHT? y1:HEIGHT -1;
19 int x2=(x+ m)>=0? x+ m:0;
20 int y2=(y+ n)>=0 ? y+ n:0;
21 x2= x2<WIDTH? x2:WIDTH -1;
22 y2=y2 <HEIGHT? y2:HEIGHT -1;
23 int a= src.at<uchar >(x1,y1) ;
24 int b= src.at<uchar >(x2,y2) ;
25 weightIJ_0 += vec_len(a,b);
26 }
27 }
28 float factor =0.000001f;
29 factor =(h_nlm*h_nlm);
30 sigma11 =1/ factor;
31 weightIJ_0 = exp( -( ( (weightIJ_0 * sigma11 ) /samples )));
32 int x3= (x+j)>=0? j+x :0;
33 int y3= (y+i)>=0? i+y:0;
34 x3= x3 <WIDTH? x3:WIDTH -1;
35 y3= y3 <HEIGHT? y3:HEIGHT -1;
36 int clrIJ =src.at<uchar >(x3 ,y3) ;
37 clr_0 += clrIJ * weightIJ_0;
38 sumWeights_0 += weightIJ_0;
39 }
40 }
41 sumWeights_0 = 1.0f / sumWeights_0;
42 clr_0 *= sumWeights_0;
43 dst.at<uchar >(x,y) = (uchar)(clr_0 );
44 }
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