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Abstract: Lake ice is a dominant component of Canada’s landscape and can act as an indicator for
how freshwater aquatic ecosystems are changing with warming climates. While lake ice monitoring
through government networks has decreased in the last three decades, the increased availability of
remote sensing images can help to provide consistent spatial and temporal coverage for areas with
annual ice cover. Synthetic aperture radar (SAR) data are commonly used for lake ice monitoring,
due to the acquisition of images in any condition (time of day or weather). Using Sentinel-1 A/B
images, a high-density time series of SAR images was developed for Lake Hazen in Nunavut, Canada,
from 2015–2018. These images were used to test two different methods of monitoring lake ice
phenology: one method using the first difference between SAR images and another that applies the
Otsu segmentation method. Ice phenology dates determined from the two methods were compared
with visual interpretation of the Sentinel-1 images. Mean errors for the pixel comparison of the first
difference method ranged 3–10 days for ice-on and ice-off, while average error values for the Otsu
method ranged 2–10 days. Mean errors for comparisons of different sections of the lake ranged 0–15
days for the first difference method and 2–17 days for the Otsu method. This research demonstrates
the value of temporally consistent image acquisition for improving the accuracy of lake ice monitoring.
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1. Introduction

Lakes are a major component of the landscape at high latitudes. They can cover 15%–40% of the
land in some regions [1]. Lakes and the ice cover they form are important in the local climate, as the
presence of these features can have an impact on local energy budgets and precipitation amounts [2,3].
Recent analysis of lake ice phenology trends in the Canadian Arctic have shown that the end of break-up
(BUE, when the lake is fully clear of ice) is occurring one day earlier per year (2000–2013, significant
trends only) [4] and future predictions (2041–2070) of lake ice phenology estimate that the mean dates
of when full ice cover occurs could shift to up to 15 days later, dates for the complete disappearance of
ice up to 25 days earlier, and lead to an overall decrease in ice duration by up to 35 days [5,6]. Recently,
observed changes in lake ice phenology have been related to recent, accelerated winter warming
observed in the Arctic, resulting in shifts of >1 ◦C since 1990 [7]. These changes in lake ice dates have
an impact on northern communities as the formation of lake ice establishes supply routes via ice roads,
access to hunting camps and for travel between communities [8,9]. Recent research notes that a skating
race in Sweden (the Vikingarännet, or The Viking Ride) had to be cancelled indefinitely in 2018 due
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to the unpredictability of ice conditions and financial strain it placed on the hosting organization [9].
Additionally, research on the ice road from Tibbitt to Contwoyto in the Northwest Territories, Canada,
shows a decline in the number of open days, from 80 days in 2002 to 58 days in 2012 [8]. Lake ice is also
of interest to research on aquatic ecosystems, where studies have investigated the effects of changing
ice cover on under-ice aquatic communities [10,11]. Recent research has demonstrated that the timing
of ice-off can affect ecosystem variables such as residence time, lake stratification, and chlorophyll-a
concentrations [12].

However, in Canada, north of 70◦ there is an absence of in situ lake ice records [13]; monitoring in
these locations is difficult due to the accessibility of lakes throughout the Canadian Arctic Archipelago.
Remote sensing can help to increase the availability of lake ice phenology records as it is a more
cost-effective approach compared to traditional, ground-based methods of lake ice observation and
can cover large areas with high-temporal resolution [14]. Although visible remote sensing (e.g., the
Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra and Aqua satellites)
provides daily resolution, it is heavily impacted by cloud cover and can experience difficulties in
capturing freeze-up events for High Arctic lakes due to the occurrence of polar darkness [4,15,16].
Active microwave, notably synthetic aperture radar (SAR), is an alternative to visible remote sensing,
as it is not affected by cloud cover or polar darkness [14]. SAR imagery has been used to characterize
recent changes in lake ice phenology for both the Canadian Arctic Archipelago and the North Slope of
Alaska, and to relate patterns in changing phenology to changes in air temperature [17,18]. Additionally,
with the increase in the availability of SAR data via the European Space Agency’s (ESA) Copernicus
Sentinel-1 A and B satellite platforms, and Copernicus/Alaskan Satellite Facility (ASF) data access
utilities, it is easier to establish full records for northern lakes.

Evolution in SAR signal return (backscatter) throughout the ice season has been widely documented
at various latitudes including Central Ontario [19], Northern Montana [20], the Canadian Subarctic [21],
and the North Slope of Alaska [22–24]. Backscatter values are typically reported as being a mix of
low and high values under open water conditions due to wind effect [20,24]. Following the initial
formation of ice, backscatter values are low but begin to increase throughout the ice season before
decreasing during melt [21,23,25]. One common method of lake ice detection using radar imagery
is the development of thresholds using temporal differences in backscatter. This method has been
applied to lakes in Alaska [23], large lakes in northern Canada (Great Bear and Slave Lake) [26], and
small/medium lakes in Central Ontario [19]. These methods have successfully identified lake ice
phenology dates that are comparable to those observed by shoreline cameras, 1-D thermodynamic ice
models (e.g., the Canadian Lake Ice Model (CLIMo)), and by ice analysts at the Canadian Ice Service
(CIS), with errors ranging from 0 to 18 days [19,23,26].

In addition to thresholding methods, lake ice can also be mapped using image segmentation and
classification methods. These approaches are commonly used for the determination of the extent of ice
cover. K-means algorithms [27], neural networks developed from shoreline camera images [28], and
the ‘glocal’ Iterative Region Growing Semantics (IRGS) classification method [29], have been used for
lake ice mapping. The results of these methods show accuracies of 88% or better, with the IRGS method
being recently used to develop a semi-automated approach to lake ice mapping for the Great Lakes
and achieving an overall accuracy of 90.4% [29]. Additionally, threshold-based methods developed
from backscatter minimums/maximums and standard deviations [30], as well as the relationships
between polarization ratios and incidence angle [31], have been used to classify ice cover during
the break-up and freeze-up periods, with accuracies in the range 66%–99% [30,31]. However, these
segmentation and threshold-based classification methods have not been used to extract specific lake
ice phenology dates.

A recent investigation in Central Ontario identified temporal gaps in SAR imagery records as
being a limitation of threshold-based methods [19]. Although recent research has been published on
the detection of sea ice using high temporal resolution changes in gamma naught (γ◦) backscatter [32],
similar high-resolution data have not been used for lakes. For the first time, this study aims to use a
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method based on backscatter evolution and a two-class segmentation method to assess their accuracy
in identifying lake ice phenology events for a large Arctic lake, Lake Hazen, using high-density time
series of Sentinel-1 A/B data. The methods used in this study were developed to identify pixel-level
lake ice phenology. For each pixel of the lake, ice-off is defined as the complete disappearance of
ice and ice-on is defined as the appearance of consistent ice cover [14]. Lake ice phenology was also
determined for different sections of the lake, these will be referred to as water clear of ice (WCI, the
date when the section of the lake was free of ice) and complete freeze over (CFO, the date when the
section is fully covered by ice) [14].

2. Study Area

This study focuses on Lake Hazen (71.05◦ W, 81.78◦ N), the largest freshwater lake in the High
Arctic by volume, located in Quttinirpaaq National Park, on Ellesmere Island, Nunavut, Canada
(Figure 1) [33]. The nearest Environment and Climate Change Canada weather station is Alert (62.35◦W,
82.50◦ N, 150 km north east of Lake Hazen), with climate normal data (1981–2010) showing maximum
daily averages of 3.4 ◦C in July and minimum averages of −33.2 ◦C in January and February [34]. Lake
Hazen experiences constant daylight from April 7 to September 4 and no daylight between October 17
and February 26 [35]. The lake has a surface area of 542 km2, a maximum depth of 267 m, and is located
158 m above sea level [33,36]. Lake ice begins to melt in late May or early June [37]. The lake may
become ice free by late July or early August, before ice begins to form again in mid-September [18,37].
The average date for water clear of ice (1997–2018, determined by a combination of SAR and MODIS
data [18]) is August 12 and the average date for initial ice appearance (2001–2018, determined from a
combination of Sentinel-1 and MODIS data) is September 21. The lake is primarily fed by glacial runoff

from the Northern Ellesmere Island Icefield, which flows between mid-June and the end of August [38].
The Lake Hazen watershed is important to study because the local climate has experienced notable
increases in temperature, of 2.6 ◦C between 2000 and 2012, and increases in lake surface temperature of
0.1 ◦C per year during August, when the majority of the lake is ice free [37].

Figure 1. Lake Hazen located in Nunavut, Canada (71.05◦ W, 81.78◦ N). The longitude grids in the
figure are at an interval of 30◦, and the latitude grids are at an interval of 15◦. The inset map shows the
locations of the points used for validation. Landsat-8 Level-1 OLI/TIRS image courtesy of the United
States Geological Survey (USGS) Digital Object Identifier (DOI) number: /10.5066/F71835S6.
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3. Materials and Methods

3.1. Sentinel-1 Data

Sentinel-1 C-band (5.405 GHz) SAR data were acquired (downloaded from the Alaska Satellite
Facility, ASF, https://www.asf.alaska.edu/ [39]) between November 29, 2014 and February, 2019; the
images are Extra Wide (EW) mode Ground Range Detected Medium Resolution (GRDM) in either HH
+ HV or HH polarization with a pixel spacing of 40 m. This research used only HH-polarized images.
For the best coverage of Lake Hazen, a combination of different acquisition paths and orbits (both
ascending and descending) were selected, which resulted in a total of 1237 satellite images, providing
81% daily temporal coverage, with an average gap of 1.2 days.

The images were processed using the Sentinel Application Platform (SNAP). Pre-processing steps
included thermal noise removal and radiometric calibration [40]. The Refined Lee filter was used to
remove speckle; this filter uses the orientation of a pixel, which is determined within a 7 × 7 window
using 3 × 3 subareas, and local mean and variation to reduce speckle within the images [41]. In order
to ensure that images were aligned, terrain correction and projection to UTM Zone 18N was performed
in SNAP and the ‘warp’ function from the Geospatial Data Abstraction Library (GDAL) was used
to increase consistency [40,42]. The Arctic digital elevation model (DEM) was selected to correct the
images. This high-resolution DEM is produced using high-resolution optical satellite images and has
an approximate vertical and horizonal accuracy of 4 m [43]. The Arctic DEM is available in pixel sizes
ranging from 2 m to 1 km [43]. For the purposes of this study, the 10 m DEM was selected.

Images acquired in EW mode display varying incidence angles (18.9◦–47◦). Previous research
conducted on sea and lake ice has shown that the varying incidence angle can affect the backscatter
observed from different features [21,44,45]. Therefore, a linear correction was developed and applied to
each image. This method of incidence angle correction has been applied in previous research conducted
on Arctic sea ice monitoring and lake ice monitoring in Central Ontario [19,45]. Two hundred random
points were generated over the surface of Lake Hazen and used to extract both HH and incidence
angle values for 100 randomly selected images (n = 20,000). To ensure that points were independent
of the shoreline and unique values were extracted, a buffer of 500 m was generated, and a minimum
distance of 120 m was used between points. Zeroes and values less than −30 dB were removed from
the sample to limit outliers in the data. The remaining data (n = 19,638) were split into a 66% training
(n = 13,157) set and 33% validation (n = 6481) set. This resulted in a slope of −0.35 dB/◦ (R2 = 0.26, p <

0.01, RMSE = 3.83). Results of the validation set showed a spearman’s rho of 0.55 (p < 0.01) between
predicted and observed HH values. The correction is larger compared to previously reported values
(−0.23—0.26 dB/◦) [19,45], likely a result of incorporating values from open water images into the
model development. As previous research on sea ice has demonstrated, there is a steeper dependency
between water and incidence angle compared to ice [46,47]. Using this slope value, the backscatter
values of all images were normalized to the mean incidence angle of EW images, 32.95◦.

3.2. Validation for Ice Phenology Dates

Although optical imagery is available, cloud cover and high solar zenith angles during freeze-up
limit the application of these images for observing patterns in ice phenology. Both MODIS MOD09GQ
images (250 m surface reflectance of red (620–670 nm) and near-infrared (841–876 nm) bands from
MODIS on the Terra satellite) and Sentinel-2 images (10 m) were investigated as sources of validation.
Due to the quality of observations, manual determination of dates was made instead using SAR images.
Sentinel-1 images were compared to the NIR band of the MOD09GQ [48] and Sentinel-2 NIR band
(0.842 nm) during break-up to ensure that there was consistent identification of ice (Figure 2). Sentinel-1
images provide a clear visual record for the evolution of ice growth and decay on Lake Hazen, allowing
for visual comparison to be made between patterns in the images and the results of the proposed
methodology for pixel-level ice-off and ice-on. Results of the lake ice detection methods were validated

https://www.asf.alaska.edu/
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using 100 randomly selected points (Figure 1). Both mean bias error (MBE, Equation (1)) and mean
absolute error (MAE, Equation (2)) were calculated [49].

MBE =

∑
(Predicted Data− Observed Data)
Total Number o f Observations

(1)

MAE =

∑∣∣∣ (Predicted Data−Observed Data)
∣∣∣

Total Number o f Observations
(2)

Figure 2. Comparison between (a) Sentinel-1, (b) Sentinel-2, and (c) moderate resolution imaging
spectroradiometer (MODIS) images for 25 July 2018. The red outlines show the different sections created
to divide the lake. This figure contains Copernicus Sentinel-1 data (2018), processed by European Space
Agency (ESA) and Copernicus Sentinel-2 data (2018), processed by the ESA.

Additionally, in order to compare median WCI and CFO dates for Lake Hazen, the lake was split
into three sections (Figure 2). These three sections are approximately 22.3 km in length and better
represent the variation in lake ice phenology for the large lake, as determined from visual inspection of
ice cover freeze-up and break-up patterns on Sentinel-1 images for all ice seasons analyzed. Section 1
characterizes the southern area of the lake, Section 2 the middle portion of the lake, and Section 3 the
northern section of the lake. The WCI and CFO dates used for validation of these three sections were
determined through inspection of the Sentinel-1 imagery.

3.3. Lake Ice Detection Methods

3.3.1. Physical Basis of Backscatter Difference

There is a common pattern in backscatter evolution for lakes in the Arctic and Subarctic from
ice-free to ice-covered seasons (e.g., [21,24,25,50]). Prior to the formation of ice, backscatter values can be
high for Arctic lakes due to Bragg scattering from waves generated by wind on the lake surface [20,24].
However, the initial formation of ice is generally associated with low values in backscatter, as the
smooth ice–water interface of the thin ice acts as a specular reflector [24], but this can differ depending
on initial ice formation [50]. Bright areas (high backscatter) are observed in SAR images across the ice
surface during formation, due to the presence of cracks and deformation features [25]. Backscatter
increases throughout the ice season due to a combination of the dielectric contrast between ice and water
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(3.2 and 80, respectively [22,51,52]) and surface scattering caused by a rough ice–water interface [53,54].
Indeed, models and field studies have recently shown that scattering at the ice–water interface is the
dominant mechanism for radar return [53,54]. When temperatures increase later in the ice season,
there is an increase in water content on the ice or snow-covered ice surface which can absorb the
incoming signal or cause the smooth ice surface to act as a specular reflector, resulting in a decrease in
backscatter [21,24]. When the lakes are clear of ice, depending on wind speeds, backscatter returns
to the higher values associated with the open water season [23,24]. These patterns are also observed
in the high-density time series of backscatter for Lake Hazen (Figure 3). During the ice-free season,
typically for one month from mid-August to early September (based on Sentinel-1 observations in this
study), there is a pattern of noisy backscatter associated with a mix of windy and non-windy days.
Average backscatter during this time is −21.72 dB with a standard deviation of 5.30 dB. During initial
ice formation, backscatter begins low before increasing, this is followed by a plateau and decrease
when temperature rise. Average backscatter during full ice cover is higher compared to the ice-free
months, −16.32 dB, with a smaller standard deviation of 2.51 dB.

Figure 3. Average backscatter evolution of the high-density time series for all of Lake Hazen from
2015–2018. Ascending and descending images are represented by black and grey squares, while melt
and freeze start times determined from Sentinel-1 images are represented by solid red and blue lines.

This typical pattern in backscatter evolution is used by thresholding methods to identify lake
ice phenology events. These methods have been used to identify dates of freeze onset, melt onset,
and WCI for large lakes in northern Canada (Great Bear and Great Slave Lake) as well as lakes small,
shallow, lakes on the North Slope of Alaska [23,26]. These methods used thresholds that were based
on observations of sampled backscatter evolution data [26]. Recently, a similar approach was used to
identify multiple freeze and melt events for small/medium lakes in Central Ontario [19]. However,
there are disadvantages to these methods: (1) human intervention or iterative processes are used to
determine thresholds; and (2) restrictions for ice phenology dates are not included in these methods or
must be determined by the user.

3.3.2. Identification of Lake Ice Phenology Using First Difference

The approach used in this research to extract lake ice phenology from backscatter profiles builds
upon these methods and addresses the limitations identified above. The first difference is determined
by subtracting the first image in the sequence from the next subsequent image in the time series on a
pixel-by-pixel basis. This method has been used in the previous literature [19]. Additionally, to limit
the influence of pixels below the minimum Sentinel-1 noise equivalent sigma zero (NESZ) (−22 dB) [55],
pixels below −30 dB were set to a value of 100 and the associated pixel and pixels before and after are
ignored when determining the occurrence of lake ice phenology. The threshold of −30 dB eliminates
the significantly lower pixels but retains new ice and calm water pixels that are closer/below the noise
floor. Large decreases in backscatter in the first difference raster are associated with pixel-level ice-off
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and ice-on events (Figure 4). To extract the lake ice events from these rasters, the method iterates
through each point to identify the latest and largest decrease in backscatter; this value is determined as
ice-off or ice-on depending on the date (Figure 4). The method does not use an assigned threshold,
meaning the method could be applied to any lake/any year of data as the threshold will not change
spatially or temporally [19,23,26]. Additionally, a 5 × 5 majority filter is used to smooth the final ice
phenology raster and reduce the overall noise in the results [56]. The resulting raster is then clipped
using a 300 m mask to remove pixels that may have been influenced by land contamination.

Figure 4. Identification of the largest and last backscatter decrease for a pixel during the break-up and
freeze-up (red and blue circle) periods, and the relation to the observed ice-on and ice-off dates (solid
lines represent observed dates from Sentinel-1).

In order to restrict the date range for determination of ice-off and ice-on, Sentinel-1 observations of
initial ice decay, water clear of ice (WCI), and the first appearance of ice were made (Table 1). These date
ranges can help to avoid the false detection of ice phenology events in SAR images due to errors, such
as those introduced by wind [19]. However, this does mean some human intervention is needed in
order to determine these dates. For the purposes of this research, a cut-off date associated with full ice
cover for Lake Hazen (October 15) was used to improve processing time. For comparison with the
manually observed Sentinel-1 sectional dates (WCI and CFO), the pixel results from the first difference
method were extracted from each section and used to calculate the median date. Figure 5 shows the
full workflow for determining ice phenology dates using the first difference method. The processing
steps are performed in a Python environment using GDAL [42].

Figure 5. Workflow implemented for determination of lake ice phenology from the backscatter evolution
first difference method.
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Table 1. Cut-off dates used to restrict the date range for the determination of ice-off and ice-on based
on Sentinel-1 observations.

Year Melt Onset Water Clear of Ice Initial Ice Appearance

2015 22 June 9 August 17 September
2016 29 June 14 August 11 September
2017 29 June 3 August 10 September
2018 29 June 15 August 13 September

3.3.3. Physical Basis of Two Class Segmentation

The first difference method relies on changes in backscatter, these changes are also associated with
an identified visual pattern in SAR images [57]. During break-up, bright tones represent lake ice while
darker tones in the image represent open water due to the lake surface acting as a specular reflector
away from the sensor [57]. During freeze-up, an opposite pattern is observed, with darker tones
representing the newly formed ice and brighter tones representing rough, wind-blown water [24,57].
Although there can be a mix of these tones depending on conditions, these are the common patterns
observed, and demonstrate that the images could be segmented into water and ice categories using
backscatter values. Figure 6 provides visual support for these patterns on Lake Hazen during both
freeze-up and break-up.

Figure 6. The left panel (a) shows the contrast between ice and water during the break-up period and
the right panel (b) shows the contrast between ice and water during the freeze-up period. This figure
contains Copernicus Sentinel-1 data (2015 and 2017), processed by ESA.

3.3.4. Identification of Lake Ice Phenology Using Otsu Segmentation

Although the Otsu method has been used to identify sea ice (both in simulated and natural
conditions) and river ice concentrations, studies have relied on optical imagery acquired via field
cameras and UAVs [58–60]. The Otsu method has seen limited application for obtaining sea ice
concentration from SAR data [61] and has not been used for monitoring lake ice concentrations or
phenology. The algorithm functions by evaluating the grey levels within an image and selecting an
appropriate threshold to segment the image into foreground and background [62]. The first step of
the algorithm is to identify the probabilities that a pixel will fall into one of these two classes. The
calculation of these values is given by Equation (3):

w f =
T∑

i=1

pi wb =
L∑

i=T+1

pi (3)

Where wf /wb indicate the two classes (foreground and background), the foreground ranges from
the minimum pixel value to the threshold value, and the background is all other values [62]. pi denotes
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the probability distribution, determined by dividing the number of pixels in each class by the total
number of pixels [62]. The next step is to determine the class level means using Equation (4) [62]:

µ f =

∑T
i=1 i(pi)∑T

i=1 pi
µb =

∑L
i=T+1 i(pi)∑L

i=T+1 pi
(4)

The overall computation of the Otsu threshold can be accelerated by ignoring within-class
variances and using the between-class variance, which is given by Equation (5) [62]:

σ2
between = w f wb

(
µb − µ f

)2
, (5)

The threshold associated with maximum between class variance is used to segment the grey scale
image into two classes [62]. The distribution of values in the SAR images were altered to improve
Otsu segmentation. This was done in a Python environment by converting the SAR float backscatter
to absolute integers. The Otsu segmentation method was applied to converted SAR values using
an iterative process that determined the range of available values and applied the Otsu algorithm
assuming each value represented a possible threshold. The maximum between-class variance was
determined from all possible thresholds and used to segment the image into water, a value of 1, and
ice, a value of 3. Figure 7 shows the success of the Otsu method for image segmentation and ice
identification compared to both Sentinel-1 and Landsat-8 Level-1 OLI/TIRS imagery. Additional high
backscatter in the Sentinel-1 image (and Otsu result) may be the result of clear ice not visible in the
Landsat image or wind causing a disturbance in this area of the lake.

Figure 7. (a) shows the histogram for the Sentinel-1 image acquired on 31 July 2016 with the threshold
of 19 represented by the solid red line, and (b) shows the image classified using the determined
threshold value of 19. Landsat-8 Level-1 image courtesy of the U.S. Geological Survey (Digital Object
Identifier (DOI) number: /10.5066/F71835S6); this figure also contains Copernicus Sentinel-1 data (2016),
processed by ESA.

However, there are some limitations associated with this method. High returns caused by
Bragg scattering result in misclassification of ice and water as the rough water surface is classified
as foreground/ice (possibly observed in Figure 7). The occurrence of this issue increases with the
proportion of open water. Furthermore, the Otsu method has difficulty identifying the difference
between ice and water during freeze-up, due to the appearance of cracks and deformations. These
features on the ice surface are known to cause higher backscatter, but the impact lessens throughout
the ice season [25]. This means misclassification may occur early in the FU process.

In order to address these issues, a set of criteria were developed. To determine the ice-off dates,
we iterated through each pixel and looked for the longest continuous coverage by ice that was followed
immediately by water. This helped to avoid any false classifications before the date of ice-off and
reduced the impact of Bragg scattering when ice-off was identified. To determine the ice-on date, we
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iterated through each pixel to determine the first sequence of continuous coverage by ice. This was
defined as two sequential days. There were cases when two sequential days of ice cover did not occur,
in these cases the pixel was assigned the date of initial ice formation observed in Sentinel-1 imagery.
The occurrence of no sequential days occurred for less than 5% of pixels within the 300 m buffer for all
years. The same observations used for the first difference method of initial ice decay, water clear of ice,
and the initial appearance of ice were also used to establish a time frame for identifying pixel-level
ice-on and ice-off dates (Table 1). Additionally, a 5 × 5 majority filter is used to smooth the final ice
phenology raster and reduce the overall noise in the results [56]. Similar to the first difference method,
the individual pixel results from the Otsu method were extracted and used to calculate the median
WCI and CFO dates for the three sections of Lake Hazen. Figure 8 shows the full workflow and related
steps for determining lake ice phenology dates using the Otsu segmentation method. The processing
steps were implemented in a Python environment using GDAL [42].

Figure 8. Workflow implemented for determination of lake ice phenology using the Otsu
segmentation method.

4. Results

4.1. First Difference Lake Ice Phenology

4.1.1. Pixel-by-Pixel Comparison

The results of the first difference method were used to map the distribution of ice-off dates at
the pixel scale for Lake Hazen (Figure 9). The comparison of dates visually extracted from Sentinel-1
images with the dates obtained from the first difference method shows a good agreement between the
two datasets (Table 2). When comparing the results on a pixel-by-pixel basis to the Sentinel-1 images,
the overall MBE range is −4–3 days. The largest biases occur in 2016 and 2017, with 2016 showing a
strong bias towards later estimated dates and 2017 showing earlier estimated dates. MAE ranges from
three to five days, showing that error values are consistent between years.

Table 2. Mean bias and mean absolute errors for the pixel-by-pixel extraction of lake ice phenology
events (ice-off and ice-on) using the first difference method.

2015 2016 2017 2018

Ice-off
MBE 1 3 −4 0
MAE 5 4 5 3

Ice-on
MBE −7 −1 −10 −5
MAE 7 3 10 6
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Figure 9. Ice-off dates for Lake Hazen, determined on a pixel by pixel basis using the first difference
method, from 2015–2018. Landsat-8 Level-1 image courtesy of the U.S. Geological Survey (Digital
Object Identifier (DOI) number: /10.5066/F71835S6).

Similar to ice-off, the results of the ice-on analysis were used to map dates for individual pixels
across the lake (Figure 10). However, the analysis of ice-on shows higher error values compared to
those from ice-off (Table 2). Dates determined by the first difference method are earlier compared to
the Sentinel-1 observations; MBE ranges from −1 to −10 days. Additionally, MAE values for Sentinel-1
data are higher compared to ice-off, with values ranging 3–10 days.

Figure 10. Ice-on dates for Lake Hazen, determined on a pixel by pixel basis using the first difference
method, from 2015–2018. Landsat-8 Level-1 image courtesy of the U.S. Geological Survey (Digital
Object Identifier (DOI) number: /10.5066/F71835S6).
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4.1.2. Sectional Date Comparison

When comparing median WCI between Sentinel-1 observations and the first difference method
for sections of Lake Hazen, higher differences are observed for individual years. Mean errors for WCI
are all under eight days for 2015–2018 (Table 3). The year with the lowest error is 2016, with an MAE of
three days. The largest mean error out of the four years is 2018, with an MAE of seven days. This is
due to the large error of 12 days for Section 1. The dates determined by the first difference method are
earlier compared to the actual observed dates.

Table 3. Mean bias and mean absolute errors for the determination of overall lake ice phenology event
dates (water clear of ice (WCI) and complete freeze over (CFO)) using the first difference method.

Water Clear of Ice (WCI) Complete Freeze Over (CFO)

Sentinel-1 Est. Date Difference Sentinel-1 Est. Date Difference

2015
Section 1 217 210 −7 280 269 −11
Section 2 217 214 −3 280 274 −6
Section 3 221 217 −4 280 269 −11

MBE: −5 days MAE: 5 days MBE: −10 days MAE: 10 days

2016
Section 1 217 217 0 270 265 −5
Section 2 219 220 1 268 265 −3
Section 3 227 219 −8 268 265 −3

MBE: −3 days MAE: 3 days MBE: −4 days MAE: 4 days

2017
Section 1 214 212 −2 269 259 −10
Section 2 215 212 −3 270 255 −15
Section 3 215 207 −8 270 262 −8

MBE: -5 days MAE: 5 days MBE: -11 days MAE: 11 days

2018
Section 1 227 215 −12 272 262 −10
Section 2 215 209 −6 271 262 −9
Section 3 208 207 −1 270 262 −8

MBE: −7 days MAE: 7 days MBE: −9 days MAE: 9 days

The differences observed for complete freeze over (CFO) are larger compared to those for WCI
(Table 3), matching the trend observed in the pixel-by-pixel comparison. Years 2015, 2016, and 2018
display lower errors, with MAE <= 10 days. The errors for individual sections are below 11 days
with small differences < = 5 days for all three sections in 2016. 2017 has the largest error values with
an MBE and MAE of -11/11 days. Large differences of > = 10 days earlier are observed for Section 1
and 2 of this year. Similar to WCI, CFO dates determined by the method are earlier compared to the
Sentinel-1 observations.

4.2. Otsu Segmentation

4.2.1. Pixel-by-Pixel Comparison

The results of the Otsu method were used to map ice-off dates for Lake Hazen from 2015–2018
(Figure 11). Ice-off results for the Otsu method are earlier on a pixel-by-pixel basis compared to
Sentinel-1 observations, MBE ranges from −2 to −7 days (Table 4). MAE error values vary for all years
and have the same range as the MBE results of 2–7 days.
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Figure 11. Ice-off dates for Lake Hazen, determined on a pixel by pixel basis using the Otsu method,
from 2015–2018. Landsat-8 Level-1 image courtesy of the U.S. Geological Survey (Digital Object
Identifier (DOI) number: /10.5066/F71835S6).

The results from ice-on can also be used to represent the spatial pattern of events for Lake Hazen
(Figure 12). Similar to the first difference method, mean error values for ice-on are higher compared to
ice-off (Table 4). Estimated ice-on dates are earlier compared to observed dates from Sentinel-1 data,
MBE ranges from −6 to −10 days, and MAE for ice-on ranges 6–10 days.

Figure 12. Ice-on dates for Lake Hazen, determined on a pixel by pixel basis using the Otsu method,
from 2015–2018. Landsat-8 Level-1 image courtesy of the U.S. Geological Survey (Digital Object
Identifier (DOI) number: /10.5066/F71835S6).
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Table 4. Mean bias and mean absolute errors for the pixel-by-pixel extraction of lake ice phenology
events (ice-off and ice-on) using the Otsu method.

2015 2016 2017 2018

Ice-off
MBE −3 −7 −2 −2
MAE 4 7 2 2

Ice-on
MBE −10 −6 −8 −6
MAE 10 6 9 6

4.2.2. Sectional Date Comparison

When evaluating the WCI dates determined for different sections, similar error values are observed
compared to the pixel-by-pixel evaluation (Table 5). Observed differences for all years show that the
dates from the Otsu method are earlier compared to Sentinel-1 observations. Years 2015, 2017, and 2018
show the smallest MBE and MAE ranging from −5 to −8 days and 5 to 8 days. The largest individual
difference was for Section 1 in 2018, 12 days earlier, with differences in 2015 and 2017 of 3–9 days earlier.
2016 had the largest error values, with an MBE of -13 days and MAE of 13 days. Consistently high
differences are observed for individual lake sections, with differences of up to 17 days.

Table 5. Mean bias and mean absolute errors for the determination of the overall lake ice phenology
event dates (WCI and CFO) using the Otsu segmentation method.

Water Clear of Ice Complete Freeze Over

Sentinel-1 Est. Date Difference Sentinel-1 Est. Date Difference

2015
Section 1 217 208 −9 280 264 −16
Section 2 217 210 −7 280 269 −11
Section 3 221 218 −3 280 269 −11

MBE: -7 days MAE: 7 days MBE: -13 days MAE: 13 days

2016
Section 1 217 208 −9 270 255 −15
Section 2 219 208 −11 268 259 −9
Section 3 227 210 −17 268 258 −10

MBE: −13 days MAE: 13 days MBE: −12 days MAE: 12 days

2017
Section 1 214 212 −2 269 259 −10
Section 2 215 212 −3 270 262 −8
Section 3 215 207 −8 270 257 −13

MBE: −5 days MAE: 5 days MBE: −11 days MAE: 11 days

2018
Section 1 227 215 −12 272 262 −10
Section 2 215 207 −8 271 266 −5
Section 3 208 204 −4 270 258 −12

MBE: −8 days MAE: 8 days MBE: −9 days MAE: 9 days

Larger errors are determined for CFO dates compared to the WCI dates (Table 5). Errors from all
years show that the dates determined by the Otsu method are earlier compared to those observed in
the Sentinel-1 imagery. The smallest error values between Sentinel-1 observations and Otsu method
dates were obtained in 2017 and 2018, with MBE values of between -9 and -11 days and MAE values
of 9–11 days. 2015 and 2016 show the highest error values, with MBE values of between −13 and
−12 days and MAE values of 13–12 days. The largest difference for these years is 16 days earlier for
Section 1 in 2015, with other values ranging from 9–15 days earlier.
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5. Discussion

5.1. Sources of Error for the First Difference Method

The results obtained using the first difference method are similar to those obtained from previous
threshold methods. Recent work published for Central Ontario showed MAE values for WCI ranging
from 1.5 to 7.1 days for a series of 15 lakes [19], whereas our method obtains MAE values of 3–7 days
for sectional WCI dates and 3–5 days for the ice-off pixel comparisons. Although the individual WCI
sectional error values were larger, ranging from 0 days to 12 days, the values are comparable to research
conducted on Great Bear Lake and on lakes on the North Slope of Alaska. The values for Great Bear
Lake showed differences of 8–14 days from 2000 to 2006 when comparing QuickSCAT-determined
dates to Canadian Ice Service (CIS) data [26] and errors obtained comparing dates determined using
RADARSAT-2 and ASAR to the numerical lake ice model, CLIMo, showed differences of 0–9 days
for lakes in northern Alaska [23]. The dates obtained by our method are also comparable to those
determined by passive microwave data for lakes across the Northern Hemisphere [63]. Results from
this previous analysis showed differences between algorithm determined dates and the CIS, ranging
2–12 days earlier [63]. Although pixel-by-pixel errors for ice-on were larger than ice-off, ranging 3–10,
the values remain similar to those obtained in Central Ontario, which ranged from 2.5 to 10 days
when comparing RADARSAT-2 to MODIS-determined dates [19]. The error values for individual lake
section CFO dates, 3–15 days, are also similar to those reported in previous research. Overall errors for
lakes in Barrow Alaska showed differences of 0–15 days in comparison to CLIMo [23] and differences
of 4–18 days for Great Bear Lake when dates determined from QuikSCAT were compared to dates from
the CIS [26]. Similar to WCI, passive microwave data used to determine CFO for Northern Hemisphere
lakes show similar error ranges to our results, with differences of 0 to 11 days earlier [63].

Pixel-scale detection of ice-off using the first difference method is limited by the occurrence
of multiple ice-off events. This occurs when the largest difference corresponds with the initial
disappearance of ice, yet a shifting ice cover can delay the final date of ice-off. This results in an earlier
estimate compared to the visual assessment of Sentinel-1 images. During break-up in 2018, a large
portion of the ice cover melted on 22 July. However, on 23 July the same area was covered by ice
(Figure 13). The differencing method identified the first ice-off on 22 July and did not identify the final
date that occurred on August 4, resulting in a difference of 13 days.

In addition to shifting ice cover, the other cause of earlier estimations is roughness caused by wind
on the lake surface. For example, a pixel during break up in 2017 was estimated as having ice-off on 30
June. However, the actual observed date for that pixel is 2 August. Although the ice-off cut-off for this
year was 3 August, wind resulted in increased backscatter values until 5 August, which was the closest
and largest decrease (−8.2 dB) for this pixel; this would have resulted in a smaller error of two days.

Although the method uses the last and largest decrease in backscatter, the presence of smooth ice
early in the freeze-up process can cause large differences in backscatter. This early ice may melt or
shift, causing the method to miss the formation of consistent ice cover. Additionally, the wind can
cause large increases and decreases in backscatter, which the method may incorrectly identify as the
formation of ice cover.
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Figure 13. Shifting ice cover between 21 July and 24 July, showing the appearance of a large open water
section on 22 July, which is covered the following day on 23 July. All images were acquired between
12:31:48 UTC and 13:29:01 UTC on their respective days. This figure contains Copernicus Sentinel-1
data (2018), processed by ESA.

5.2. Sources of Error for the Otsu Method

The results of pixel-by-pixel comparison for the Otsu method are comparable to accuracies reported
in other research for ice-off that used backscatter evolution thresholds. The Otsu method accuracies
range from two to seven days, and lake ice phenology dates from recent research in Central Ontario
comparing RADARSAT-2 to MODIS images reported errors of 1.5 to 7.1 days [19]. The individual
lake-section differences are less than 17 days, which are also comparable to results reported in the
literature that use backscatter evolution thresholds. The threshold methods used to identify ice-off for
Great Bear Lake reported differences of 14 days when comparing results to dates from the Canadian Ice
Service [26], and similar values of 12 days were found when comparing passive microwave algorithms
to CIS dates [63]. The results for CFO determination for different lake sections, ranging 5–16 days
earlier, are also similar to the values reported in the previous literature using both passive and active
microwave data, with differences ranging 0–18 days across the Northern Hemisphere, northern Canada,
and Alaska [23,26,63].

Similar to the issues mentioned with the first difference method, the definition of WCI has an
impact on the accuracy of the Otsu method as it identifies the first pixel following the largest number
of continuous ice values. This results in the Otsu method missing the actual WCI date if wind or
shifting ice covers a patch of open water following its initial disappearance. Although the criteria were
used to limit the influence of wind on the Otsu method and provide the most accurate date for WCI,
they also create a limitation for certain pixels. If there are consecutive dates of ice coverage followed
by a misclassified water pixel early in the break-up period (between the initial disappearance of ice
and WCI), this can limit the ability of the Otsu method to capture the actual WCI date later in the
season. For example, in 2015, one pixel used in the validation process reported a WCI date that was
31 days earlier compared to Sentinel-1 observations, 5 July and 5 August. This was due to a group
of consecutive ice dates followed by a misclassified open water pixel at the very beginning of the
ice season, caused by misclassification of the Otsu method. This misclassification is due to a lack of
contrast between ice and water, resulting in a noisy segmentation. These larger, earlier dates were
observed for a small number of pixels in all years.
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The Otsu method shows consistently earlier dates for the determination of ice-on, due to confusion
in the classification between open water and ice. During freeze-up, darker tones in the image are
treated as ice features while brighter tones are treated as water. However, these bright tones can also be
present on the ice surface due to deformations and cracks within the ice cover (Figure 14) [25]. These
cracks may persist throughout ice formation, resulting in later identifications of consistent ice cover as
compared to areas where the initial ice has a darker tone.

Figure 14. Misclassification of cracks and deformations in the ice surface by the Otsu method during
freeze-up in 2018. Landsat-8 Level-1 image courtesy of the U.S. Geological Survey (Digital Object
Identifier (DOI) number: /10.5066/F71835S6); this figure also contains Copernicus Sentinel-1 data (2018),
processed by ESA.

Additionally, a lack of waves on the surface of the lake can cause it to appear darker, resulting in
further misclassification of ice and water. This confusion between calm water and ice results in the
Otsu method making early identifications of consistent ice cover. This is also affected by the Sentinel-1
cut-offs, which are 13 to 20 days earlier compared to continuous ice cover for different sections of
the lake. Additionally, on windy days there can be a mix of bright and dark tones in backscatter for
sections of the lake. This mix of tones may result in the early identification of ice-on for certain pixels.
For example, in 2017, pixels in the southern portion of the lake were 13 to 16 days earlier compared to
Sentinel-1 observations because of a mix of bright and dark tones in this area of the lake. This was
possibly the result of wind patterns, as the rest of the lake showed high backscatter values consistent
with a wind-roughened surface.

5.3. Comparison of the Methods

Error values from the first difference and Otsu methods are comparable to the previously published
literature on lake ice phenology event extraction [19,23,26,63]. Overall the first difference method
demonstrates more consistent error values compared to the Otsu method for ice-off dates. All MAE
values for the difference method are under five days, while the values for the Otsu method range from
two to seven days. For ice-on, the first difference method shows the lowest error value for 2015 and
2016; other years were comparable to the two methods. For the sectional accuracies, the difference
method outperforms the Otsu method. The WCI error values for the first difference method range
from one to −12 days, while the Otsu errors range from −2 to −17 days. For CFO, both methods show
similar differences between individual sections, yet, in 2016, the first difference method outperforms
the Otsu method with error values ranging from −3 to−5 days compared to −9 to −15 days. Although
both methods perform well and are comparable to previous research, recent literature notes that the
date of minimum ice cover on Lake Hazen shifted earlier by only nine days between 1997 and 2011 [18].
This means that these methods may still introduce some errors when looking at trends in ice phenology
within the last 10–20 years. Furthermore, although image frequency was almost daily during break-up
and freeze-up processes, small gaps in the image record could cause errors.
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The first difference and Otsu methods are also useful in tracking the progress of ice decay
and formation. The Otsu method is easily able to capture the progression of ice decay due to the
identification of ice and water. Figure 15 (see also Videos in Supplementary Materials) shows this
during the end of break-up in 2018, as the Otsu method captures the disappearance of ice cover.
The Otsu method shows a smoother ice cover compared to the first difference method, which shows
inconsistent dates for certain areas. This relates back to the sources of error previously discussed, as the
gaps that the first difference method captures are most likely caused by earlier melt for the associated
pixels. However, the first difference method does accurately capture the disappearance of ice between
August 9 and 10, whereas the Otsu method shows inconsistent dates for this area (Figure 15).

Figure 15. Tracking the progression of ice during the end of break-up in 2018 using the first difference
method (a) and Otsu method (b). Landsat-8 Level-1 image courtesy of the U.S. Geological Survey
(Digital Object Identifier (DOI) number: /10.5066/F71835S6); this figure also contains Copernicus
Sentinel-1 data (2018), processed by ESA.

Comparisons of ice cover fractions were derived from both methods to observations from the
Canadian Ice Service (CIS) over 2017 and 2018 (limited by the availability of data from CIS for these
two years only) to further demonstrate the capability of the methods to track ice cover (Figure 16).
Ice cover fraction (i.e., fraction of the lake covered by ice, in tenth) is determined on a weekly basis
through the visual interpretation of SAR and optical imagery compiled over that week by ice analysts
at CIS. The largest discrepancy for both methods is on 4 August 2017, when both methods report an
ice cover fraction of 0/10 (i.e., no ice). However, the CIS reports 6/10, which is most likely due to the
values from the CIS being based on weekly images and, therefore, may not provide an exact match to
the Sentinel-1 images. Overall, both methods are in good agreement with fractions reported by CIS
(Figure 16); differences of 1/10 are likely caused by errors due to wind, shifting ice cover, or differences
in image acquisition, as previously mentioned.

Tracking the progression of ice formation during freeze-up is more difficult compared to ice decay
due to limitations such as deformations on the ice surface. This difficulty is to be expected based on the
higher error values obtained for ice-on (pixel-scale) and CFO (lake sections). Figure 17 demonstrates
that the first difference method is better for identifying the growth of ice as it is able to capture the
appearance of larger areas of ice cover between 19 and 21 September. Additionally, between 22 and
23 September, it captures the appearance of ice at the southern end of the lake that is not identified



Remote Sens. 2020, 12, 382 19 of 25

by the Otsu method. The difficulty of capturing ice formation is also reflected when comparing the
percentage of ice-on pixels determined by the first difference and Otsu method to the ice cover fraction
reported by the CIS (Figure 18). However, the discrepancies in 28 September 2018 and 8 October 2018
are possibly due to the timing of observations from the CIS, as Sentinel-1 images show that there is
almost full coverage or complete coverage on both dates.

Figure 16. Comparison of ice cover fractions from the Canadian Ice Service (CIS) to those estimated
from the first difference and Otsu methods during the break-up period. (a,b) show the lake ice cover
fraction estimated by the first difference method compared to the CIS estimates. (c,d) show the lake ice
cover fraction estimated by the Otsu method compared to the CIS estimates.

Figure 17. Representation of ice formation during freeze-up using the first difference method (left
column) and Otsu method (right column) in 2016. The light blue polygons highlight the areas where
ice-on was captured on each respective date. This figure contains Copernicus Sentinel-1 data (2016),
processed by ESA.
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Figure 18. Comparison of ice cover fractions from the Canadian Ice Service (CIS) to those estimated
from the first difference and Otsu methods during the freeze-up period. (a,b) show the lake ice cover
fraction estimated by the first difference method compared to the CIS estimates. (c,d) show the lake ice
cover fraction estimated by the Otsu method compared to the CIS estimates.

6. Conclusions

This research presents two methods of extracting ice-on and ice-off dates from high-density
time-series SAR imagery. The first difference method uses the evolution of backscatter that has been
reported for lakes in the Arctic and temperate latitudes [20,21,24,25], and addresses one limitation (i.e.,
spatially dependent thresholds and dates captured after the true WCI date) of previous threshold-based
methods [19,23,26]. This limitation was addressed by relying on the largest and last decrease to represent
ice phenology dates and using lake-wide Sentinel-1 observations as cut-off dates for determining
ice-on and ice-off. Pixel-by-pixel comparisons of this method show error values to be within 3–10
days for ice-off and ice-on and errors ranging from 0 to 15 days when comparing single dates for
different sections of the lake for WCI and CFO. Errors for this method are primarily caused when
pixels alternated between open water and ice due to wind or refreezing during ice-off. Errors in the
determination of ice-on are caused by the Sentinel-1 dates used as a starting point for freeze-up. This
method could be further improved by using lake ice models to provide the date ranges as this would
eliminate the need to manually determine cut-off dates over longer timescales.

Additionally, this paper demonstrates the first application of the Otsu method [62] for the
identification of lake ice and open water in SAR imagery. The method was successful in identifying two
classes due to the contrast in tones between open water and ice (i.e., [57]). The classifications obtained
from this method were used to identify ice-off and ice-on dates. This method shows error values
ranging from two to 10 for the pixel-by-pixel comparisons of ice-off and ice-on, and errors of two to 17
days for single dates for different sections of the lake. The Otsu method is limited by surface conditions
during different lake ice phenology events. Misclassification early in the break-up period caused by a
lack of clear contrast between ice and water surfaces results in earlier identification of ice-off. During
freeze-up, cracks and deformations on the surface of the ice also result in misclassifications that led to
early or late identification of consistent ice cover.

Comparison of the two methods shows that errors are more consistent for the first difference
method compared to the Otsu method. However, the first difference method does encounter issues
tracking ice disappearance and is noisier compared to the Otsu results. Both methods experience
similar difficulty identifying CFO dates, yet the first difference method identified the appearance of
larger areas of ice cover. Ice cover fraction estimates from both methods are largely comparable to
those determined through the visual interpretation of imagery by ice analysts at CIS. The application
of these methods for ice cover fraction monitoring using consistent satellite data could provide longer
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term records of ice cover, which is an essential climate variable (ECV) according to the Global Climate
Observing System (GCOS) [64].

Although both methods show that more temporally consistent (near daily) records of SAR imagery
result in the identification of ice phenology dates generally close to observations, further research is
needed to continue improving methods for studying changes in ice phenology in recent decades. Future
explorations of identifying ice phenology dates from high-density SAR time series need to progress
towards the integration of multiple data sources, such as lake ice models and visible remote sensing,
through methods such as data assimilation and machine learning. The importance of temporally
consistent images is especially relevant for the study of lakes across the Canadian Arctic with the
recent launch of the RADARSAT Constellation Mission (RCM) by the Canadian Space Agency in June
2019. The launch of these satellites will improve the overall revisit time compared to the previous
RADARSAT-2 system, allowing for multiple daily acquisitions and improved monitoring of lake ice in
the Canadian North [65].

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/3/382/s1.
Video S1: Progression of ice cover throughout the break-up process as shown in both the Sentinel-1 imagery and
estimated first difference dates (http://www.mdpi.com/2072-4292/12/3/382/s1), Video S2: Progression of ice cover
throughout the break-up process as shown in both the Sentinel-1 imagery and estimated Otsu method dates
(http://www.mdpi.com/2072-4292/12/3/382/s1).
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