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Abstract: The utilization of advanced remote sensing methods to monitor the coastal wetlands is
essential for conservation and sustainable development. With multiple polarimetric channels, the
polarimetric synthetic aperture radar (PolSAR) is increasingly employed in land cover classification and
information extraction, as it has more scattering information than regular SAR images. Polarimetric
decomposition is often used to extract scattering information from polarimetric SAR. However,
distinguishing all land cover types using only one polarimetric decomposition in complex ecological
environments such as coastal wetlands is not easy, and thus integration of multiple decomposition
algorithms is an effective means of land cover classification. More than 20 decompositions were used
in this research to extract polarimetric scattering features. Furthermore, a new algorithm combining
random forest (RF) with sequential forward selection (SFS) was applied, in which the importance
values of all polarimetric features can be evaluated quantitatively, and the polarimetric feature set can
be optimized. The experiments were conducted in the Jiangsu coastal wetlands, which are located in
eastern China. This research demonstrated that the classification accuracies were improved relative
to regular decision tree methods, and the process of polarimetric scattering feature set optimization
was intuitive. Furthermore, the scattering matrix elements and scattering features derived from H/α,
Yamaguchi3, VanZyl3, and Krogager decompositions were determined to be very supportive of land
cover identification in the Jiangsu coastal wetlands.

Keywords: polarimetric SAR; random forest model; parameter set optimization; coastal
wetlands; classification

1. Introduction

Coastal wetlands are important parts of coastal zones, having great ecological service functions in
maintaining biodiversity, producing food, regulating the climate, and providing tourism [1,2].With
the continuous development of coastal wetlands, natural wetland areas are continuously reduced,
and landscape patterns are seriously fragmented, which causes many problems, such as decrease
in the value of wetland ecosystem services, accelerated extinction of rare and endangered species,
and invasion of harmful species [3–5]. Therefore, the use of advanced technical methods for regular
monitoring and basic status survey of coastal wetlands is essential for the protection and sustainable
development of this ecological type [6].
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Current research on coastal environment monitoring depends mainly on optical remote
sensing [6–8]. However, there are many limitations with optical technology, such as the image
quality being seriously affected by weather, inability to work at night, and inability to penetrate rich
canopy covers [9,10]. In addition, the spectral and spatial characteristics of wetlands on optical remote
sensing images are strongly dependent on the environmental background and the phenomena of
“different spectra of the same object” and “different objects of the same spectrum” often occur. Thus,
the application of optical remote sensing technology in coastal monitoring is limited. A possible
alternative is synthetic aperture radar (SAR), which is a promising remote sensing technology that
continues to be developed. With the characteristics of strong penetrating power, wide coverage, and
all-weather imaging, SAR has unique advantages in monitoring land covers with high water vapor
content and has been gradually used in wetlands classification and dynamic monitoring [11–14]. In
particular, with the successive launches of a new generation of SAR sensors in recent years, a large
number of high-quality space-borne polarimetric SAR (PolSAR) data have been obtained. This kind
of data has rich polarimetric scattering information, which is very sensitive to the water content of
the scattering surface, and thus can be used for wetland information extraction [13,15,16]. With four
polarimetric channels, the fully polarimetric SAR can obtain more abundant scattering information
than the ordinary single polarimetric SAR data. Some researchers have applied this information in
wetlands monitoring and proved the superiority of this kind of data [17–19]. Most current research
uses only one polarimetric decomposition algorithm to extract the scattering information contained
in PolSAR images [20–22]. For coastal wetlands, which are complex ecological environments, it is
difficult to effectively distinguish all land cover types using only one decomposition method or some
polarimetric features [23]. Therefore, integrating multiple decomposition algorithms and obtaining
multiple polarimetric scattering features is an effective way to solve this problem [23,24].

Object-oriented analysis has been widely used in the classification of remote sensing images in
recent years [25–27]. Unlike the pixel-based method, the object-oriented method considers not only
the spectral properties (color) of the pixel, but also the spatial connections between pixels (shape,
texture, size, etc.). Object-oriented analysis regards some homogeneous pixels as an object, which can
be used as units for segmentation and classification. This method is efficient and produces a better
correspondence between the classification results and the real land covers. Therefore, it has been
increasingly used in the extraction and classification of SAR and polarimetric SAR images [24,28,29].

Random forest, a machine-learning classifier with superior performance, is a free combination
of multiple decision trees, which overcomes the deficiency of the single decision tree and avoids the
phenomenon of overfitting without artificial pruning [29,30]. In addition, it improves the training
efficiency of the model and has a better prediction effect [31]. The random forest algorithm not only
realizes the classification of remote sensing images, but can also play an important role in feature
selection. In the process of random forest modeling, the importance of different feature variables can be
calculated and the efficiency of variables in the classification can be quantitatively compared [32]. Most
of the current related research focuses on optical remote sensing data or ordinary SAR data [33,34], but
there are few studies focusing on polarimetric SAR data and polarimetric scattering features, especially
in wetlands monitoring.

The objective of this research is to examine a new method for scattering feature set optimization
and polarimetric SAR classification. The research integrated 20 polarimetric decomposition algorithms
to extract polarimetric scattering features, and then proposed a feature set optimization and polarimetric
SAR image classification method that combines the object-oriented random forest (RF) model and
sequence forward selection (SFS) algorithm, henceforth referred to as the RF-SFS algorithm. Based
on object-oriented analysis, this algorithm is given a basis for quantitative evaluation by calculating
the importance of each polarimetric feature using the random forest method and optimizing the
feature set by applying the sequence forward selection algorithm. In this research, the eastern coastal
wetlands of Jiangsu, China, were taken as a typical study area, and an L-band full polarimetric ALOS
PALSAR image was obtained for the experiments to verify the applicability and effectiveness of the
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proposed method. Furthermore, random forests are obtained by combining decision trees. In theory,
the classification results using multiple trees are better than a single tree. The comparisons between
the proposed method and two decision tree methods were also performed to prove this.

2. Materials and Methods

2.1. Study Area and Data

The experiment was conducted in the Jiangsu coastal area, which is located along the Yangtze
River Basin in eastern China (Figure 1). The typical land cover types in the selected study area include
sea, fish pond, irrigable land, reed and alterniflora, Suaeda salsa, rice paddy, river, road, and sand.
Reed and alterniflora were classified into one category because the scattering characteristics of these
two kinds of land covers were exactly similar, and the resolution of the used SAR data was relatively
limited. Therefore, it was difficult to distinguish these two kinds of land covers in polarimetric SAR
images, and these were thus regarded as a mixed land type.
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Figure 1. Study area.

L-band fully polarimetric ALOS PALSAR data with a resolution of 9.37 m × 3.57 m were used in
the experiment. In addition, QuickBird high-resolution optical images and Google Earth images were
simultaneously acquired as auxiliary data for visual interpretation of the results. The polarimetric SAR
data was preprocessed with terrain correction, geocoding, multi-look, and filtering. Here, a multi-look
processing with 6:1 in the azimuth direction and the range direction was applied to improve the image
readability, and Refined Lee filtering with a 3 × 3 window size was employed to reduce noise [35]. A
total of 44,961 sample points were collected during fieldwork, among which 28,654 were used for the
random forest model construction and 16,307 for classification results validation. Some photographs
of typical land covers were taken during the fieldwork (Figure 2). The setting of the sample points is
shown in Table 1.
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Figure 2. Photographs of some typical land covers. (a) Fish pond; (b) river; (c) reed and alterniflora; (d)
Suaeda salsa; (e) road; (f) sand; (g) rice paddy; (h) irrigable land.

Table 1. Sample points setting.

Class Training Samples Validation Samples Total

Fish pond 5383 3027 8410
Irrigable land 1909 1024 2933

Reed and Alterniflora 4654 3021 7675
Suaeda salsa 2658 1486 4144
Rice paddy 2542 1324 3866

River 1599 876 2475
Road 1049 654 1703
Sand 1996 1022 3018
Sea 6864 3873 10,737

Total 28,654 16,307 44,961

2.2. Polarimetric Scattering Features Extraction

2.2.1. Matrix Element Features

Scattering matrix, coherent matrix, and covariance matrix can all be used to represent polarimetric
SAR data [36]. Each element in the matrix contains different polarimetric scattering information.
Therefore, these matrix elements can be used for PolSAR classification. Equations (1)–(3) represent
different matrix elements.
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where Shh, Shv, and Svv are the elements of the polarimetric scattering matrix, 〈〉 is inner product
operation, || is determinant of a matrix, S∗vv represents the adjoint matrix of Svv; the coherence matrix
elements and the covariance matrix elements are obtained via the second-order operations of the
scattering matrix elements. Each set of group elements of the three forms of matrices contains all
the information in the full polarimetric SAR data. Therefore, using any group of matrix elements to
participate in polarimetric scattering information extraction is equivalent to using any of the other
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groups for the same purpose [36]. In this study, three scattering matrix elements, Shh, Shv, and Svv,
were employed in classification.

2.2.2. Polarimetric Decomposition Features

Polarimetric decomposition is an important scattering information extraction approach in
polarimetric SAR data application [35,37]. As a well-known and basic decomposition, the Pauli
decomposition expresses the backscattering matrix S with the so-called Pauli basis:

S =

[
Shh Shv
Svh Svv

]
=

a
√

2

[
1 0
0 1

]
+

b
√

2

[
1 0
0 −1

]
+

c
√

2

[
0 1
1 0

]
+

d
√

2

[
0 −i
i 0

]
(4)

Here, a =
Shh + Svv
√

2
, b =

Shh − Svv
√

2
, c =

Shv + Svh
√

2
, d = i

Shv − Svh
√

2
(5)

where
[

1 0
0 1

]
,
[

1 0
0 −1

]
,
[

0 1
1 0

]
, and

[
0 −i
i 0

]
are the Pauli basis, Shh, Shv, Svh, and Svv are the

elements of the polarimetric scattering matrix. With the reciprocity theorem and Shv = Svh, the Pauli
basis can be reduced to the first three matrices. Shh + Svv, Shh − Svv, and 2Shv are associated with
physical scattering mechanisms, which are odd-scattering, even-scattering, and volume scattering,
respectively [35]. The total power of the polarimetric SAR is obtained as follows:

Span = |Shh|
2 + 2|Shv|

2 + |Svv|
2 = |a|2 + |b|2 + |c|2 (6)

Thus, the Pauli image, where |a|2 corresponds to blue band, |b|2 corresponds to red band, and |c|2

corresponds to green band, represents all information in a PolSAR data and can be utilized to visual
interpretation [36].

In addition to Pauli decomposition, many other polarimetric decomposition algorithms have
been proposed, each of which may have their inherent defects or deficiencies. Moreover, polarimetric
features obtained from different decomposition algorithms have different sensitivities to land covers [35].
Therefore, integrating multiple polarimetric decomposition algorithms will be an effective way of
making polarimetric SAR data more suitable for complex coastal environments [23,24]. In this study, 93
polarimetric scattering features were extracted by using the 20 polarimetric decomposition algorithms
listed in Table 2, and a total of 96 polarimetric features were obtained by adding 3 scattering matrix
elements. These 96 polarimetric parameters were combined into a multi-band image, and then
object-oriented segmentation and classification were performed on the multi-band image.

2.3. Object-Oriented Method

In recent years, object-oriented methods have been increasingly applied in remote sensing image
classification. Unlike pixel-based methods, object-oriented ideas consider not only the spectral
properties (color) of pixels, but also the spatial connections of pixels (shape, texture, size, etc.), and
treat some homogeneous pixels as an object [25–27]. The object is used as a unit for segmentation and
classification, and thus the method is efficient, and the classification results are better matched with the
real land covers. As the first step of object-oriented analysis, the result of image segmentation will
directly affect the final classification performance [28]. Multi-scale segmentation, a more commonly
used segmentation algorithm for object-oriented methods, is a bottom-up method that combines
adjacent pixels or small segmentation objects [25]. This algorithm performs object delineation based on
shape and color homogeneity and realizes image segmentation based on region merging technology
under the premise of ensuring minimum average heterogeneity between objects and maximum
homogeneity between internal pixels of objects. There are three parameters that are crucial to the
effect of multi-scale segmentation, namely, image layer weights, scale parameter, and composition of
homogeneity criterion.
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Table 2. Polarimetric decomposition features extracted from 20 decompositions.

Decompositions 1 Polarimetric Decomposition Parameters

Pauli Pauli_a Pauli_b Pauli_c

Krogager Krogager_Ks Krogager_Kd Krogager_Kh

Huynen Huynen_T11 Huynen_T22 Huynen_T33

Barnes1 Barnes1_T11 Barnes1_T22 Barnes1_T33

Barnes2 Barnes2_T11 Barnes2_T22 Barnes2_T33

Holm1 Holm1_T11 Holm1_T22 Holm1_T33

Holm2 Holm2_T11 Holm2_T22 Holm2_T33

VanZyl3 VanZyl3_Vol VanZyl3_Odd VanZyl3_Dbl

Cloude Cloude_T11 Cloude_T22 Cloude_T33

H/A/Alpha

H/A/A_T11 H/A/A_T22 H/A/A_T33
Entropy Anisotropy Shannon Entropy
DERD Polarization Asymmetry Polarization Fraction
SERD Radar Vegetation Index Anisotropy12

Pedestal Height Alpha (α,α1,α2,α3) Anisotropy_Lueneburg
Pseudo Probabilities (p1, p2, p3) Lambda

Freeman2 Freeman2_Vol Freeman2_Ground

Freeman3 Freeman_Vol Freeman_Odd Freeman_Dbl

Yamaguchi3 Yamaguchi3_Vol Yamaguchi3_Odd Yamaguchi3_Dbl

Yamaguchi4 Yamaguchi4_Vol Yamaguchi4_Odd Yamaguchi4_Dbl
Yamaguchi4_Hlx

Neumann Neumann_delta_mod Neumann_delta_pha Neumann_tau

Touzi
TSVM_alpha_s TSVM_alpha_s1 TSVM_alpha_s2
TSVM_alpha_s3 TSVM_tau_m TSVM_tau_m1
TSVM_tau_m2
TSVM_phi_s2

TSVM_psi1
TSVM_psi

TSVM_tau_m3
TSVM_phi_s3

TSVM_psi2

TSVM_phi_s1
TSVM_phi_s
TSVM_psi3

An_Yang3 An_Yang3_Vol An_Yang3_Odd An_Yang3_Dbl

An_Yang4 An_Yang4_Vol An_Yang4_Odd An_Yang4_Dbl
An_Yang4_Hlx

Arii3_NNED Arii3_NNED_Vol Arii3_NNED_Odd Arii3_NNED_Dbl

Arii3_ANNED Arii3_ANNED_Vol Arii3_ANNED_Odd Arii3_ANNED_Odd
1 Decompositions are cited from [36,38–53]

When too many layers participate in segmentation, the processing speed will be very slow, and
the noise in each polarimetric feature layer will also cause the blurring of segmentation results and the
fragmentation of blocks. Like in this study, if all of the obtained 96 polarimetric scattering features
participate in segmentation, the calculation amount will be too large, and the segmentation result will
not be satisfactory. As noted, the Pauli image can represent all the information contained in a PolSAR
image, and the three bands of the Pauli RGB image correspond to the physical scattering mechanism
of the real land covers. It can be used to qualitatively analyze the physical significance of the land
covers in the polarimetric SAR image. Therefore, the Pauli RGB image was adopted for multi-scale
segmentation. Moreover, the three bands of the Pauli image correspond to three scattering mechanisms
with the same importance, so equal weights were set for each band during the segmentation [54].

The scale parameter is used to determine the maximum allowed heterogeneity of the generated
image object [55]. The larger the value of the scale, the larger the size of the generated image object,
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and vice versa. If the scale parameter is too small, the segmented objects will be too fragmented to
reflect the shapes of the land covers; if the scale parameter is too large, the details of the land covers
will be lost [56,57]. Homogeneity is used to represent the minimum heterogeneity and consists of two
parts, namely color (spectrum) and shape, the weights of which add up to 1.0. Furthermore, the shape
is represented by smoothness and compactness, the weights of which also add up to 1.0. The color
and shape, and the smoothness and compactness, can be regarded as the “opposite value” to each
other. If the shape of the land cover in the image can indeed reflect its characteristics, the weight of
the shape can be appropriately increased, while that of color can be reduced. Smoothness represents
the smoothness of the edge of the segmented object, and compactness represents the tightness of the
whole segmented object. In the process of segmentation, the optimal scale parameter and homogeneity
criterion are usually determined by multiple trials [23]. The criterion to evaluate the segmentation
result is whether the segmentation object is large enough and contains only one category.

2.4. Random Forest and Feature Set Optimization

Random forest (RF) is a machine learning model developed in recent years. The theoretical basis
of the model is the decision tree; RF is obtained by combining different decision trees [30,31]. In other
words, many decision trees

{
h(X,θk), k = 1, . . .

}
are generated via the randomization of variables and

data, and there is no connection between each tree. The parameter set θk is an independent random
vector with the same distribution. When the independent variable X is given, each decision tree uses
the voting method to produce the optimal result. When original data are entered into the random
forest model, each decision tree classifies the data. The final result is the classification result which
appears most frequently in all trees.

In the process of random forest model training, the importance of each variable can be
calculated [32–34]. There are two types of importance measures: mean decrease impurity and
mean decrease accuracy (MDA). The former is a calculating method of the Gini index, and the latter is
a calculating method based on OOB (out-of-bag) error [58,59]. Here, the MDA method is employed.
This method directly measures the effect of each feature on the accuracy of model prediction. The
basic idea is to rearrange the order of a certain column of feature values and to observe how much the
model accuracy is reduced. For non-important features, this method has little effect on the accuracy of
the model, but for important features, it can greatly reduce the accuracy of the model. That is, when
random white noise is added to a feature, observing the effect on the accuracy of the result. A small
influence means that this feature is not important, otherwise it is important. The calculation of the
importance of a feature f in a random forest is as follows:

Step 1. For each decision tree in a random forest, use the corresponding OOB (out-of-bag) data to
calculate its out-of-bag data error, and record it as errOOB1;

Step 2. Randomly add noise to the feature f of all samples of the OOB data outside the bag, and
calculate the error of the data outside the bag again, and record it as errOOB2;

Step 3. Assuming there are N trees in the random forest, the importance for feature f can be
calculated as follows:

IM =
1
N

N∑
i=1

(errOOB2− errOOB1) (7)

where IM is the importance of feature f . The larger the IM value of a given feature, the more important
it is.

In this study, the importance values of polarimetric features extracted from 20 decomposition
algorithms were calculated by utilizing random forest models; these feature parameters were then
sorted from high to low according to their importance values. In the process of feature set optimization,
sequential forward selection (SFS) algorithm was adopted [60]. The idea is as follows: If the original
feature set is F and the current feature set is X, which contains n features, for each feature fi that is
not selected for X (i.e., the remaining features after X is removed from F), the overall classification
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accuracy is calculated after introducing the feature into feature set X, and the optimal polarimetric
feature is selected according to the overall accuracy of each calculation. That is, the feature subset
corresponding to the highest classification overall accuracy is selected as the optimal set. The optimal
feature subset has the least number of polarimetric parameters and the highest classification accuracy.
As the sequential forward selection algorithm is employed to calculate the overall classification accuracy
under all feature sets, and the feature set corresponding with the highest classification accuracy is
selected, it will not fall into the local optimal solution. The process of optimizing the polarimetric
scattering feature set using the RF-SFS algorithm is shown in Figure 3.

Remote Sens. 2020, 11, x FOR PEER REVIEW 9 of 18 

 

 
Figure 3. Steps of feature set optimization. 

2.5. Experimental Flowchart 

In this research, the object-oriented RF-SFS algorithm, which is a feature set optimization and 
classification method combining random forest (RF) model and sequential forward selection (SFS), 
was proposed. The specific processes of this method are as follows:  

(1) Filtering and other preprocessing were applied to the original polarimetric SAR data; 
(2) Twenty polarimetric decompositions listed in Table 2 were utilized to decompose the 

filtered coherent matrix, and 93 polarimetric decomposition features were obtained. Three 
scattering matrix elements, S11, S12 and S22, were used as matrix features, and thus a total of 96 
polarimetric scattering features could be obtained; 

(3) The scattering features obtained from the previous step were combined into a multi-band 
image, to which object-oriented multi-scale segmentation was then performed; 

(4) Training samples based on the segmented object as the basic unit were randomly selected; 
(5) Formula (7) was used to calculate the importance of all polarimetric scattering features of 

training samples; 
(6) The features were ranked according to the importance value; 
(7) Using the sequential forward selection algorithm to optimize the feature set, the feature 

subset with the least number of features and the highest classification accuracy was obtained; 
(8) The selected optimal polarimetric feature subset was classified based on the object-oriented 

random forest model; 
(9) The classification accuracy was calculated by using validation samples. 
A flowchart of the proposed methodology is given in Figure 4. 

Figure 3. Steps of feature set optimization.

2.5. Experimental Flowchart

In this research, the object-oriented RF-SFS algorithm, which is a feature set optimization and
classification method combining random forest (RF) model and sequential forward selection (SFS),
was proposed. The specific processes of this method are as follows:

(1) Filtering and other preprocessing were applied to the original polarimetric SAR data;
(2) Twenty polarimetric decompositions listed in Table 2 were utilized to decompose the filtered

coherent matrix, and 93 polarimetric decomposition features were obtained. Three scattering
matrix elements, S11, S12 and S22, were used as matrix features, and thus a total of 96 polarimetric
scattering features could be obtained;

(3) The scattering features obtained from the previous step were combined into a multi-band image,
to which object-oriented multi-scale segmentation was then performed;

(4) Training samples based on the segmented object as the basic unit were randomly selected;
(5) Formula (7) was used to calculate the importance of all polarimetric scattering features of

training samples;
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(6) The features were ranked according to the importance value;
(7) Using the sequential forward selection algorithm to optimize the feature set, the feature subset

with the least number of features and the highest classification accuracy was obtained;
(8) The selected optimal polarimetric feature subset was classified based on the object-oriented

random forest model;
(9) The classification accuracy was calculated by using validation samples.

A flowchart of the proposed methodology is given in Figure 4.Remote Sens. 2020, 11, x FOR PEER REVIEW 10 of 18 
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3. Results and Discussion

3.1. Importance Analysis of Polarimetric Features and Feature Set Optimization

The importance values of the 96 polarimetric scattering features were calculated using Formula
(7), as listed in Table 3. The importance values were ranked in descending order, as displayed in
Figure 5. As previously stated, the larger the IM value of a given feature, the more important it is.
From Table 3 and Figure 5, we can see the importance value of each feature and can know which
features are more important for the experimental results. However, different combinations of features
will produce different results when participating in classification. Therefore, determining which
polarimetric features are selected for classification to obtain the highest classification accuracy is the
next problem to be solved.

For the feature set composed of 96 polarimetric features, the RF-SFS algorithm proposed in this
study was adopted to optimize the feature set according to the importance value of each feature.
Assuming the initial target feature subset was empty, the specific method was to add the feature with
the highest importance value to the target feature subset each time, and then the features in the target
subset were performed to classification and the overall accuracy of the result was calculated, and
iterate iteratively until all features were added to the target subset and the accuracy was calculated.
The relationship between the classification accuracy calculated by each iteration and the number
of polarimetric features is shown in Figure 6. As can be seen from the figure, for the features that
ranked in the first nine in terms of importance, the classification accuracy was greatly improved for
each additional feature. After the number of features increased to nine, the classification accuracy
changed slowly. When the number increased to 23, the classification accuracy reached its highest
value, which was 87.29%. After that, the number of features increased, and the overall accuracy did
not change significantly. Even when the number of features reached 38, the classification accuracy was
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slightly reduced, and was about 2.5% lower than the accuracy of the 23 features participating in the
classification. Furthermore, as the number of features participating in the classification increased, the
computational burden also increased. This result indicates that when too many polarimetric features
are involved in the classification, the computational burden will be aggravated, and the information
redundancy between features will reduce the classification effect. Therefore, the classification is based
on the first 23 polarimetric features in the importance ranking. This ensures the accuracy of the
classification results and avoids the redundancy of information between features.

Table 3. Importance values of polarimetric scattering features (IM).

Polarimetric
Feature IM Polarimetric

Feature IM Polarimetric
Feature IM

1 S22 3.65 33 Holm2_T11 1.37 65 TSVM_psi 0.66

2 Barnes2_T22 2.87 34 An_Yang4_Dbl 1.34 66 Alpha2 0.66

3 Entropy_shannon 2.68 35 An_Yang4_Odd 1.32 67 Barnes1_T11 0.66

4 S11 2.61 36 Neumann_delta_pha 1.26 68 Pauli_T33 0.62

5 Barnes1_T22 2.3 37 Arii3_NNED_Dbl 1.24 69 Neumann_tau 0.61

6 Yamaguchi3_Dbl 2.18 38 Arii3_ANNED_Dbl 1.24 70 TSVM_phi_s2 0.59

7 Entropy 2.12 39 TSVM_psi2 1.23 71 Cloude_T22 0.59

8 VanZyl3_Dbl 2.01 40 An_Yang3_Dbl 1.22 72 Barnes2_T11 0.58

9 Arii3_NNED_Vol 1.98 41 Holm1_T11 1.22 73 Holm2_T22 0.56

10 Neumann_delta_mod 1.98 42 Anisotropy_Lueneburg 1.21 74 Huynen_T22 0.56

11 Lambda 1.96 43 Anisotropy12 1.21 75 TSVM_phi_s1 0.5

12 VanZyl3_Vol 1.96 44 p2 1.18 76 Holm1_T22 0.49

13 HAA_T11 1.94 45 Arii3_ANNED_Odd 1.16 77 TSVM_phi_s 0.43

14 Krogager_Kd 1.88 46 Yamaguchi4_Y40_Vol 1.12 78 TSVM_tau_m1 0.36

15 S12 1.87 47 Polarisation_Fraction 1.12 79 TSVM_tau_m 0.36

16 Krogager_Ks 1.68 48 RVI 1.07 80 TSVM_alpha_s2 0.36

17 Yamaguchi3_Odd 1.67 49 Arii3_NNED_Odd 1.05 81 Alpha3 0.36

18 An_Yang3_Vol 1.66 50 An_Yang3_Odd 1.05 82 Pauli_T11 0.36

19 Pedestal 1.66 51 p3 1.05 83 HAA_T33 0.35

20 Freeman_Vol 1.61 52 Yamaguchi4_Y40_Odd 1.02 84 An_Yang4_Hlx 0.33

21 Alpha 1.61 53 Freeman2_Ground 1.02 85 TSVM_psi3 0.31

22 Yamaguchi4_Y40_Dbl 1.54 54 Barnes2_T33 1.01 86 TSVM_tau_m2 0.3

23 Cloude_T11 1.54 55 TSVM_alpha_s 0.99 87 Yamaguchi4_Y40_Hlx 0.3

24 p1 1.53 56 HAA_T22 0.98 88 Holm1_T33 0.3

25 Yamaguchi3_Vol 1.52 57 Derd 0.96 89 Pauli_T22 0.3

26 Freeman_Dbl 1.51 58 An_Yang4_Vol 0.88 90 Cloude_T33 0.27

27 Huynen_T11 1.45 59 Barnes1_T33 0.88 91 Holm2_T33 0.25

28 Freeman_Odd 1.44 60 Asymetry 0.87 92 Huynen_T33 0.23

29 VanZyl3_Odd 1.43 61 Anisotropy 0.85 93 TSVM_alpha_s3 0.21

30 Serd 1.42 62 Alpha1 0.75 94 Krogager_Kh 0.2

31 Arii3_ANNED_Vol 1.41 63 TSVM_alpha_s1 0.68 95 TSVM_tau_m3 0.17

32 Freeman2_Vol 1.38 64 TSVM_psi1 0.66 96 TSVM_phi_s3 0.12
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From Table 3 and Figure 5, it is also easy to see that among the top 23 polarimetric
features with the higher importance values, Shh, Shv, and Svv are three scattering matrix elements;
Entropy_shannon, Entropy, Lambda, HAA_T11, Pedestal, and Alpha are six polarimetric features
from H/α decomposition; Yamaguchi3_Dbl and Yamaguchi3_Odd are two polarimetric features
from Yamaguchi3 decomposition; VanZyl3_Dbl and VanZyl3_Vol are two polarimetric features from
VanZyl3 decomposition; Krogager_Kd and Krogager_Ks are two polarimetric features from Krogager
decomposition. A total of 15 of the first 23 features are derived from the scattering matrix and the above
four polarimetric decomposition methods. In other words, the features obtained by the aforementioned
algorithms account for more than 65% of the total number of the first 23 important features, indicating
that these features are more important, and these decomposition algorithms have obvious advantages
over other decomposition methods in coastal wetland classification.

3.2. Classification Results

In this research, the following three methods were used to conduct comparative experiments in
the study area: (a) the proposed method; (b) QUEST decision tree algorithm without artificial pruning;
and (c) QUEST decision tree algorithm with artificial pruning. In method (b), the tree depth was not set
manually, and the decision tree grew freely. In method (c), in order to prevent overfitting caused by the
infinite growth of the decision tree, the tree depth was set to 5. The classification results of these three
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methods are shown in Figure 7. In addition, the user’s accuracy (UA), the producer’s accuracy (PA),
the overall accuracy (OA), and the Kappa coefficient of the three classification results were calculated
for quantitative analysis, as shown in Tables 4–6.Remote Sens. 2020, 11, x FOR PEER REVIEW 13 of 18 
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Figure 7. Classification results: (a) the proposed method; (b) QUEST decision tree algorithm without
artificial pruning; (c) QUEST decision tree algorithm with artificial pruning.

Table 4. Classification accuracy of the proposed method. (FP: fish pond; IL: irrigable land; RA: reed
and alterniflora; SS: Suaeda salsa; RP: rice paddy; RI: river; RO: road; SA: sand; S: sea).

Class FP IL RA SS RP RI RO SA S Total UA(%)

FP 2543 0 70 0 45 101 0 0 268 3027 84.01
IL 0 900 0 41 83 0 0 0 0 1024 87.89
RA 0 98 2534 182 120 0 0 87 0 3021 83.88
SS 0 0 138 1261 87 0 0 0 0 1486 84.86
RP 0 103 47 45 1129 0 0 0 0 1324 85.27
RI 99 0 0 0 0 734 0 0 43 876 83.79
RO 0 23 0 32 0 0 574 25 0 654 87.77
SA 0 35 30 0 0 0 54 903 0 1022 88.36
S 158 0 0 0 0 59 0 0 3656 3873 94.40

Total 2800 1159 2819 1561 1464 894 628 1015 3967 16,307
PA(%) 90.82 77.65 89.89 80.78 77.12 82.10 91.40 88.97 92.16
OA(%) 87.29 Kappa coefficient 0.8503

Table 5. Classification accuracy of QUEST decision tree without artificial pruning. (FP: fish pond; IL:
irrigable land; RA: reed and alterniflora; SS: Suaeda salsa; RP: rice paddy; RI: river; RO: road; SA: sand;
S: sea).

Class FP IR RA SS RP RI RO SA S Total UA(%)

FP 2076 0 109 0 86 151 0 0 605 3027 68.58
IR 0 772 0 63 189 0 0 0 0 1024 75.39
RA 0 105 2204 226 403 0 0 83 0 3021 72.96
SS 0 119 198 912 257 0 0 0 0 1486 61.37
PR 0 255 58 50 961 0 0 0 0 1324 72.58
RI 299 0 0 0 0 494 0 0 83 876 56.39
RO 0 49 0 0 0 0 516 89 0 654 78.90
SA 0 53 61 0 0 0 62 846 0 1022 82.78
S 223 0 0 0 0 138 0 0 3512 3873 90.68

Total 2598 1353 2630 1251 1896 783 578 1018 4200 16,307
PA(%) 79.91 57.06 83.80 72.90 50.69 63.09 89.27 83.10 83.62
OA(%) 75.38 Kappa coefficient 0.7103
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Table 6. Classification accuracy of QUEST decision tree with artificial pruning. (FP: fish pond; IL:
irrigable land; RA: reed and alterniflora; SS: Suaeda salsa; RP: rice paddy; RI: river; RO: road; SA: sand;
S: sea).

Class FP IR RA SS RP RI RO SA S Total UA(%)

FP 2413 0 88 0 50 146 0 0 330 3027 79.72
IR 0 809 0 65 150 0 0 0 0 1024 79.00
RA 0 96 2490 239 111 0 0 85 0 3021 82.42
SS 0 105 129 1199 53 0 0 0 0 1486 80.69
RP 0 110 46 51 1117 0 0 0 0 1324 84.37
RI 132 0 0 0 0 684 0 0 60 876 78.08
RO 0 43 0 0 0 0 534 77 0 654 81.65
SA 0 42 35 0 0 0 32 913 0 1022 89.33
S 219 0 0 0 0 109 0 0 3545 3873 91.53

Total 2764 1205 2788 1554 1481 939 566 1075 3935 16,307
PA(%) 87.30 67.14 89.31 77.16 75.42 72.84 94.35 84.93 90.09
OA(%) 84.04 Kappa coefficient 0.8123

3.3. Discussion

The decision tree is a tree built on the basis of decision choices. It is simple to implement and is
widely used in remote sensing classification [54,61]. It summarizes the training data set, learns to form
a series of rule sets, and classifies the pixels or groups of remote sensing image data according to the
generated rule sets. Sometimes the tree is too “lush”, that is, there are too many nodes and overfitting
may occur during the tree building process. Therefore, artificial pruning needs to be performed to
remove some unnecessary branches. The author’s previous research has proved the effectiveness of
the QUEST decision tree algorithm in the classification of coastal wetlands [23]. However, it required
artificial pruning of the tree and did not provide a method for quantitatively evaluating the validity of
features. Random forests are obtained by combining decision trees, and its theoretical basis is decision
trees. In theory, the classification results using multiple trees are better than a single tree. This research
will also prove this through comparative experiments.

By comparing the experimental results, the overall accuracy of the classification results obtained
by the object-oriented RF-SFS method was improved by more than 11% and the Kappa coefficient
increased by 0.14 compared with those of the object-oriented QUEST decision tree method without
artificial pruning. As shown in the boxed area of the figure, when the QUEST decision tree method
without artificial pruning was adopted, some sporadic plots in the alterniflora region were divided into
rice paddy and fish ponds, and some Suaeda salsa areas were not properly separated. The classification
accuracy for these wetland land covers was lower than that of the proposed algorithm. In addition,
the Suaeda salsa in the elliptical area was not completely identified, and most of these regions were
mistakenly classified as alterniflora, and some Suaeda salsa areas that were closer to the sea were
misclassified into irrigated land. Relatively satisfactory classification results were obtained for the
aforementioned wetland types when the proposed method was used. As shown in Table 4, the user’s
and producer’s accuracies for Suaeda salsa were 84.86% and 80.78%, respectively. For irrigable land, the
two indicators were 87.89% and 77.65%, respectively. When the QUEST decision tree method without
artificial pruning was performed, as shown in Table 5, the user’s accuracies of Suaeda salsa and irrigable
land were 61.37% and 75.39%, respectively, which were 23.49% and 12.5%, respectively, lower than that
of the proposed method. Meanwhile, the producer’s accuracies for these two land types were 72.90%
and 57.06%, respectively, which were significantly lower than that of the proposed method. When
artificial pruning was performed on the QUEST decision tree, as shown in Figure 7c and Table 6, the
user’s and producer’s accuracies for Suaeda salsa were 80.69% and 77.16%, respectively, and the two
indicators of irrigated land were 79.00% and 67.14%, respectively. These indicators were all improved
compared with those for the algorithm without artificial pruning operation, but were still lower than
the accuracy obtained by the algorithm proposed in this research. Through the comparison, it was
found that some fish ponds in the results for the method without artificial pruning were misclassified
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into sea, and some paddy fields were mistakenly divided into irrigated land, as shown in Figure 7b.
The results of the cases of misclassification for these wetland land covers have been improved after
artificial pruning. However, compared with the results of the proposed method, there were still small
blocks that were misclassified and the accuracy was still lower, as shown in Figure 7c and Table 6. It can
be seen that the object-oriented RF-SFS method not only had certain advantages in the optimization of
polarimetric feature set, but also achieved high classification accuracy without artificial pruning in the
modeling process.

4. Conclusions

A single polarimetric decomposition has difficulty in mining all the scattering information
contained in a PolSAR image. The decision tree method requires artificial pruning and cannot
quantitatively evaluate the validity of features. Therefore, this research proposed a feature set
optimization and polarimetric SAR image classification method that integrates multiple polarimetric
decompositions, random forest model, and sequence forward selection algorithm, namely, the RF-SFS
algorithm for land cover classification in coastal wetlands using fully polarimetric ALOS PALSAR
data. The following conclusions can be drawn through a comparative analysis of the experiment:

(1) The proposed method calculated the importance of each polarimetric feature in the construction
of a random forest model, and the sequence forward selection algorithm was applied to select
the optimal polarimetric feature set that is suitable for Jiangsu coastal wetlands classification
according to the importance value. This method provided a quantitative reference for the
reasonable optimization of feature sets;

(2) The importance values of features from the scattering matrix and the four decomposition
algorithms, namely, H/α decomposition, Yamaguchi3 decomposition, VanZyl3 decomposition,
and Krogager decomposition, were higher than other features. This indicated that these features
were more important and were determined to be very supportive of land cover identification in
the Jiangsu coastal wetlands;

(3) Compared with the object-oriented QUEST decision tree algorithm, regardless of whether the latter
has been pruned, the proposed object-oriented RF-SFS method can achieve higher classification
accuracies without artificial pruning.

Overall, the findings in this study demonstrated that the proposed object-oriented RF-SFS
algorithm significantly contributes to coastal wetlands classification when using fully polarimetric
ALOS PALSAR data. However, as the scattering characteristics of these two kinds of land covers were
exactly similar, and the resolution of the used SAR data was relatively limited, reed and alterniflora
were classified into one category in this research. Future studies should be conducted that include
employing other novel classification algorithms or integrating of optical and SAR data to distinguish
these two kinds of land covers.

Author Contributions: Conceptualization, Y.C.; Formal analysis, J.X.; Funding acquisition, Y.C.; Investigation,
Y.C., R.Z. and Y.L.; Methodology, Y.C. and X.H.; Project administration, X.H.; Resources, X.H.; Software, J.X.;
Supervision, X.H.; Validation, Y.C. and Y.L.; Visualization, Y.C., J.X., R.Z. and Y.L.; Writing—original draft, Y.C.
and J.X.; Writing—review & editing, R.Z. and Y.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the Research Project of Surveying Mapping and Geoinformation of
Jiangsu Province (Grant No. JSCHKY201708), the Natural Science Foundation of Jiangsu Province (Grant No.
BK20180779), the Youth Science and Technology Innovation Fund Project of Nanjing Forestry University (Grant
No. CX2018015), and the National Natural Science Foundation of China (Grant No. 41830110, 41901401).

Acknowledgments: The ALOS PALSAR imagery was provided by the Japan Aerospace Exploration Agency.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2020, 12, 407 15 of 17

References

1. Michener, W.K.; Blood, E.R.; Bildstein, K.L.; Brinson, M.M.; Gardner, L.R. Climate change, hurricanes and
tropical storms, and rising sea level in coastal wetlands. Ecol. Appl. 1997, 7, 770–801. [CrossRef]

2. Costanza, R.; Pérez-Maqueo, O.; Martinez, M.L.; Sutton, P.; Anderson, S.J.; Mulder, K. The value of coastal
wetlands for hurricane protection. Ambio 2008, 37, 241–249. [CrossRef]

3. Perillo, G.; Wolanski, E.; Cahoon, D.R.; Hopkinson, C.S. Coastal Wetlands: An Integrated Ecosystem Approach;
Elsevier: Amsterdam, The Netherlands, 2018.

4. Prince, H.H. Coastal Wetlands; CRC Press: Boca Raton, FL, USA, 2018.
5. Sievers, M.; Brown, C.J.; Tulloch, V.J.; Pearson, R.M.; Haig, J.A.; Turschwell, M.P.; Connolly, R.M. The role

of vegetated coastal wetlands for marine megafauna conservation. Trends Ecol. Evol. 2019, 34, 807–817.
[CrossRef] [PubMed]

6. Hardisky, M.; Gross, M.; Klemas, V. Remote sensing of coastal wetlands. Bioscience 1986, 36, 453–460.
[CrossRef]

7. Klemas, V. Remote sensing of wetlands: Case studies comparing practical techniques. J. Coast. Res. 2011, 27,
418–427.

8. Doughty, C.L.; Cavanaugh, K.C. Mapping Coastal Wetland Biomass from High Resolution Unmanned Aerial
Vehicle (UAV) Imagery. Remote Sens. 2019, 11, 540. [CrossRef]

9. Verstraete, M.M.; Pinty, B.; Myneni, R.B. Potential and limitations of information extraction on the terrestrial
biosphere from satellite remote sensing. Remote Sens. Environ. 1996, 58, 201–214. [CrossRef]

10. Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and
mapping of wetland vegetation: A review. Wetl. Ecol. Manag. 2010, 18, 281–296. [CrossRef]

11. Kasischke, E.S.; Bourgeau-Chavez, L.L. Monitoring South Florida wetlands using ERS-1 SAR imagery.
Photogramm. Eng. Remote Sens. 1997, 63, 281–291.

12. White, L.; Brisco, B.; Dabboor, M.; Schmitt, A.; Pratt, A. A collection of SAR methodologies for monitoring
wetlands. Remote Sens. 2015, 7, 7615–7645. [CrossRef]

13. Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Brisco, B.; Motagh, M. Multi-temporal, multi-frequency,
and multi-polarization coherence and SAR backscatter analysis of wetlands. ISPRS-J. Photogramm. Remote
Sens. 2018, 142, 78–93. [CrossRef]

14. Amani, M.; Salehi, B.; Mahdavi, S.; Brisco, B. Separability analysis of wetlands in Canada using multi-source
SAR data. GISci. Remote Sens. 2019, 56, 1233–1260. [CrossRef]

15. Choe, B.-H.; Kim, D.-j.; Hwang, J.-H.; Oh, Y.; Moon, W.M. Detection of oyster habitat in tidal flats using
multi-frequency polarimetric SAR data. Estuar. Coast. Shelf Sci. 2012, 97, 28–37. [CrossRef]

16. Chauhan, S.; Srivastava, H.S. Comparative evaluation of the sensitivity of multi-polarized SAR and optical
data for various land cover classes. Int. J. Adv. Remote Sens. GIS Geogr 2016, 4, 1–14.

17. Pereira, L.; Furtado, L.; Novo, E.; Sant’Anna, S.; Liesenberg, V.; Silva, T. Multifrequency and Full-Polarimetric
SAR Assessment for Estimating Above Ground Biomass and Leaf Area Index in the Amazon Várzea Wetlands.
Remote Sens. 2018, 10, 1355. [CrossRef]

18. Millard, K.; Richardson, M. Wetland mapping with LiDAR derivatives, SAR polarimetric decompositions,
and LiDAR–SAR fusion using a random forest classifier. Can. J. Remote Sens. 2013, 39, 290–307. [CrossRef]

19. de Almeida Furtado, L.F.; Silva, T.S.F.; de Moraes Novo, E.M.L. Dual-season and full-polarimetric C band
SAR assessment for vegetation mapping in the Amazon várzea wetlands. Remote Sens. Environ. 2016, 174,
212–222. [CrossRef]

20. Hong, S.-H.; Kim, H.-O.; Wdowinski, S.; Feliciano, E. Evaluation of polarimetric SAR decomposition for
classifying wetland vegetation types. Remote Sens. 2015, 7, 8563–8585. [CrossRef]

21. Chen, Y.; He, X.; Wang, J. Classification of coastal wetlands in eastern China using polarimetric SAR data.
Arab. J. Geosci. 2015, 8, 10203–10211. [CrossRef]

22. Touzi, R.; Deschamps, A.; Rother, G. Wetland characterization using polarimetric RADARSAT-2 capability.
Can. J. Remote Sens. 2007, 33, S56–S67. [CrossRef]

23. Chen, Y.; He, X.; Wang, J.; Xiao, R. The influence of polarimetric parameters and an object-based approach on
land cover classification in coastal wetlands. Remote Sens. 2014, 6, 12575–12592. [CrossRef]

http://dx.doi.org/10.1890/1051-0761(1997)007[0770:CCHATS]2.0.CO;2
http://dx.doi.org/10.1579/0044-7447(2008)37[241:TVOCWF]2.0.CO;2
http://dx.doi.org/10.1016/j.tree.2019.04.004
http://www.ncbi.nlm.nih.gov/pubmed/31126633
http://dx.doi.org/10.2307/1310341
http://dx.doi.org/10.3390/rs11050540
http://dx.doi.org/10.1016/S0034-4257(96)00069-7
http://dx.doi.org/10.1007/s11273-009-9169-z
http://dx.doi.org/10.3390/rs70607615
http://dx.doi.org/10.1016/j.isprsjprs.2018.05.009
http://dx.doi.org/10.1080/15481603.2019.1643530
http://dx.doi.org/10.1016/j.ecss.2011.11.007
http://dx.doi.org/10.3390/rs10091355
http://dx.doi.org/10.5589/m13-038
http://dx.doi.org/10.1016/j.rse.2015.12.013
http://dx.doi.org/10.3390/rs70708563
http://dx.doi.org/10.1007/s12517-015-1940-2
http://dx.doi.org/10.5589/m07-047
http://dx.doi.org/10.3390/rs61212575


Remote Sens. 2020, 12, 407 16 of 17

24. Niu, X.; Ban, Y. Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification
using an object-based support vector machine and a rule-based approach. Int. J. Remote Sens. 2013, 34, 1–26.
[CrossRef]

25. Blaschke, T. Object based image analysis for remote sensing. ISPRS-J. Photogramm. Remote Sens. 2010, 65,
2–16. [CrossRef]

26. Blaschke, T.; Lang, S.; Hay, G. Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote
Sensing Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008.

27. Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image
classification. ISPRS-J. Photogramm. Remote Sens. 2017, 130, 277–293. [CrossRef]

28. Ban, Y.; Hu, H.; Rangel, I.M. Fusion of Quickbird MS and RADARSAT SAR data for urban land-cover
mapping: Object-based and knowledge-based approach. Int. J. Remote Sens. 2010, 31, 1391–1410. [CrossRef]

29. Fu, B.; Wang, Y.; Campbell, A.; Li, Y.; Zhang, B.; Yin, S.; Xing, Z.; Jin, X. Comparison of object-based and
pixel-based Random Forest algorithm for wetland vegetation mapping using high spatial resolution GF-1
and SAR data. Ecol. Indic. 2017, 73, 105–117. [CrossRef]

30. Liaw, A.; Wiener, M. Classification and regression by randomForest. R. News 2002, 2, 18–22.
31. Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222.

[CrossRef]
32. Boonprong, S.; Cao, C.; Chen, W.; Bao, S. Random Forest Variable Importance Spectral Indices Scheme for

Burnt Forest Recovery Monitoring—Multilevel RF-VIMP. Remote Sens. 2018, 10, 807. [CrossRef]
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